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Abstract 

 

The reconsolidation and extinction of aversive memories and their boundary conditions have been 

extensively studied. Knowing their network mechanisms may lead to the development of better 

strategies for the treatment of fear and anxiety-related disorders. In 2011, Osan et al. developed a 

computational model for exploring such phenomena based on attractor dynamics, Hebbian plasticity 

and synaptic degradation induced by prediction error. This model was able to explain, in a single 

formalism, experimental findings regarding the freezing behavior of rodents submitted to contextual 

fear conditioning. In 2017, through the study of inhibitory avoidance in rats, Radiske et al. showed that 

the previous knowledge of a context as non-aversive is a boundary condition for the reconsolidation of 

the shock memory subsequently experienced in that context. In the present work, by adapting the 

model of Osan et al. (2011) to simulate the experimental protocols of Radiske et al. (2017), we show 

that such boundary condition is compatible with the dynamics of an attractor network that supports 

synaptic labilization common to reconsolidation and extinction. Additionally, by varying parameters 

such as the levels of protein synthesis and degradation, we predict behavioral outcomes, and thus 

boundary conditions that can be tested experimentally. 

 

Keywords: attractor network, inhibitory avoidance, reconsolidation, extinction, boundary condition, 

synaptic plasticity. 

 

 

Introduction 

 

Much of the brain functioning can be understood from the connectionist perspective, where mental 

phenomena are described by the synaptic interconnection between neural networks (Feldman and 

Ballard, 1982). Studies suggest that memories are encoded from the synaptic configuration of 

neuronal assemblies (Choi et al., 2018), where patterns of experience-dependent activity are stored 

and retrieved by the association of sensory information (Stein, 1998). This is possible due to the 

plastic aspect of the synapses, which can constantly be strengthened or weakened by biochemical 

processes depending on whether the activity of the involved neurons correlates or not (Hebb, 1949; 

Hughes, 1958; Neves et al., 2008). Neural networks thus evolve by associating the activation of 

certain engrams to recurrent patterns of sensory signals and internal processes (Gonzalez et al., 

2019). In turn, synaptic conformations form flexible dynamic systems that tend to guide the flow of 

information, characterizing the so-called attractor networks (Amit, 1992; Rolls, 2007; Wills et al., 

2005).  

  

In 2011, Osan et al. modified the Hopfield neural network model of associative memory (Hopfield, 

1982) by adding the possibility of synaptic degradation by prediction error (Pedreira et al., 2004; 

Sevenster et al., 2013). In addition, the model allows the modulation of Hebbian learning (Hebb, 

1949), simulating the blockade of protein synthesis through amnesic drugs, and the modulation of the 

synaptic degradation itself, simulating the effect of drugs acting on its blockade or reinforcement 

(Alberini, 2009; Kandel, 2001; Lamprecht and LeDoux, 2004). This new model maintains the 

characteristics of a connectionist model and a nonlinear dynamic system where the neural states vary 

in the time domain toward points of convergence called attractors, i.e., local minima in an energy base 

that represents the network state-space (Mizusaki et al., 2016; Seung, 1996; Zylberberg and 
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Strowbridge, 2017). The retrieval of a memory pattern (attractor) previously stored can be achieved 

from the partial or noisy knowledge of its content (Ritter et al., 1992). 

 

Empirical evidence demonstrates that the dynamics of the population activity of neurons from regions 

such as the hippocampus and neocortex behaves as attractor networks (Brunel, 2016; Pfeiffer and 

Foster, 2015; Rolls, 2007). For example, the associative characteristic of the hippocampus, mainly 

because of the highly connected structure of recurrent collaterals in CA3 (Amaral and Witter, 1989; 

Ishizuka et al., 1990; Rennó-Costa et al., 2014), allows it to rapidly encode activity from the cortex, 

and consequently retrieve them from sensory cues. Thus, declarative and context-fearful memories, 

dependent on the medial temporal lobe, are coded faster than the others (Henke, 2010; Marr et al., 

1991; Treves and Rolls, 1994). Before coming to CA3, the afferent signal from the entorhinal cortex 

goes through a pattern separation process in the dentate gyrus (Drew et al., 2013; Sahay et al., 

2011), allowing different representations between similar experiences and, thus, minimizing 

interference in the storage and retrieval of specific memories (Yassa and Stark, 2011). 

 

Memories stabilized via the consolidation process (Kitamura et al., 2017; McGaugh, 2015) can be 

updated from their reactivation, when they become momentarily labile by the induction of new 

intracellular biochemical cascades (Bevilaqua et al., 2008; Lee, 2009; Nader et al., 2000; Tronson and 

Taylor, 2007). Such a phenomenon, known as reconsolidation, restabilizes memory traces, leading to 

structural modifications and synaptic configuration updating (Lee et al., 2006, 2017; Tronson et al., 

2006). Depending on the animal’s environmental perception leading to memory retrieval, the related 

engram can be reinforced from, for example, gene expression and protein synthesis de novo (Milekic 

and Alberini, 2002; Nader et al., 2000; Suzuki et al., 2004), or degraded via the ubiquitin-proteasome 

pathway (Ehlers, 2003; Hegde et al., 1993; Kaang et al., 2009; Lee et al., 2008) and autophagy 

(Shehata et al., 2018). Moreover, the association of the synaptic degradation with the formation of a 

new memory trace related to the perception of a safe environment may result in the extinction 

phenomenon, when the animal extinguishes the original behavioral reaction against a particular cue 

or context and starts to exhibit a new behavioral response related to the activation of the novel 

engram (Izquierdo et al., 2004; Pavlov, 1927; Rescorla and Heth, 1975). In other words, the degree of 

synaptic degradation, and consequently the occurrence of reconsolidation or extinction, is associated 

with the prediction error level, which measures the degree of mismatch between the retrieved memory 

and the engram activated by the current event (Sevenster et al., 2014). 

 

The circumstances that allow the occurrence of memory reconsolidation or extinction are known as 

boundary conditions, defined as physiological, environmental or psychological variables that may 

influence the behavioral phenotype (Fernández et al., 2016; Nader and Hardt, 2009), delimiting 

situations in which the memory becomes unstable, i.e., subjected to changes. Therefore, investigating 

the boundary conditions leading to the reconsolidation or extinction of aversive memories is especially 

important to help developing better strategies for the treatment of anxiety and fear-related disorders 

(Dębiec and Ledoux, 2004; Kindt et al., 2009; Lee et al., 2005). Some already known boundary 

conditions are the strength of the aversive memory storage (Forcato et al., 2014; Suzuki et al., 2004; 

Taylor et al., 2009; Wang et al., 2009), the time elapsed between the storage and the aversive 

memory reactivation (Baratti et al., 2008; Forcato et al., 2013; Inda et al., 2011; Milekic and Alberini, 

2002), and, more recently, the previous knowledge of the context/stimulus as non-aversive (Radiske 

et al., 2017). However, the results of the literature that define them are controversial (Nader and 

Hardt, 2009), suggesting the necessity of a broad parametric mapping that adequately defines the 

actual existence of the boundary conditions already discovered. 

 

In order to map the structural biological parameters with the boundary conditions of memory 

reconsolidation, we investigated the network mechanisms involved in the reconsolidation of aversive 

memory in the inhibitory avoidance (IA) paradigm, also known as avoidance memory (Ader et al., 

1972; Boccia et al., 2004; Wilensky et al., 2000). To that end, we considered the computational 
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approach of the attractor network model developed by Osan et al. (2011), which was previously used 

to explain experimental findings regarding freezing behavior of rodents submitted to paradigms of 

contextual fear memory consolidation, reconsolidation, and extinction. Here, we use such a model to 

gain theoretical insights into the experimental results of Radiske et al. (2017), which showed that the 

prior non-aversive learning of the context where the animals experience the shock (i.e., the IA box) is 

a boundary condition for the reconsolidation of the avoidance memory.  

 

 

Methods 

 

Code development 

 

The attractor network and all simulations were implemented using Python 2.7 and the SciPy scientific 

package (Jones et al., 2001). The code is available online at https://github.com/tortlab/attractor-

network. 

 

Attractor network 

 

The attractor network developed by Osan et al. (2011) is an adaptation of the Hopfield neural network 

— an associative memory system, also known as content-addressable memory (Hopfield, 1982). In 

the new model, neural activity varies between 0 and 1 (instead of -1 and +1 as in the original Hopfield 

network). This simple change avoids the storage of opposite memory patterns by eliminating 

connection symmetry between two neurons and the strengthening of connections between inactive 

units. In this way, the model allows a more realistic representation of both neuronal activity (firing rate) 

and synaptic connections (Osan et al., 2011). 

 

All simulations were performed in networks composed of n = 100 neurons, where the activity u of 

each unit i was calculated by the following differential equation: 

 

𝜏
𝑑𝑢𝑖

𝑑𝑡
= −𝑢𝑖 +

1

2
(1 + 𝑡𝑎𝑛ℎ(∑ 𝑤𝑖𝑗𝑢𝑖 + 𝐼𝑖

𝑁
𝑗=1 )) (1) 

 

where 𝜏 = 1 is a constant that determines the update rate of the state ui, wij is the synaptic weight of 

the connection between the presynaptic neuron j and the postsynaptic neuron i, and I is the network 

input signal that corresponds to external and internal information that influences the animal’s 

perception of the environment (Osan et al., 2011). The equation was solved by Euler’s method with 

100 integration points over time from t = 0 to t = 10. 

 

Connections between units are organized in the nxn-dimensional matrix W, where positive and 

negative values represent the strength of excitatory and inhibitory synapses, respectively. Synaptic 

weights are updated through a process consisting of two terms (nxn matrices HLP and MID, see 

below) dependent on the steady-state u (n-dimensional vector) achieved after a strong input I (n-

dimensional vector with values varying in [-5,+5]). Therefore, the process of memory retrieval is 

inserted into the storage process by directly influencing both terms that determine the variation of W: 

 

Δ𝑊 = 𝐻𝐿𝑃 +𝑀𝐼𝐷 (2) 

 

where HLP refers to Hebbian Learning Plasticity, and MID, to Mismatch-Induced Degradation (Osan 

et al., 2011). 

 

The HLP term is calculated by HLP = S(u*uT) - S((1-u)*uT), where the asterisk represents the outer 

product and S ≥ 0 corresponds to the level of Hebbian plasticity that covers requirements such as 
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receptor activation, intracellular signaling, and protein synthesis. The connection between a 

presynaptic neuron j and a postsynaptic neuron i is reinforced by S if ui = uj = 1, in case of maximum 

mutual activation. If uj = 1 and ui = 0, then the connection is changed by -S. And if uj = 0, independent 

of ui, there is no impact on the connection. Intermediate effects occur in the case of intermediate 

values of uj and ui. 

 

The MID term is calculated by MID = D(m*uT), where the synaptic degradation factor D ≥ 0 represents 

the level of protein degradation. MID depends on the level of the prediction error, represented by m 

(n-dimensional vector), which is determined by the mismatch between the normalized input I (Inorm  

[0,1]) and the retrieved state u, that is: m = Inorm – u. Thus, MID is a nonzero matrix if u diverges from 

Inorm, and acts towards weakening afferent connections responsible for the mismatch. 

 

The values of the synaptic weights are truncated at a minimum of -1 and a maximum of +1. Finally, 

synaptic weights are subject to a time-dependent decay: 

 

𝑊(𝑡 + Δ𝑡) = 𝑊(𝑡) − 𝛾𝑊(𝑡) (3) 

 

where γ  [0,1] determines the decay rate. 

 

Figure 1A shows the flow of the memory storage process, where the numbers inside the circles 

represent the equations above. For the retrieval tests, the flow process is shown in Figure 1B, where 

the weak input I corresponds to the context signal (see below) with values varying between 0 and 0.1. 

 

Experimental protocol and network input patterns 

 

To simulate the main experimental protocol of Radiske et al. (2017), we used the schema shown in 

Figure 2A, where each session corresponds to the respective input pattern shown in Figure 2B. The 

first stage is the storage of the non-related memory by the input Inr in all networks (notice that the 

activated neurons in this pattern do not overlap with those in the other patterns). Then, in the next 

stage, two “habituation” groups are distinguished: one that receives the control memory (Ic) simulating 

exploration of an open field, and the other, the non-shock memory (Ins), simulating the exploration of 

the IA box without shock. As in previous work (Osan et al., 2011), for the latter memory a set of 

neurons representing the context is activated (yellow square) along with another set of neurons 

representing the absence of danger. Subsequently, the networks undergo the training session, 

corresponding to the simulation of the IA task and the storage of the shock (“avoidance”) memory (Is). 

In this memory pattern, the same context neurons as in Ins are activated along with a different set of 

neurons representing the presence of danger (Osan et al., 2011). The last storage occurs at the 

nonreinforced reexposure session with a pattern equivalent to a mixture of shock and non-shock 

memories (Ir). Each habituation group (control and non-shock) is then subdivided into two others: 

“vehicle”, simulating the animals that received saline shortly after reexposure and have normal 

Hebbian learning; and “aniso”, simulating networks with inhibited protein synthesis (or a related effect) 

due to injection of an amnesic drug, such as anisomycin. Retrieval tests may be performed after each 

memory storage session (see below). 

 

To simulate the 24h interval between one session and another, the matrix of synaptic weights was 

updated after the storage of each memory via equation 3, with γ = 0.15. The storage strength itself 

depended on the session: S = 0.8 at initial storage and habituation; S = 0.85 at training; at 

reexposure, S = 0.85 for vehicle and S = 0 for aniso; and D = 1.25 at all sessions, except during 

parametric analysis of such factor. The higher S values in the training and reexposure sessions 

emulate the emotional nature of the aversive memory (as opposed to the neutral, non-related 

memory), that is, the involvement of the amygdala in strengthening the (re)consolidation of the shock 

experience. 
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For the retrieval tests, the initial network state was randomly assigned using a uniform distribution 

between 0 and 0.1 to set the activity of each neuron, except for the context neurons which receive a 

weak input fixed at 0.1. Note that context neurons are those active both in the shock and non-shock 

memory patterns and are meant to represent common aspects of the experience (e.g., the box 

appearance). For each simulation, 1000 retrieval tests were performed and their results presented as 

the median with interquartile range. For the color plot graphs, each point is the median of 1000 tests. 

 

The input pattern Ir during reexposure corresponds to a mixture of the shock and non-shock 

memories, as shown in Figure 4A. Specifically, it is defined by Ir = Is + (Ins - Is)f(#), where #  [#min = 0, 

#max = 10] – the “pattern number” – is related to the duration of the nonreinforced reexposure session, 

and f(#) = 1 / (1 + e(#max / 2) - #) is a function representing the ratio between input patterns Ins and Is and 

varies monotonically between 0 and 1 (Osan et al., 2011). To simulate a 40-second reexposure 

session (Radiske et al., 2017), we used # = 3.1, which corresponds to Ir closer to the aversive 

memory (Figure 2B). 

 

Simulation of animal behavior 

 

In the IA task, the animal (in this case, rat) is initially placed on a platform inside a box and expected 

to rapidly step down to the floor level following its natural instinct to explore the whole context, unless 

it has previously experienced an aversive sensation in the floor, such as a foot shock. Thus, the 

latency for the animal to step down the platform is taken as a measure of a previously learned 

shock/avoidance memory. To simulate this behavior, we define three probability density functions for 

step-down latencies, as shown in Figure 2C. At each retrieval test, a step-down latency is chosen 

randomly from the probability density function corresponding to the retrieved memory pattern. If the 

retrieved pattern is the shock memory, the latency is more likely to be high (red curve), that is, the 

animal is more likely to avoid exploring the floor and stay over the platform. Otherwise, the probability 

is higher for low latency values. In particular, for retrieval of the non-shock memory, the probability is 

even higher for low latency values (green curve) since it indicates that the animal already knows the 

environment as non-aversive. 

 

The probability density functions follow distributions of type Beta(α, β), in which fshock = 

750Beta(3.52,1.5) for shock memory retrieval; fnon-shock = 15000Beta(1.1,600) for non-shock memory 

retrieval; and fother = 35000Beta(1.1,480) for the retrieval of the others memory patterns (Figure 2C). 

The latency values are truncated at the ceiling of 500 s, i.e., the maximum duration of the reexposure 

session in Radiske et al. (2017). 

 

 

Results 

 

In order to investigate the boundary condition reported by Radiske et al. (2017), in which only animals 

previously habituated to the IA box in the absence of shock reconsolidate the avoidance memory, we 

simulated the protocol shown in Figure 2A (see Methods). A distinct attractor network represents each 

experimental group, and, at each stage of memory storage, the groups differ in their synaptic 

configuration. The matrices in Figure 3A reflect the synaptic configuration after the storage of each 

memory pattern, including the update by the time-dependent decay factor. In them, the warm colors, 

closer to yellow, indicate the formation of excitatory synapses, while the cool ones, closer to blue, 

express inhibitory connections. Since the memories are sparse in relation to the size of the network, a 

large number of null weights (central green of the color bar) can be seen, indicating the absence of 

connection between the respective units. After a relatively short reexposure, characterized by a mixed 

input signal between the shock and non-shock patterns (# = 3.1), the connections formed during 

training (avoidance memory storage) are mostly reinforced in the vehicle group and weakened in the 
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aniso one. The latter is due to the unique action of the degradation factor since Hebbian learning was 

blocked by S = 0. 

 

The result of the network dynamics was measured at each storage session by retrieval tests from the 

context input signal (Figure 3B). For each test, a new initial state of the network is randomly 

generated. In tests performed after the habituation, the median of latencies is slightly higher for the 

control group due to the related probability density function simulating the lack of knowledge of the IA 

box. In the same way, the non-shock group simulates habituation in the IA box (i.e., without shock) 

and the tests after that indicate the retrieval of the non-shock memory pattern, which leads animals to 

step down faster from the platform since they are already familiar with the environment. On the other 

hand, after training, which simulates the experimental session in which the animals receive shock 

after stepping down the platform, the shock memory tends to be retrieved, resulting in long step-down 

latencies. The networks are then subject to the reexposure stage, which is meant to simulate a short 

experimental session in which the animal is placed over the platform and subsequently removed from 

it before stepping down (Radiske et al., 2017). That is, during the reexposure session the animals do 

not receive a shock, and the network input pattern reflects a conflictual perception of the context 

(Osan et al., 2011), in which in addition to the shock neurons, the non-shock neurons are also 

activated, but to a lower extent. Similarly to after training, the shock memory tended to be evoked in 

retrieval tests performed after reexposure for all vehicle networks and also in aniso networks of the 

control habituation group. Interestingly, however, only the aniso groups that went through the non-

shock habituation (non-shock/aniso) had the behavior altered by the reexposure, in which animals 

once again exhibited short step-down latencies (Figure 3B). This is because networks of this group 

mostly retrieved the context-related non-shock habituation memory due to the degradation of the 

avoidance engram, characterizing the reconsolidation blockade process. Thus, the simulation results 

obtained here match the experimental findings by Radiske et al. (2017). 

 

The shock attractor was always retrieved in the control habituation group irrespective of aniso since 

these networks did not form the trace corresponding to the non-shock memory. In the other 

habituation group, the non-shock engram was previously formed and competed with the shock 

attractor during retrieval tests since both share the same context neurons. Figure 3C provides an 

example of the network dynamics for non-shock habituation groups during one retrieval test using the 

same initial conditions: in the vehicle network, the activity of each unit converges directly to the state 

corresponding to the avoidance memory pattern, while, for aniso, the network “hesitates” until it 

converges to the non-shock memory pattern. This can be observed in Figure 3D, where the activity of 

the shock neurons increases in the first second and then decreases to a latent state, leading to the 

retrieval of the non-shock pattern. 

 

In order to distinguish the occurrence of the reconsolidation and extinction phenomena, we repeated 

the previous protocol, but now varying the reexposure input pattern from pure aversive to pure non-

aversive (Figure 4A), meant to simulate different durations of the nonreinforced reexposure session 

(Osan et al., 2011). The result of the post-reexposure retrieval tests is presented in Figure 4B. For the 

control/vehicle group (blue line in top panel), we found that when the input pattern is close to the non-

shock memory (pattern # > 8, representing long reexposure sessions), the networks exhibited 

extinction, in which the non-shock attractor is successfully stored and subsequently retrieved in post-

reexposure tests, leading to short step-down latencies. Noteworthy, we observed that the extinction of 

the avoidance memory is highly “anticipated” for the non-shock habituation group, in which input 

patterns associated with shorter sessions already lead to extinction (pattern # > 5, blue line in the 

bottom panel). For the aniso groups (green lines), the respective input patterns leading to extinction in 

vehicle networks were instead associated with extinction blockade, in which animals exhibited long 

step-down latencies in post-reexposure tests. This is because the non-shock memory responsible for 

the extinction behavior could not be stored in the absence of protein synthesis. For intermediate input 

patterns preceding the extinction patterns, the aniso groups exhibited reconsolidation blockade as 
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described above (Figure 3B). Interestingly, reconsolidation of the avoidance memory in the non-shock 

habituation group occurs “before” the same phenomenon in the control habituation group (3 < pattern 

# < 5 vs. 5 < pattern # < 8). Finally, for input patterns close to the shock memory, representing very 

short reexposure sessions, neither extinction nor reconsolidation occurred, but only the reinforcement 

of the pre-existing avoidance memory (in networks with protein synthesis).  

 

We next investigated the influence of Hebbian learning on avoidance memory reconsolidation. To that 

end, we first assessed, via post-reexposure retrieval tests, the impact of the storage strength of each 

habituation memory for various reexposure patterns. Figure 5A shows the simulated experimental 

protocol with the varied parameters highlighted in red, i.e., the S factor in habituation and the 

reexposure input pattern. A sample of results, considering two values of each parameter, is shown in 

Figure 5B. Note that, for weak habituation storage (S = 0.7), there is a reinforcement of the avoidance 

memory in all habituation groups when the reexposure pattern is closer to the shock one (top left 

panel), and aniso has no effect. But when the reexposure pattern is closer to the non-aversive engram 

(top right panel), reconsolidation occurs in the control habituation group along with extinction in the 

non-shock habituation group, with both phenomena blocked by aniso. However, when the habituation 

memory is stored more strongly than the training memory (S = 1.0), the reexposure pattern closer to 

an aversive sensation (bottom left panel) results in the reconsolidation of the avoidance memory for 

the control habituation group and, remarkably, in the extinction of the non-shock memory for the non-

shock habituation group. If the reexposure pattern is closer to a non-aversive sensation (bottom right 

panel), avoidance memory reconsolidation occurs in the control habituation group, and reinforcement 

of the non-shock memory takes place in the non-shock habituation group. 

 

The result of the full parameter scan is shown in Figure 5C, where the color plots depict the medians 

of step-down latencies. In the control/vehicle group (top left panel), the results do not depend on the 

strength of Hebbian learning during habituation since the control engram is unrelated to the engram 

stored during training. For this group, the long step-down latencies (red region) from reexposure 

pattern #0 to #8 indicate reinforcement or reconsolidation of the avoidance memory, while, for 

patterns above #8, the short latencies (blue region) indicate extinction. When aniso is simulated after 

reexposure for the control habituation group (top right panel), the results express the blockade of the 

phenomena observed in vehicle, that is, reconsolidation blockade or extinction blockade (notice that 

the blockade of reinforcement does not substantially change network behavior). For the non-shock 

habituation memory, the stronger its storage the more “anticipated” the reexposure pattern is to be 

enough for reconsolidation or extinction in the vehicle group (bottom left panel) and for their blockade 

in the aniso group (bottom right panel; see also Figure 4B), with the exception of the networks in 

which the habituation memory is stored more strongly than the avoidance memory (S ≈ 1). In this 

particular case, extinction of the non-shock memory occurs from pattern #0 to #3, followed by its 

reconsolidation for patterns #4 and #5 and then reinforcement from pattern #6 to #10. 

 

We then analyzed the impact of the strength of the avoidance memory. Figure 6A shows the 

schematics of the simulation protocol with the varied parameters in red. The sample results in Figure 

6B show that, for a weak training (S = 0.7), an aversive reexposure (pattern #2, top left panel) 

promotes reinforcement of the avoidance memory in the control habituation group. When simulating 

aniso, such reinforcement does not take place and the step-down latencies do not achieve ceiling 

values, reflecting a weaker shock attractor than in previous figures. For the non-shock habituation 

group, we have a similar reinforcement of the shock memory and long step-down latencies for vehicle 

networks, but for the aniso networks, the non-shock memory attractor dominates and leads to short 

step-down latencies. This is because the shock memory cannot be properly stored following a single 

weak training session in this habituation group (not shown), and thus reinforcement during reexposure 

is required for its attractor to prevail over the previously stored non-shock attractor.  

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2019. ; https://doi.org/10.1101/826909doi: bioRxiv preprint 

https://doi.org/10.1101/826909
http://creativecommons.org/licenses/by-nc/4.0/


8 
 

On the other hand, reexposure closer to a non-aversive experience (pattern #8, top right panel) leads 

to the storage of the non-shock attractor in the control habituation group, and, interestingly, to the 

reconsolidation of the non-shock attractor in the non-shock habituation group. Therefore, notice that 

the long step-down latencies following aniso in the non-shock habituation group is because of the 

reconsolidation blockade of the non-shock attractor due to degradation of its synaptic weights, which 

makes the weakly stored shock attractor now to become dominant. For a strong training (S = 1.0), 

there is reinforcement of the shock memory with the aversive reexposure in all habituation groups 

(pattern #2, bottom left panel), while the non-aversive reexposure (pattern #8, bottom right panel) 

leads to shock memory reconsolidation in the control habituation group and extinction in the non-

shock habituation group.  

 

Figure 6C shows the full parameter scan. In the vehicle groups (left panels), we found that the 

stronger the avoidance memory is stored, the more non-aversive the reexposure should be for the 

occurrence of extinction, with the control habituation group requiring even more non-aversive patterns 

than the non-shock habituation (cf. the ‘anticipation’ effect mentioned above). Indeed, one reexposure 

session was insufficient for extinction in the control habituation group when S was close to 1 (top left 

panel). For the control/aniso group (top right panel) and S ≥ 0.7, we observed the blockade of the 

respective phenomenon taking place in the vehicle group, i.e., blockade of either avoidance memory 

reinforcement, reconsolidation or extinction for increasing reexposure patterns. For lower S values (< 

0.7), the aversive memory is stored much weaker than the habituation one, and the latter is always 

retrieved after an amnesic reexposure. Similar observations hold for the aniso networks in the non-

shock habituation group (bottom right panel), that is, for S ≥ 0.7 we could sequentially observe 

reinforcement blockade, reconsolidation blockade or extinction blockade for reexposure patterns 

approaching the non-aversive pattern. A difference from the control habituation, however, is that for S 

< 0.7 we found a parameter region in which reconsolidation blockade occurred for the non-shock 

memory instead (compare the top and bottom right panels). 

 

Finally, we analyzed the impact of the degradation factor following reexposure. Figure 7A shows the 

simulation protocol with the varied parameters in red. The sample results in Figure 7B reveal that, for 

an aversive reexposure (pattern #2), reinforcement of the avoidance memory occurs for all networks 

independently of the D value (left panels). This is not surprising since synaptic degradation in the 

model depends on prediction error (see Methods and Osan et al., 2011), while the shock memory and 

reexposure pattern #2 are quite similar (see Figure 4A); hence, mismatch-induced degradation does 

not significantly influence network behavior in this case and neither the lack thereof. In the case of a 

non-aversive reexposure (pattern #8, right panels), the same phenomenon occurs in the control 

habituation group and low degradation levels (D = 0.3; top panel). Nevertheless, for a high 

degradation level (D = 1.4; bottom panel), control habituation networks undergo avoidance memory 

reconsolidation (notice short step-down latencies indicating post-reexposure amnesia in aniso 

networks). In the non-shock habituation group, the networks exhibited extinction for both levels of 

synaptic degradation, which was blocked by aniso. 

 

As shown in Figure 7C, the full parameter scan reveals that synaptic degradation directly influences 

avoidance memory reconsolidation, where the chance of its occurrence is proportional to D. In other 

words, the higher the level of synaptic degradation, the larger the reconsolidation “window” (i.e., the 

number of reexposure patterns in which reconsolidation occurs), as can be observed in the aniso 

networks (right panels). Moreover, as in the previous analyses, the reconsolidation window is 

anticipated for the non-shock habituation. Interestingly, extinction (vehicle networks) and extinction 

blockade (aniso networks) differ between habituation groups (see Figure 4) but do not depend on the 

synaptic degradation level. Mechanistically, this is because extinction depends only on Hebbian 

learning of the non-shock attractor, which is influenced by the factor S but not D.  
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Discussion 

 

The attractor network model of Osan et al. (2011) simulates the processes of pattern completion and 

separation observed, for example, during the retrieval of hippocampal-dependent memories 

(Guzowski et al., 2004; Neunuebel and Knierim, 2014). Moreover, its properties provide a mapping of 

computational variables into biological substrates in a particularly simple and acceptable way, which 

makes it an attractive tool to study the phenomena of memory reconsolidation and extinction. By 

successfully simulating the effect of boundary conditions, the model by Osan et al. (2011) supports 

the hypothesis that reconsolidation and extinction use the same reinforcement and synaptic 

stabilization system, being only distinct instances of the same process (Almeida-Corrêa and Amaral, 

2014). Unlike other models, the parametric distinction between Hebbian learning and synaptic 

degradation induced by prediction error enables analyses that mimic the action of pharmacological 

agents that differentially affect them (Lee et al., 2008; Gershman et al., 2017). 

 

Although the model does not have a hierarchical structure of message exchange, it can be considered 

a way of predictive coding (Friston, 2018; Rao and Ballard, 1999) due to its recurrent processing 

structure (Pennartz et al., 2019). Here, learning and perception participate in the same process of 

modeling the world, characterizing the brain as an inference machine by predicting and explaining its 

sensations and also adapting itself to minimize prediction errors by adjusting its synaptic structure, 

which leads the model to be also in accordance with the free-energy principle (Friston, 2010; Friston 

et al., 2006). The model thus tries to explain memory reconsolidation and extinction in a simple 

structural perspective. It should be noted, however, that the model does not address the theory that 

there is a null point between the phenomena (Cassini et al., 2017; Merlo et al., 2014), i.e., the 

transition between reconsolidation and extinction is abrupt in terms of network structure and its 

dynamics. 

 

Simulating reexposure to a previously learned stimulus/context associated with an aversive sensation 

leads the network to different possible states depending on the degree of similarity between the 

original experience and the new one. A stimulus identical to that already learned causes the 

reinforcement of the aversive memory engram, and such effect is blocked when one of the molecular 

requirements of synaptic plasticity, such as protein synthesis, is inhibited. Of note, considering that 

memory formation results from a balance among the synthesis and degradation of synaptic proteins 

(Park and Kaang, 2019), in the phenomenon we call reinforcement here, the strengthening of 

connections stands out in relation to synaptic degradation. 

 

When the input signal moderately differs from the original trace, the latter is restored from a new 

configuration of synaptic weights from the balance between Hebbian learning and synaptic 

degradation induced by prediction error. In this case, when Hebbian plasticity is blocked, the effect of 

synaptic degradation prevails, causing the weakening of the previously stored avoidance memory 

and, consequently, reconsolidation blockade. However, if the input signal associated with the 

reexposure session substantially differs from the original engram, the formation of a new memory 

trace takes place (extinction), establishing also inhibitory associations between the context and 

aversive engrams, leaving the latter in a latent state. Such extinction based on Hebbian learning of 

the non-aversive engram can also be blocked by inhibition of protein synthesis, preserving the initial 

aversive memory pattern (Almeida-Corrêa and Amaral, 2014). Of note, in Figure 4B, the reexposure 

“windows” called reconsolidation and extinction are study targets for the treatment of fear-related 

disorders. 

 

Here we investigate whether the formalism introduced by Osan et al. (2011) is general enough to 

explain the behavioral results of Radiske et al. (2017) in the inhibitory avoidance (IA) paradigm, in 

which the previous learning of the IA box as non-aversive was shown to be a boundary condition for 

the reconsolidation of the avoidance memory. Consistent with their results, our simulations show that 
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for certain patterns of cortical afference during nonreinforced reexposure, the prior knowledge of the 

context as non-aversive causes amnesic behavior in networks subjected to inhibition of Hebbian 

learning. In these cases, the storage of the non-shock memory attractor during habituation leads to its 

later retrieval in post-reexposure tests following mismatch-induced degradation of the shock memory 

trace upon conflictual reexposures. The latter is caused by the divergence between the neural 

network input signal (a mixture of shock and non-shock patterns) and the recalled engram upon 

reexposure (the shock pattern), which characterizes the prediction error. Even when the habituation 

memory is unrelated to the training context, such divergence may still occur, weakening the shock 

memory trace. But for networks habituated with the control (“open field”) memory, the reconsolidation 

of the avoidance memory requires a greater divergence between the input signal and the shock 

memory (see Figure 4), which, in turn, is associated with longer nonreinforced reexposures to the 

context (IA box). However, as opposed to contextual fear conditioning, relating the time of 

nonreinforced reexposure in the IA paradigm with the animal’s representation/perception of the 

context is difficult because, in the work of Radiske et al. (2017), the rats do not step down from the 

platform during the 40 seconds of reexposure, so they do not experience the lack of shock on the 

ground. 

 

Radiske et al. (2017) interpreted that the behavioral distinction between the different habituation 

groups was due to the non-participation of the hippocampus in the reexposure of the “control” 

habituation group since the prediction error would not occur there. In other words, the hippocampus 

would participate in the reconsolidation of the avoidance memory only when animals were subjected 

to the non-shock habituation, i.e., when pre-exposed to the training environment without shock before 

acquiring the aversive trace related to such context — an idea that is corroborated by the analysis of 

hippocampal theta and gamma oscillations (Radiske et al., 2017). From a computational standpoint, 

for a reexposure input pattern in which there is little prediction error, the attractor network proposed by 

Osan et al. (2011) acts to reinforce the avoidance memory trace in the control habituation group and 

to reconsolidate it in the non-shock habituation group. Thus, the model by Osan et al. (2011) suggests 

that the result of Radiske et al. (2017) can be explained without assuming that different structures are 

activated due to prior habituation. 

 

The results of the parameter scan provide experimental predictions for the IA paradigm. Specifically, 

the model predicts that if rats were reexposed to the context for a longer duration without the shock 

(so that they could step down the platform), for a same reexposure duration animals in the control 

habituation group could exhibit reconsolidation of the aversive memory, while those of non-shock 

habituation could display extinction (e.g., Figures 4 and 5). Therefore, the results further suggest that 

the approach to be taken in exposure therapy for the treatment of phobias and fear-related disorders 

(McNally, 2007) depends on whether or not the subject has prior knowledge of the context, currently 

aversive, as non-aversive. Thus, blocking reconsolidation during nonreinforced reexposures with 

amnesic drugs could be a treatment better applied to the group that, in the first contact with a new 

environment or context, relates it to the aversive sensation experienced there. On the other hand, 

when such an environment or context has been previously experienced as non-aversive, exposure 

therapy without medication could be better utilized to induce extinction. In the first case, it seems to be 

easier to block the reinforcement of the connections between the context neurons and the aversive 

engram, letting the synaptic degradation act towards weakening the trace. In the second, the safe 

memory trace can more easily prevail with long nonreinforced reexposures, leading to the extinction 

of the aversive memory. Generally, the simulations reveal that the previous knowledge of a safe 

context influences the width of the occurrence windows of each phenomenon. While for the control 

habituation group there are large reexposure windows for reinforcement and reconsolidation of the 

avoidance memory, these windows are reduced in the non-shock habituation group, with more 

opportunity for extinction incidence (see Figures 4 to 7). 
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To test the model predictions, we propose the conduction of new experiments with animals exposed 

to different reexposure times. Thus, the animals would be subjected to various levels of perception 

(reexposure input pattern), which, according to the model, would influence their behavior during 

retrieval testing. In parallel, for such conditions, we suggest empirically investigating the influence of 

the strength of the habituation and training memories (e.g., by changing exploration times or shock 

amplitude), as well as the influence of enhancers and inhibitors protein synthesis and synaptic 

degradation to better map their behavioral effects. 

 

Finally, although this paper deals with the case of reconsolidation and extinction of avoidance memory 

in the IA paradigm, it more generally highlights the balance between Hebbian learning and synaptic 

degradation as a key factor in modulating such phenomena. These theoretical insights can also be 

applied in other scenarios involving the learning of aversive memories followed by nonreinforced 

reactivations. In this sense, the simulation of the behavior (here, step-down latency) in retrieval tests 

is rather a detail behind the big picture of the network dynamics supported by the model. 
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Figures 

 

 

 
 

Figure 1. Schematics of memory storage and retrieval processes in the network. A) The 

synaptic weight matrix is updated depending on the steady-state activity reached by the network 

following a strong input signal, the initial network state, and a previous synaptic configuration. Two 

main factors determine the weight changes: S simulates the protein synthesis level and D, the 

synaptic degradation level. The former follows a Hebbian plasticity rule and the latter is dictated by the 

amount of mismatch between the input and the steady state. The synaptic weight matrix is also 

updated by the time-dependent decay factor γ. B) The retrieved memory is represented by the 

network steady state that is achieved upon a weak input, the initial network state, and the current 

synaptic configuration. The big squares represent vectors or matrices, where I is the external input 

signal applied to the network, u is the network state and W is the synaptic weight matrix. The small 

squares represent factors (i.e., parameters) belonging to the respective equations represented by 

circles. S: protein synthesis factor; D: degradation factor; γ: time-dependent decay factor. HLP: 

Hebbian Learning Plasticity equation; MID: Mismatch-Induced Degradation equation; Numbers 

correspond to the equations in Methods. 
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Figure 2. Experimental protocol, network input patterns and behavioral response probability. 

A) Schematics depicting the simulation stages (see text), which are related to the main experimental 

protocol of Radiske et al. (2017). Although only represented as the last step, retrieval tests can be 

performed after any storage stage. B) Input patterns (I) associated with each session in A. Positive 

and negative values represent excitatory and inhibitory input signals, respectively. The reexposure 

input pattern was meant to simulate a conflictual environment perception from the 40 seconds that the 

animals explore the platform without stepping down (Radiske et al., 2017). In this input pattern, the 

shock neurons are more excited than the non-shock ones (see Methods). C) Probability density 

functions for step-down latency in retrieval tests according to the retrieved memory pattern. Shock 

memory retrieval is associated with long latencies, while the retrieval of other memories leads to short 

latencies. 
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Figure 3. Synaptic configuration and retrieval tests throughout the experimental protocol. A) 

Matrices corresponding to the configuration of synaptic weights after each session of memory 

storage. From a null matrix, the initial learning process stores the non-related (e.g., home cage) 

memory pattern (S = 0.8). In the habituation session, two groups are distinguished by the storage of 

control or non-shock memories (S = 0.8). After that, both groups store the shock pattern in the training 

session (S = 0.85). Thereafter, vehicle and aniso groups are defined by the level of Hebbian plasticity 

following the reexposure session (S = 0.85 for vehicle and S = 0 for aniso). To simulate the interval of 

1 day between each session, the synaptic matrix was updated using a decay rate of γ = 0.15. Positive 

and negative values represent excitatory and inhibitory synapses, respectively. B) After each storage 

stage (horizontal arrows), 1000 retrieval tests were simulated (vertical/diagonal arrows) and the 

results are presented as the median ± interquartile range. Notice that reconsolidation blockade only 

occurs for the aniso networks of the non-shock habituation group. C) Examples of non-shock/vehicle 

(left) and non-shock/aniso (right) network dynamics during retrieval. The network activity of the first 

group converges to the shock pattern, while the activity of the second network initially wavers 

between the shock and non-shock patterns, and then converges to the latter one. D) Frames of the 

non-shock/aniso network dynamics depicted in C. Despite the initial increasing activity of the shock 

neurons, the non-shock attractor is retrieved in the steady state. 
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Figure 4. The reexposure pattern as a boundary condition for reconsolidation. A) Reexposure 

input pattern for different values of the parameter #, which simulates the animal’s perception of the IA 

box following reexposure. A change from aversive to non-aversive perception occurs with increasing 

this parameter (from 0 to 10), which relates to the duration of the nonreinforced reexposure. B) Step-

down latencies in post-reexposure retrieval tests as a function of the reexposure input pattern #. 

Notice that the non-shock habituation group anticipates the reconsolidation and extinction phenomena 

in relation to their occurrence in the control habituation group. For example, whereas avoidance 

memory extinction appears from reexposure pattern #8 for the control habituation group, the same 

phenomenon occurs from pattern #5 for the non-shock habituation group. Results depict the median ± 

interquartile range of 1000 retrieval tests for each parameter choice. 
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Figure 5. Effect of the habituation memory strength and reexposure pattern in post-reexposure 

retrieval tests. A) Schematics showing the simulation protocol with the varied parameters in red: 

habituation S factor and reexposure input pattern. B) Step-down latencies in post-reexposure retrieval 

tests for habituation with S value equals to 0.7 and 1.0 and reexposure pattern #2 and #8. For S = 0.7 

and reexposure pattern #2 (top left), the long step-down latencies indicate the reinforcement of the 

shock memory during reexposure in all habituation groups. For S = 0.7 and reexposure pattern #8 

(top right), the step-down latencies indicate the occurrence of shock memory reconsolidation in the 

control habituation group and extinction in the non-shock habituation group. For S = 1.0 and 

reexposure pattern #2 (bottom left), there is shock memory reconsolidation for control habituation and 

extinction of the non-shock memory for non-shock habituation. For S = 1.0 and reexposure pattern #8 

(bottom right), shock memory reconsolidation occurs in the control habituation group and non-shock 

memory reinforcement in the non-shock habituation group. Results represent the median ± 

interquartile range of 1000 retrieval tests. C) Color plots summarizing the effect of distinct reexposure 

patterns and the strength of the habituation memory (S value) on post-reexposure retrieval tests. See 

text for interpretation. Results depict the median of 1000 retrieval tests for each choice of parameters. 
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Figure 6. Effect of the training memory strength and reexposure pattern in post-reexposure 

retrieval tests. A) Schematics showing the simulation protocol with the varied parameters in red: 

training S factor and reexposure input pattern. B) Step-down latencies in post-reexposure retrieval 

tests for habituation with S value equals to 0.7 and 1.0 and reexposure pattern #2 and #8. For S = 

0.7, the shock memory is weakly stored, and the reexposure pattern #2 produces its reinforcement for 

all habituation groups (top left), an effect blocked by aniso (notice that in this case the non-shock 

memory prevails for the non-shock habituation group). The reexposure pattern #8 (top right) leads to 

the storage of the non-shock attractor in the control habituation group, and to the reconsolidation of 

the non-shock attractor in the non-shock habituation group. For S = 1.0 and reexposure pattern #2 

(bottom left), there is reinforcement of the shock memory for all habituation groups. For S = 1.0 and 

reexposure pattern #8 (bottom right), there is shock memory reconsolidation for the control 

habituation group and its extinction for the non-shock habituation group. Results represent the median 

± interquartile range of 1000 retrieval tests. C) Color plots summarizing the effect of distinct 

reexposure patterns and the strength of the training memory (S value) on post-reexposure retrieval 

tests. See text for interpretation. Results are the median of 1000 retrieval tests for each parameter 

choice.  
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Figure 7. Effect of the synaptic degradation strength and reexposure pattern in post-

reexposure retrieval tests. A) Schematics showing the simulation protocol with the varied 

parameters in red: D factor and input pattern in reexposure. B) Step-down latencies in post-

reexposure retrieval tests for reexposure with D value equal to 0.3 and 1.4 and reexposure pattern #2 

and #8. For the reexposure pattern #2 (left), D does not affect the behavioral outcome, and shock 

memory reinforcement occurs. For the reexposure pattern #8 with D = 0.3 (top right), there is shock 

memory reinforcement for the control habituation group and extinction for the non-shock habituation. 

When D = 1.4 (bottom right), there is reconsolidation of the aversive memory in the control habituation 

group and its extinction in the non-shock habituation group. Results represent the median ± 

interquartile range of 1000 retrieval tests. C) Color plots summarizing the effect of distinct reexposure 

patterns and the strength of the synaptic degradation (D value) on post-reexposure retrieval tests. For 

the vehicle networks (left panels), the synaptic degradation level does not influence behavioral 

outcomes. For aniso networks, the higher the degradation level, the larger the window for avoidance 

memory reconsolidation to occur. Notice further that aversive memory extinction (vehicle) and 

extinction blockade (aniso) are not affected by changes in D. Results depict the median of 1000 

retrieval tests for each parameter choice. 
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