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ABSTRACT  

Background 

Although rare-missense variants in Mendelian disease-genes have been noted to cluster in specific 

regions of proteins, it is not clear how to consider this information when evaluating the pathogenicity 

of a gene or variant. Here we introduce methods for gene-association and variant-interpretation that 

utilise this powerful signal.  

Methods 

We present a case-control rare-variant association test, ClusterBurden, that combines information on 

both variant-burden and variant-clustering. We then introduce a data-driven modelling framework to 

estimate mutational hotspots in genes with missense variant-clustering and integrate further in-silico 

predictors into the models.  

Results 

We show that ClusterBurden can increase statistical power to scan for putative disease-genes, driven 

by missense variants, in simulated data and a 34-gene panel dataset of 5,338 cases of hypertrophic 

cardiomyopathy. We demonstrate that data-driven models can allow quantitative application of the 

ACMG criteria PM1 and PP3, to resolve a wide range of pathogenicity potential amongst variants of 

uncertain significance. A web application (Pathogenicity_by_Position) is accessible for missense 

variant risk prediction of six sarcomeric genes and an R package is available for association testing 

using ClusterBurden. 

Conclusion 

The inclusion of missense residue position enhances the power of disease-gene association and 

improves rare-variant pathogenicity interpretation. 
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INTRODUCTION 

The clustering of pathogenic missense variants in specific regions or domains of proteins has been 

frequently reported [1-5]. A plausible mechanism underpinning this phenomenon is the presence of 

multiple loss or gain-of-function variants within functionally important domains [6]. Despite numerous 

examples of variant clustering, there have been few attempts to explicitly model variant residue 

position as a predictor of pathogenicity [7]. 

Pathogenic genes for Mendelian diseases were historically identified by linkage and candidate gene 

studies in multiple affected families [8]. Scanning of large exome patient cohorts offers an alternative 

strategy to identify novel pathogenic genes and variants. The aggregated burden of variants in 

affected cases compared to healthy controls has proved to be a useful test to confirm the 

pathogenicity of candidate genes [9], as well as identify novel putative pathogenic genes [10]. 

However, for genes with non-uniform variant pathogenicity, including positional information, 

alongside burden, may provide an increase in power to detect undiscovered low-penetrance genes.  

The American College of Medical Genetics and Genomics (ACMG) have produced guidelines to 

interpret variant pathogenicity [11]. These guidelines integrate diverse data and classify variants into 

five categories from benign to pathogenic. However, due to limited information available for many 

variants, they fall into the category; ‘variant of uncertain significance’ (VUS). Although positional 

information is covered by criteria PM1, there is a lack of evidence for mutational hotspots, resulting 

in underapplication of this criteria. Furthermore, although much work has gone into the development 

of in-silico prediction scores, alternative scores can be conflicting, leading to discordance amongst 

testing laboratories [12] and uncertainty in their application. However, wherever large patient cohorts 

are attainable, mutational hotspots and the uncertainty surrounding in-silico predictors can be directly 

estimated from the data. 

Hypertrophic cardiomyopathy (HCM), a relatively common autosomal dominant disease (1 in 500 

prevalence), is a major cause of heart disease in people of all ages [13] and a cause of sudden cardiac 
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death. In our cohort, eight sarcomeric genes collectively provide firm molecular diagnoses for ~27% 

of HCM patients, with a further ~13% of patients carry a VUS in the same genes. It has been suggested 

that disease and gene-specific approaches are needed to improve interpretation [14] and guidelines 

have been produced for specific genes and/or disease areas [15-18]. HCM is common enough to 

provide the large datasets needed for these gene-specific and data-driven approaches.  

Here we propose new statistical approaches to explicitly include variant residue position in rare-

missense variant association and interpretation; ClusterBurden for association testing and generalized 

additive models (GAMs) for hotspot estimation and application of in-silico prediction algorithms. We 

apply these methods to a large cohort of 5,338 HCM patients and up to 125,748 gnomAD [19] 

population controls. We demonstrate that utilising positional information increases power to detect 

disease-gene associations and elucidate the clustering signals present in 34 cardiomyopathy genes. 

We then use GAMs to model residue position and in-silico predictors for six core sarcomeric genes. 
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METHODS 

Patient cohorts and simulated data 

Next-generation sequence data for 34 cardiomyopathy genes (S1 Table) were available from two large 

HCM cohorts (S1A Methods); 2,757 probands referred to the Oxford Medical Genetics Laboratory 

(OMGL) for genetic testing and 2,636 probands recruited to the HCMR project [20]. High-coverage 

exonic sequences were captured by target enrichment and sequenced on the MiSeq platform (Illumina 

Inc.). Joint bioinformatic processing of both datasets followed the Genome Analysis ToolKit version 4 

best practice guidelines (S1B Methods). OMGL variants were confirmed by Sanger sequencing and 

HCMR variants were manually checked by inspection of BAM files. 

The gnomAD population reference database was used as a control group, which includes variant 

frequency data based on up to 125,748 individuals. For both cases and controls, only missense variants 

with a gnomAD population maximum allele frequency of less than 0.0001 [9-10] were included. This 

excludes potentially common ancestry-specific variants that are unlikely to be pathogenic for HCM. 

To determine the theoretical performance of ClusterBurden, synthetic data were generated using a 

forward-time simulator (S2 Methods) designed to imitate rare-variants in genes with discrete exonic 

regions of increased pathogenic potential. Six different scenarios were considered, combining three 

clustering scenarios (uniform, a single pathogenic cluster and multiple pathogenic clusters) and two 

protein lengths (500 and 1,000 amino acid residues). For each scenario, 10,000 synthetic datasets 

were generated with 5,000 cases and 125,000 controls, variants were filtered at a simulated control 

MAF of <0.0001.  

Detecting missense variant burden and clustering – ClusterBurden 

Missense variants causing amino acid substitutions at specific positions in the linear protein sequence 

were numbered from 1 to N, where N is the length of the protein. In all positional analyses, we 

consider this number as the position of a missense variant. As the background distribution of variants 
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may be non-uniform, a cluster of variants observed in affected cases is insufficient in isolation to 

determine relevance to disease. Therefore to detect disease-relevant clustering, distributions were 

compared between affected cases and unaffected controls.  

We propose BIN-test to evaluate these distributional differences. First, the protein’s linear sequence 

of amino-acid residues is split into k bins of equal length for both cases and controls. A chi-squared 

two-sample test is applied to the resultant k x 2 contingency table of binned variant counts. In simple 

terms, the test assumes that for each bin, the relative frequency of observed variants in cases and 

controls is the same and is more significant depending on how many bins deviate from this expectation 

and by how much. We applied a k ~ n2/5 heuristic [21] to select the optimal number of bins (k) 

dependent on n, the total number of observed variants. We compared the performance of the BIN-

test with two other tests that compare distributions between two-samples; Anderson-Darling (AD) 

[22] and Kolmogorov-Smirnov (KS) [23]. Power and type 1 error were calculated using the (r+1)/(n+1) 

estimator where r represents the number of simulated datasets with p-values less than 0.05 and n is 

the number of simulations [24]. 

Current methods to discover novel Mendelian disease genes focus on the burden of rare-variants in 

an affected cohort relative to controls. We propose an approach, ClusterBurden, which tests the joint 

hypothesis of an excess of rare missense variants and differential clustering, in case-control data. This 

was accomplished by combining the p-values from a burden test (Fisher’s-exact test) with the BIN-

test. As there are no known examples of a protective burden of rare exonic variants in 

cardiomyopathy, here we only consider an excess burden in the case group making it a one-sided test. 

Fisher’s method [25] was then used to calculate the joint significance of the combined p-values. An 

important assumption of this method is that the contributing p-values are independent; this was 

assessed in simulated data by Spearman’s rank correlation test [26]. The performance of 

ClusterBurden was compared, in simulated data, to two published position-informed association 

methods: DoEstRare [7] and CLUSTER [27], and three position-uninformed methods: C-alpha [28], 
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SKAT [29], WST [30]. Then, both BIN-test and ClusterBurden were then applied to the 34 

cardiomyopathy gene-panel in our HCM-gnomAD case-control cohort. 

Hotspot estimation and in-silico predictor modelling using GAMs 

To test the hypothesis that a variant’s position can improve pathogenicity interpretation, we 

considered gene-specific models of variant clustering in cases and controls. By combining information 

on gene-level burden and variant positions, these data-driven models estimate the regional burden 

across the linear protein sequence to quantify mutational hotspots. The models were fitted in the 

GAM framework, [31] implemented in the R package “mgcv” [32]. The outcome variable was disease 

status, so each model was unsupervised with respect to previous classifications of pathogenicity. The 

training data included all rare-missense variants in cases and controls, including known pathogenic 

variants in the control set. Therefore, this approach implicitly models incomplete penetrance and 

benign background variation, leading to unbiased estimates of variant odds-ratios. 

GAMs, as an extension of the linear modelling framework, are designed to deal with non-linear 

relationships of unknown complexity, between explanatory variables (e.g. residue position) and the 

response variable (e.g. case-control status). When a relationship is potentially non-linear, it is 

represented by a smooth curve instead of a straight line. These curves are inferred automatically using 

restricted maximum likelihood, which reduce over-fitting by penalising excessive ‘wiggliness’.  

Using this framework, we defined the structure of the hotspot-model, which models; carrier status 

(gene-level burden) and residue position (clustering). To incorporate gene-level burden, non-carriers 

must also be modelled. However, as variant-level features such as residue position are meaningless 

for non-carriers, so a nested model structure is required, whereby residue position is included only as 

an interaction with carrier status. Under these circumstances, the smoothed residue position term is 

multiplied by zero for non-carriers, excluding this undefined data from the model. The structure of the 

hotspot-model is as follows: 
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P = β0 + β1 carrier_status + s1 (residue_position, by = carrier_status) + ε 

where P is the probability of being a case, β0 is the model intercept, β1 is a linear coefficient for 

carrier_status, s1 is a smoothed (i.e. non-linear) function for residue_position, by is used to generate 

factor-smooth interactions and ε is a binomial error term.  

The feasibility of this approach is dependent on the number of observations, thereby limiting its 

application in our data to the six core sarcomeric genes; MYBPC3, MYH7, MYL2, MYL3, TNNI3 and 

TNNT2, each carrying at least 20 rare-missense variants. A hotspot-model was produced for each gene 

and raw model predictions for each residue position, in the form of logistic probabilities and standard 

errors, were transformed to ORs and 95% confidence intervals (CIs). There is currently no universal 

guidance on how to quantitatively apply ACMG criteria PM1. However, using the probability that a 

variant is a case variant as a proxy of pathogenicity, we can use predicted probabilities to attribute 

levels of evidence. Here we stratify variants based on the probability thresholds 0.9, 0.95 and 0.99 to 

represent supporting, moderate and strong evidence of pathogenicity. These correspond to ORs of 

approximately 10, 20 and 100.  

As GAMs are additive in structure, it is straight-forward to include further predictors in the model. 

Here we experimented with the inclusion of variant prediction scores extracted from the dbNSFP4.0 

database [33]. These in-silico prediction algorithms are covered by the ACMG criteria PP3, however, 

like criteria PM1, it is challenging to apply this criteria quantitatively. It is unclear which threshold 

determines a pathogenic variant with a given probability and whether these thresholds are consistent 

across genes. Both of these problems can be solved using gene-specific models as the relationship 

between the in-silico predictor and disease-status is automatically inferred. Furthermore,  we can 

quantify uncertainty on the usage of these scores for each gene.   

To avoid overfitting, we implemented a strict two-stage feature selection procedure, based on 24 in-

silico scores from dbNSFP. In stage 1, only features with a marginal p-value < 0.002 (0.05/24 for 

Bonferroni correction) were selected. In stage 2, backwards elimination was implemented, whereby 
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features are removed from the model one at a time and then remaining features are assessed again 

in a new model, until all features are significant (Bonferroni corrected for the number of features 

selected in stage 1). The resulting models, which are henceforth termed in-silico-models, assimilate 

evidence of gene-burden, variant clustering and pathogenicity prediction scores.  

Model performance for these GAMs are best judged by the estimates of uncertainty accompanying 

predictions. However, to determine the relative ability of these models to predict pathogenicity, they 

were compared with models based on single in-silico predictors and expert variant classifications. 

Relative performance was assessed using the area under the curve (AUC) from the receiver operator 

characteristic (ROC) curves with ten cross-fold validations performed by dividing the data into training 

and test sets in the ratio of 80:20%.  
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RESULTS 

Testing the hypothesis of clustered missense variants 

Under the null hypothesis of no excess burden or clustering, the false-positive rate of the BIN-test and 

AD test were adequately controlled in simulated data, whereas the KS test was overly conservative 

(S3 Table). The BIN-test had superior power than AD or KS under all clustering scenarios and protein 

lengths with on average 1.8-fold more power to detect clustering.  As power covaries with the number 

of observed variants, power was higher for longer proteins as well as proteins with more pathogenic 

residues. 

Correlations between p-values generated by the BIN-test and Fisher’s exact test were compared for 

simulated data under 1) a null model of no association or 2) a disease model of over-burdened and 

clustered variants. For the disease model, there was a positive correlation (Spearman’s rank 

correlation rho=0.40) between p-values, as anticipated as the power of these tests covaries with the 

number of observed variants. However, under the null model, the p-values were completely 

uncorrelated (i.e. rho = 0.00), satisfying the independence assumption of Fisher’s method.  

The false-positive rate for ClusterBurden, DoEstRare, CLUSTER and C-alpha were all well controlled in 

the simulated datasets (S3 Table). On the contrary, SKAT and WST showed markedly inflated false-

positive rates under the null and were not examined further. ClusterBurden was the most powerful 

method when clustering was present with an average of 72% power, 3% higher than the second-best 

test DoEstRare. The best method under the uniform model (i.e. burden-only) was CLUSTER, which had 

~5% more power than ClusterBurden. Amongst the position-informed tests, ClusterBurden was the 

most rapid to compute taking less than a second per gene whereas DoEstRare and CLUSTER took over 

20 or 4 minutes respectively.  

We then examined 34 cardiomyopathy genes for rare-missense variant associations with Fisher’s-

exact test (burden), BIN-test (cluster) and ClusterBurden (combined cluster and burden) in our cohorts 
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of HCM cases and gnomAD controls (Figure 1). Significance thresholds were conservatively Bonferroni 

adjusted to allow for 34 genes x 3 methods (i.e. p-values adjusted for 102 tests to p < 0.00049). 

Significant burden signals were then detected in 11 genes with Fisher’s-exact test; MYH7 (p < 5.44 x 

10-252), MYBPC3 (p < 1.74 x 10-229), TNNI3 (p < 1.46 x 10-50), TNNT2 (p < 1.11 x 10-24), TPM1 (p < 6.56 x 

10-21), ACTC1 (9.61 x 10-14), GLA (1.61 x 10-10), FLH1 (1.02 x 10-9), MYL2 (1.87 x 10-9), CSRP3 (3.56 x 10-

8) and MYL3 (6.53 x 10-6). The BIN-test detected significant clustering for 6 core sarcomeric genes; 

MYH7 (p < 1.36 x 10-73), MYBPC3 (p < 1.55 x 10-78), TNNI3 (p < 3.34 x 10-13), MYL2 (p < 5.83 x 10-10), 

TNNT2 (p < 1.69 x 10-7) and MYL3 (p < 1.7 x 10-4). Two additional sarcomeric genes showed nominal 

evidence of clustering; ACTC1 (p<0.0412) and TPM1 (p< 0.0494). ClusterBurden confirmed the 

association for 11 genes that showed burden signals and calculated substantially lower p-values for 

the six core-sarcomeric genes with significant clustering, consistent with enhanced power for this 

approach in true disease-causing genes.  

Hotspot and in-silico models 

Figure 2 summarises the GAM-predictions for six sarcomeric genes in the hotspot-models. Visualising 

the predicted odds-ratios (OR) for each residue illuminates the local burden of rare-missense variants 

across each protein, identifying “mutational-hotspots” and highlighting areas of potential functional 

importance in HCM pathogenesis. Confidence in these predictions is tight for MYH7 and MYBP3, 

conversely the genes with fewer observed variants have much broader confidence intervals. ORs from 

all models correlate strongly with expert manually assigned classifications, though there is substantial 

overlap between classes. Variants with a VUS classification show the highest spread in predictions.  

Figure 3 displays in-silico-model predictions for individual variants in the same six genes. Due to strict 

feature selection, the number of predictors included in each model depends on the power to detect 

associations between features and disease status. This resulted in fewer features for genes with fewer 

observed variants, MYL3 had no additional significant features. As residue position is included as a 
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predictor in each model, predictions generally follow the hotspot-model, however, due to additional 

in-silico predictors, ORs tend to vary from this pattern, stratifying risk for variants at the same position.  

As with the hotspot-models there was strong correspondence between predictions and expert 

classifications (mean rho 0.41 across six models). In MYH7, mean predicted ORs for pathogenic, likely 

pathogenic and VUS variants observed in cases, were 74, 50 and 20 respectively.  Again, the VUS class 

had highest heterogeneity, with predicted ORs ranging from 0.25 to 197 (MYH7). For half of these 

VUS’s, limited information is available, as they are observed in a single case and absent in controls 

(singleton variants). The empirical ORs for these singletons, based only on case and control 

frequencies and adding 0.5 to zero-count cells (Haldane continuity correction [34]), had very wide 95% 

Cis: 44.9 [1.5, 1338.3]. However, predicted ORs for such variants can have greater precision with 

different point estimates depending on the precise amino-acid substitution. In MYH7, five singleton 

VUS’s had predicted ORs greater than 100 and three had ORs less than 1. 

The mean and standard deviation of AUC for ten cross-fold validations summarise overall model 

performance (Figure 4). The in-silico-model had a much higher mean AUC than any individual in-silico 

predictor in isolation. With the exception of MYBPC3, the hotspot-model out-performed any 

standalone score from dbNSFP. This suggests that residue position is more important in determining 

pathogenicity than the in-silico predictors in dbNSFP for these sarcomeric proteins. The AUC standard 

deviations for MYH7 and MYBPC3 were the smallest, suggesting they have the highest capacity to 

generalize to new variants.  

The GAMs were then used to attribute evidence of pathogenicity based on the ACMG criteria PM1 

and PP3. Using the ACMG OR thresholds described in the methods, Table 1 shows the proportion of 

variants in our cohort with evidence of pathogenicity predicted by the hotspot and in-silico-models. 

For the hotspot-model, the PM1 criteria was satisfied, with supporting (OR > 10) or moderate (OR > 

20) evidence, for some variants in all genes except MYL3. Strong evidence of pathogenicity (OR > 100) 

was not predicted by the hotspot-model for any variant.  Conversely, the in-silico-model, which  
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combined criteria PM1 and PP3, provided strong evidence of pathogenicity for many variants, 

including VUS’s in MYH7, MYBPC3, TNNT2 and TNNI3.  

 

Table 1: Proportion of variants with evidence of pathogenicity in hotspot and in-silico models.  

 Each observed variant across six genes in our HCM cases was given supporting (OR > 10; Sup.), 

moderate (OR > 20; Mod.) or strong (OR > 100; Str.) evidence of pathogenicity based on model 

predictions from the  hotspot and in-silico models. The proportion of variants with supporting, 

moderate or strong evidence are stratified by expert classifications made by Oxford Medical Genetics 

Laboratory.  

 

 

 VUS Likely pathogenic Pathogenic 

 N Sup. Mod. Str. N Sup. Mod. Str. N Sup. Mod. Str. 

Hotspot-models  

MYH7 123 10% 28% 0% 93 33% 55% 0% 36 31% 61% 0% 

MYBPC3 97 35% 12% 0% 13 38% 23% 0% 6 33% 67% 0% 

TNNT2 19 21% 47% 0% 4 0% 50% 0% 4 0% 100% 0% 

TNNI3 18 17% 67% 0% 11 9% 91% 0% 4 0% 100% 0% 

MYL2 12 25% 0% 0% 1 100% 0% 0% 2 100% 0% 0% 

MYL3 10 0% 0% 0% 3 0% 0% 0% 1 0% 0% 0% 

In-silico models 

MYH7 123 18% 26% 4% 93 16% 58% 14% 36 8% 75% 17% 

MYBPC3 97 16% 25% 7% 13 15% 54% 15% 6 17% 33% 50% 

TNNT2 19 16% 26% 16% 4 0% 50% 25% 4 0% 50% 50% 

TNNI3 18 22% 33% 22% 11 18% 45% 36% 4 0% 50% 50% 

MYL2 12 0% 25% 0% 1 0% 100% 0% 2 50% 50% 0% 

MYL3 10 0% 0% 0% 3 0% 0% 0% 1 0% 0% 0% 
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A web application, pathogenicity_by_postion, is available to facilitate the exploration of the hotspot 

and in-silico models (R Shiny: https://adamwaring.shinyapps.io/Pathogenicity_by_position). Users can 

explore alternative models and submit their own missense variants to retrieve predicted ORs and 

support intervals. A further R package is available for cluster-detection and association testing using 

BIN-test and ClusterBurden (https://github.com/adamwaring/ClusterBurden). 
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DISCUSSION 

We present here new statistical approaches to incorporate residue position in the analysis of rare-

missense variants in Mendelian disease genes. Our association tests were well-calibrated in simulated 

data, the BIN-test detected significant clustering in almost all firmly-established HCM genes, and 

ClusterBurden gave superior power over a simple burden test.  Data-driven models were applied to 

six core sarcomeric genes to estimate mutational hotspots and provides a flexible method for 

quantitative application of ACMG criteria PM1 and PP3. Our results demonstrate that residue position 

can be a powerful predictor of both gene and variant pathogenicity and can quantify the statistical 

uncertainty surrounding the application of in-silico algorithms. 

BIN-test is a powerful method to test the hypothesis of variant clustering in known or putative disease 

genes. ClusterBurden is a gene association test with superior power over a standalone burden test in 

situations where pathogenic variants cluster in specific protein regions. Both tests keep false-positives 

below 5% and are rapid to compute, making them scalable for whole-exome scanning of very-large 

datasets like the UK Biobank. Although ClusterBurden has slightly reduced power whenever clustering 

is absent, we observed clustering for most well-established HCM genes where missense variants cause 

disease. Therefore, this method has the potential be more powerful to detect undiscovered low-

penetrance genes than a burden-only test. 

The most significant position signal was observed in the beta myosin heavy chain protein (MYH7: 

ENST00000355349), a finding that has been long recognised [35]. Most of the signal was observed in 

the myosin-head motor domain between residues 100-900, in two clusters peaking at residues 370 

and 830 (Figure 2). The relatively low variant density in cases and high density in controls in the 

carboxy-terminus of this protein might lead an observer to hypothesise a regional protective effect on 

HCM risk (S13 Figure). In sharp contrast, the GAM model predicts a modestly excessive burden (OR 

~3) across this entire region discounting the likelihood of a localised protective effect (Figure 2).  
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A strong position signal, driven by four potential clusters, was observed in the MYBPC3 gene 

(ENST00000545968), which encodes cardiac myosin-binding protein C C10 (Figure 2). Clusters peaked 

at residues 260, 518, 864 and 1274, which respectively fall in domains C1, C3, C7 and C10. Multiple 

functional roles are suspected for the region containing the C1 domain, including binding to myosin 

S2 and actin. The C10 domain is also a possible titin binding site [36]. To explore whether the signal 

was overly driven by high-frequency founder mutations, seven variants with allele counts above 10; 

c.2429G>A, c.2308G>A, c.1624G>C, c.1504C>T, c.1484G>A, c.772G>A and c.655G>C 

(ENST00000545968), were masked in a sensitivity analysis. In their absence, there is still strong 

evidence of a position signal (p < 3 x 10-9) and the remaining peak densities overlap with the locations 

of the (masked) founder mutations (S14 Figure).  

Eighty-nine percent of 27 case variants in the TNNT2 gene (ENST00000509001), which encodes cardiac 

troponin T, map to clusters between residues 67-179 and residues 250-282 (Figure 2). The first peak 

at residue 90 overlies a previously reported region at residues 79-179 that binds tropomyosin [37]. 

Mutations between residues 92-110 have been previously noted to impair tropomyosin dependent 

functions in TNNT2 [38] and six variants map to this region. In TNNI3 (ENST00000344887), which 

encodes cardiac troponin I, 91% of 34 case variants mapped to a cluster spanning residues 128-209. 

This accords with previous studies documenting disease-causing variant clustering in the carboxy-

terminus of this sarcomeric protein [39]. In MYL2 (ENST00000228841), which encodes myosin 

regulatory light chain, 50% of 30 case variants cluster between residues 25 and 100, whereas control 

variants tended to cluster towards the C-terminus (Figure 2). In MYL3 (ENST00000395869), which 

encodes myosin essential light chain, 79% of 14 case variants cluster between residues 125 and 175 

(Figure 2) whereas control variants were more uniformly distributed.   

GAMs were used to model variant pathogenicity based on mutational hotspots (hotspot-model) and 

in-silico predictors (in-silico-model). GAMs have attractive statistical properties, not necessarily shared 

by other machine-learning approaches, in that they can produce familiar interpretable results via 
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variant-specific ORs and accompanying 95% confidence intervals. Unlike empirical ORs, based solely 

on observed frequencies for variants, GAM ORs draw upon a much larger pool of information, 

including features of other variants in the training set. This permits the estimation of variant-specific 

ORs whenever the empirical frequencies are uninformative. Furthermore, as the GAM response 

variable is case status, the models are unbiased by previous classifications, and account for both 

incomplete penetrance and benign background rare-variation.  

Reassuringly, model predictions were positively correlated with expert manually-curated 

classifications. Using a probabilistic approach, we attributed different levels of evidence for the criteria 

PM1 and PP3. Currently for HCM, criteria PM1 is applied as moderate evidence to MYH7 for variants 

that fall in the residue 181-937 motor-domain [15]. The hotspot-model extends this criteria to five 

more sarcomeric genes and stratifies evidence as either supporting or moderate. When in-silico 

predictors were included in the model, evidence was stratified as supporting, benign or occasionally 

strong. However, this relies on effectively collapsing two ACMG criteria into one, a relevant 

modification of the current additive guidelines [11].  

CONCLUSIONS 

Here we have demonstrated proof-of-concept data-driven modelling as an effective tool for variant 

interpretation in HCM. Collaboration for more cases could substantially improve model performance 

and reduce uncertainty in estimates, especially for genes with few observations such as MYL2 and 

MYL3, but could also allow informative modelling of further HCM genes and other Mendelian diseases. 

Furthermore, the modelling approach developed could be modified into a Bayesian framework 

allowing inclusion of previously reported pathogenic and benign mutations, available from public 

resources such as clinVAR, as model priors, reducing uncertainty further. Our association methods, 

have proved theoretically powerful and could be used to scan for novel cardiomyopathy genes when 

large datasets such as 500K UK Biobank exomes become available.  
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LIST OF ABBREVIATIONS  

ACMG – American College of Medical Genetics  

VUS – Variant of Uncertain Significance  

HCM – Hypertrophic Cardiomyopathy 

GAM – Generalized Additive Models  

OMGL – Oxford Medical Genetics Laboratory 

HCMR – Hypertrophic Cardiomyopathy Registry 

BAM – Binary alignment map 

AD – Anderson-Darling 

KS – Kolmogorov-Smirnov 

AUC – Area under the Curve  

ROC – Receiver Operating characteristic  

OR – Odds-ratio  
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Figure 1: Association analysis using Fisher’s-exact test (Burden), BIN-test (Cluster) and ClusterBurden of 34 

genes commonly present on cardiomyopathy gene-panels. 

Our case-control dataset contains 5,338 hypertrophic cardiomyopathy cases and 125,748 gnomAD controls. For 

all tests, only missense variants with a popmax MAF less than 0.01% were considered. P-values are presented 

on a -log10 scale. The number of observed case variants in each gene is displayed next to the gene symbol. P-

values displayed in yellow are significant after Bonferroni correction for 34 genes x 3 tests (p < 0.00049), p-values 

in black are nominally significant (p < 0.05) and p-values in grey are insignificant (p > 0.05).  Asterix’s denote 

genes where the ClusterBurden p-value is lower than the Burden p-value. Two vertical dotted lines at 0.05 and 

0.00049 indicate the nominal and Bonferroni significance thresholds.  
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Figure 2: Odds-ratio (OR) predictions and 95% confidence intervals for hotspot-models.  

Mutational hotspots were estimated for six firmly established HCM disease-genes. The 95% confidence intervals for model predictions are displayed as light grey shading. 

Regions above the blue (OR=10) and green (OR=20) dashed lines ascribe supporting and moderate evidence respectively, for criteria PM1.  
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Figure 3: Odds-ratio (OR) predictions and 95% confidence intervals for in-silico-models. 

Each point denotes a rare-variant in the HCM dataset and is coloured to indicate its expert classification. ORs on the y-axis are displayed on a log10 scale and were derived 

from the in-silico-models, including; gene-burden, residue position and gene-specific significant secondary features from dbNSFP. The solid black curvy lines represent the 

predictions for each residue in the protein for a gene-burden and position model (hotspot-model).  Dashed red lines indicate an OR of 1, dashed blue lines indicates the OR 

for the uniform burden model.  
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Figure 4: Means and standard deviations of area under the curve (AUC) across 10 cross-fold validations.  

For each gene, the in-silico-model and hotspot-model are compared to each individual in-silico predictor from 

dbNSFP. Each model is trained on the same HCM-gnomAD case-control missense variants all filtered at a 

gnomAD population maximum frequency of 0.01%. Only the five highest mean AUC scoring models are 

displayed.  
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