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Abstract 

 

Mutations resulting in amino acid substitution influence the stability of proteins along with 

their binding to other biomolecules. A molecular understanding of the effects induced by 

protein mutations are both of biotechnological and medical relevance. The availability of 

empirical free energy functions that quickly estimate the free energy change upon mutation 

(ΔΔG) can be exploited for systematic screenings of proteins and protein complexes. Indeed, 

in silico saturation mutagenesis can guide the design of new experiments or rationalize the 

consequences of already-known mutations at the atomic level. Often software such as 

FoldX, while fast and reliable, lack the necessary automation features to make them useful 

in high-throughput scenarios. Here we introduce MutateX, a software which aims to 

automate the prediction of ΔΔGs associated with the systematic mutation of each available 

residue within a protein or protein complex to all other possible residue types, by employing 

the FoldX energy function. MutateX also supports ΔΔG calculations over protein ensembles 

and the estimation of the changes in free energy upon post-translational modifications. At 

the heart of MutateX lies an automated pipeline engine that handles input preparation, 

performs parallel runs with FoldX and outputs publication-ready figures. We here illustrate 

the MutateX protocol applied to the study of the mutational landscape of cancer-related 

proteins, industrial enzymes and protein-protein interfaces. The results of the high-

throughput scan provided by our tools could help in different applications, such as the 

analysis of disease-associated mutations, or in the design of protein variants for 

experimental studies or industrial applications. MutateX is a collection of Python tools that 

relies on Open Source libraries and requires the FoldX software to be installed beforehand. 

It is available free of charge and under the GNU General Public License from 

https://github.com/ELELAB/mutatex. 
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Introduction  

 

Advances in the field of proteomics are now providing a huge amount of data on protein-

protein interaction or post-translationally modified proteins 
1–5

 that benefit of structural 

studies to make a rational out of them 
6
. On other hand, genomic initiatives allow to identify 

missense mutations
7,8

 in the coding region of genes that need to be understood at the 

structural and functional level, along with regarding the impact of mutations on protein 

stability 
9,10

. 

Indeed, single amino acid substitutions (i.e. mutations) or post-translational modifications 

(PTMs) in proteins may result in significant changes in protein structural stability and 

intermolecular interactions, impacting on protein activity, function and cellular signaling. An 

accurate and systematic prediction of changes in stability and binding upon mutations or 

PTMs is thus crucial to understand protein variants at the molecular level 
11–13

. Moreover, 

the possibility to predict mutational effects also has a strong impact in protein engineering 

for biotechnological and industrial applications 
14,15

. It has been also shown that disease-

causing mutations are characterized by changes in structural stability or binding affinity 
16–

18
. Most prediction tools are designed to work on a single conformation at a time, however 

proteins are not static entities and they can attain multiple states in solutions that are 

tightly related to function 
19,20

. Some proteins are conformationally heterogeneous and 

undergo a myriad of structural changes, including sparsely populated states that are 

stabilized upon interaction with a biological partner 
21,22

. It is thus important, for a proper 

understanding of the impact of mutations and PTMs, to account for the conformational 

ensembles of proteins. Protein ensembles can be obtained by experimental techniques such 

as NMR 
23,24

, simulations 
25–27

 or an integration of the two 
28–30

 . 

Many diverse methods have been developed to estimate stability and binding free energy 

changes upon amino acidic substitutions from a structure, many of which extensively 

summarized in a recent review article. 
31

 Given their widespread use and importance, 

synthetic benchmarks of them have been performed over time, along with comparisons 

with experimental data. These structure-based methods were in general considered to be 

moderately accurate in terms of classification between stabilizing, neutral or destabilizing 

mutations 
32,33

 and in terms of correlation between experimental and computed ΔΔG values 
34,35

. Among these methods, FoldX 
36

, has been ranked among the best-performing methods 
37

 and has been applied with success to many cases of study and biological questions. 

Experimental validation of FoldX predictions, along with comparison to existing 

experimental data, also support the notion that this tool is valuable for mutation 

classification, design and prediction 
31,37–41

. 

The FoldX method predicts changes in free energy of folding upon mutation as the 

difference between the estimated free energy of folding of the mutant and the reference 

wild type variants. This is done by using an empirical free energy function, which includes 

terms for Van der Waals interactions, solvation free energies, water bridges, hydrogen 

bonding, electrostatics and entropy changes upon folding for main-chain and side-chains. 

Some of these terms are weighted by coefficient, which was determined using a fitting 

procedure over a database of free energy differences from single-point mutants, meaning 

that FoldX free energies are not necessarily physical – however, the calculated differences 

are comparable to those identified experimentally. The energy function is implemented in a 

closed-source commercial software suite, FoldX, which is available for free for academic use 

and is able to calculate the free energies estimate and to energy minimize and mutate input 
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protein structures. The suggested FoldX mutation protocol includes a highly recommended 

Repair step, in which an energy optimization is performed that removes interatomic clashes 

or otherwise changes the conformation of residues with particular bad energy in the input 

structure. Next a mutation step is performed (BuildModel) in which the model of the mutant 

variant and corresponding wild-type models are generated, and finally the respective 

energies are calculated and subtracted to obtain the final difference in free energy upon 

mutation. FoldX is also able to estimate the free energy of interaction between pairs of 

molecules in the structure through the AnalyseComplex command, in which the energy of 

interaction is simply calculated as the difference between the energy of the isolated 

molecules with that of the complex. FoldX supports the twenty canonical amino-acids, few 

post-translationally modified ones and other chemical moieties such as nucleic acids and 

metal ions. 

The accuracy of FoldX has been independently investigated in literature, with a standard 

deviation reported in the range of 1.0-1.78 kcal/mol between the FoldX ΔΔGs and 

experimental data, and an average accuracy of 0.69 
37

. Among the methods tested for 

systematic bias, it was found to be among the top five least biased methods 
42

, with 

tendency towards destabilizing mutations. The bias itself can be alleviated through a 

backbone relaxation step 
43

. 

Interestingly, FoldX has been found to be quite sensitive to the input structure and using 

high-quality crystal structure for ΔΔG determination has been suggested. In this regard, a 

modified protocol in which ensemble averages of free energies predictions calculated on 

conformers from molecular dynamics simulations has been proposed 
41

, with the 

observation that, while predictions performed on the single MD conformation had quite 

poor correlation with experimental ΔΔG, using ensemble average predictions restored the 

correlation and reduced the spread of the ΔΔG values. This indicates that ensemble 

averaging in FoldX constitutes a viable line of research that could improve the results 

obtainable by the software.  

The aforementioned energy functions, and FoldX in the first place, are, in general, promising 

approaches since they, in principle, allow for a fast but yet quantitative estimate of the 

changes in stability and at the interaction interface for other biological partners of all 

possible mutations in a protein structure. Nevertheless, elegant computational solutions to 

design flexible and comprehensive pipelines to carry out in-silico deep mutational scans in a 

high-throughput manner are still missing, along with the extension of these functions to a 

systematic study of protein ensembles taking advantage of parallelization on modern multi-

core hardware.  

 

Results 

 

Design and Implementation 

 

Overview on MutateX  

 

MutateX includes a wrapper in Python for the FoldX suite accompanied by plotting and post-

processing Python scripts. The main program implements an in-silico saturation mutagenesis 

protocol for proteins and protein complexes that uses the popular FoldX program to predict 

the effect of mutations. It allows to calculate the free energy change associated with the 

systematic substitution of each protein residue to any of the natural amino acids or post-
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translational modified residues, such as phospho-residues. MutateX automates and 

streamlines the mutation process, making it straightforward to run a full mutational scan 

even for several conformers of the same protein. From a single three-dimensional (3D) 

protein structure, or ensemble of structures, MutateX provides the researcher with textual 

and graphical representations of the mutational data to explore and make sense of the huge 

amount of information derived from such an exhaustive scan. This overview is possible 

through the use of powerful visualization tools, which produce publication-ready figures.  

At the heart of the MutateX software lies a pipeline engine that handles input preparation, 

parallel runs of available programs able to estimate the free-energy, coupled with data 

gathering and visualization tools. Currently, the supported software for the calculation of 

free energies is the FoldX Suite, which employs the empirical FoldX energy function 
36,44

 to 

determine the energetic effect of point mutations, along with the binding energies 

associated with the formation of multimeric protein complexes. MutateX is compatible with 

FoldX Suite version 4 and the recently relased version 5 
45

. 

 

The MutateX protocol  

In its simplest application, the MutateX main wrapper requires as an input a single file with 

the coordinates of a protein 3D structure in the PDB format. Moreover, the user should 

provide the FoldX running input files, for which templated are included by default in the 

MutateX distribution. The templates for the different calculations are used by FoldX for the 

Repair, BuildModel and (optionally) AnalyseComplex FoldX commands, as detailed in the 

User Guide. Advanced users are invited to create their own templates or modify the existing 

ones as they see fit. 

The MutateX software implements the protocol summarized in Fig. 1. First, the main 

MutateX program parses the input PDB files and saves one file per model in the PDB format. 

As a second step MutateX prepares and performs a Repair FoldX run on each model. For 

each repaired model, Mutatex generates all the directories and files that are required to 

perform the mutational scan, including structure files, run files for FoldX, and lists of 

mutations. All substitutions on a given site are treated as a single independent FoldX run, 

making it possible to run several instances of the FoldX software at the same time, which is 

necessary to take advantage of modern multi-core processors and effectively reduce the 

execution time of the whole pipeline. MutateX takes care of scheduling the necessary FoldX 

runs, keeping track of their status and checking the output files. During the preparatory 

step, the software automatically recognizes if two or more identical protein chains are 

present in the input structure files and prepare the mutation runs taking this into 

consideration, by mutating all the chains having the same sequence at the same time. It also 

supports setting the number of runs per mutation, so that cases in which more local 

structural variability is expected can be taken into account. Once all the mutation runs have 

been performed, MutateX reads the output of the FoldX runs and summarizes the estimated 

average free energy differences, the associated standard deviations and minimum and 

maximum values in separate text files for each residue. The MutateX processing tools can 

then be used on these files to obtain representations of the effects of the mutations, such as 

probability density plots of ΔΔG values calculated with Kernel density estimation 

(ddg2density), heatmaps (ddg2heatmap), histograms relative to single mutation sites 

(ddg2histo), logo plots (ddg2logo), per-site distributions of ΔΔGs in different representations 

(ddg2distribution). When plotting, the user can specify custom labels by filling in a template 

generated using the pdb2labels tool. The ddg2dg tool can be used to apply systematic linear 
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corrections to the calculated ΔΔG values. The dataset can be converted to Microsoft Excel-

compatible files (ddg2excel) or PDB files with relevant information about the mutagenesis 

results stored in the B-factor field (ddg2pdb). These files can be further visualized and 

processed using protein structure viewers, such as PyMOL (https://pymol.org). The same 

data can also be written as the diagonal of a residue matrix file, compatible with the xPyder 

plugin 
46

. The user can also generate ad-hoc reports on specific residues (ddg2summary). 

Most of these tools support extensive plotting options, the most important of which is the 

range of ΔΔG values that are to be considered. In fact, according to our experience, the 

ΔΔGs predicted by FoldX can go up few tens kcal/mol. Therefore, if the entire range of 

predicted ΔΔGs is considered, identifying smaller but still meaningful differences becomes 

difficult. We suggest to limit the range of ΔΔG values between -3.0 and 5.0 kcal/mol, as this 

is the range in which most mutations were experimentally found (see Results for details). 

ΔΔG values below or above this are likely to be overestimated by the method. 

Self-mutations, i.e. those mutations that replace a residue with one of the same type, can 

also be performed independently respect to the rest of the protocol and are especially 

useful as a sanity check of the method for every single mutation site, in a given structure. In 

fact, the free energy difference calculated when mutating a residue to itself acts as a lower 

bound of the prediction error, as we would normally expect ΔΔG close to 0 for such a 

mutation. 

MutateX allows to customize some aspects of the calculations. For instance, it is possible to 

provide the list of target residue types that should be considered in the scan, as well as to 

include multiple models from one or more PDB files. Indeed, MutateX supports the 

saturation scan and the free energy calculations over structural ensembles, an approach 

that in principle might be able to mitigate the inaccuracies associated with the limited 

conformational variability that FoldX allows for during modelling of the mutant variants. The 

software is also able to consider the simultaneous introduction of each mutation on more 

than one chain at the same time in the case homo-dimers or homo-multimers are present in 

the PDB file. Finally, MutateX is designed to handle, calculate and plot the changes of free 

energies of binding between complexes upon mutation, both considering homo-multimers 

and hetero-multimers. 
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Figure 1: Scheme of the workflow implemented in MutateX, as described in the Methods section 

 

 

Performance 

The vast majority of run time for MutateX scan is taken by the runs of the ΔΔG estimation 

engine, as the operations of preparation and post-processing performed by MutateX are 

computationally inexpensive. Therefore, the performance of MutateX is strictly tied to that 

of the underlying mutation engine - FoldX in this case. MutateX is able to run a complete 

mutational scan of a 300-residues protein to all the 20 natural variants in less than a day 

using 4 cores for parallel execution, which can routinely be done on a desktop-class machine 

(Fig. 2). 
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Figure 2. Scaling behavior of MutateX with increasing number of residues. These run times have been 

obtained using MutateX in combination with FoldX Suite version 4. 

 

It should be noted that, as the FoldX runs performed by MutateX are completely 

independent on one another, the scaling capacity of MutateX itself is linear with the number 

of cores, peaking when the number of cores is equal to the number of residues to be 

mutated. 

 

 

Results 

 

Selection of a cutoff for truncation of ΔΔGs values for plotting purposes  
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Figure 3.  Distribution of experimental ΔΔG values, upon sign change, as found in the ProTherm database 

47
for 

which a unit was specified. 

 

 

The predicted FoldX ΔΔGs can reach up few tens of kcal/mol in some cases, making 

visualizing a full mutational scan challenging due to scale effects, for instance when using 

heatmaps. In fact, using large scales would mask smaller but meaningful differences difficult 

to read, giving more importance to very large energy differences that are more likely to be 

over-estimations. We therefore sought to identify a range of free energy differences in 

which small differences are to be considered meaningful, while smaller or larger values than 

that can be flattened out as largely destabilizing or stabilizing. To this extent, we have used 

the ProTherm database 
47

 to check how experimentally-derived ΔΔG values are distributed, 

after filtering out those values for which an energy unit was not specified in the database. 

Fig. 3 shows that most mutations fall within the -3.0 to 5.0 kcal/mol range, which can be 

used as a cutoff for truncation of DDG values when visualizing MutateX mutation results, 

which correspond roughly to the second and 98th percentile respectively. We therefore 

recommend using these or more extreme values as range limits for visualization and 

plotting purposes. 

 

Examples of use 

 

We show as examples of usage for MutateX the prediction of: i) protein-destabilizing or 

stabilizing mutations through a full mutational scan of the cancer-related protein, 

Phosphatase and tensin homolog (PTEN), ii) an example of protein-protein interaction with 
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the tetrameric structure of the p53 DNA binding domain, iii) an example of protein-peptide 

interaction, including the estimate of effects of phosphorylation, with the mutational scan 

of complexes between SH2 and phospho-peptides.  

 

Saturation mutation scan of the cancer-related protein PTEN: relationship between protein 

stability and disease  

 

PTEN is a tumor suppressor with homology to tyrosine phosphatases and the cytoskeletal 

protein tensin 
48

. The PTEN monomer consists of two major functional domains, i.e. the 

phosphatase domain (PTP, residues 14-185) and the C2 domain (residues 190-285). PTEN is 

known to be involved in regulation of cellular growth processes and suppresses cell 

migration and invasion 
49

. Mutations in PTEN have been identified in a variety of human 

cancers 
50

. Most reported missense mutations of PTEN are located within the exon encoding 

the PTP domain.  

PTEN has been recently used as a case study, in which other methods have been used to 

predict changes in free energy upon mutations and then compared to multiplexed 

experiments 
51

. The authors found that the loss of PTEN stability was a driver factor for 

disease-causing mutations with 60% of the pathogenic variants causing the loss of function 

because the protein is destabilized and degraded. PTEN is thus a useful case study to 

illustrate the possible application of the scan for changes in stability with the MutateX 

protocol. We performed a saturation mutagenesis scan of PTEN, aiming at identifying the 

most damaging mutations and relate them with available mutational data from publicly 

available cancer samples.  

We employed the most complete structure of PTEN available at the best of our knowledge 

(PDB ID 1D5R 
52

). Notably, the PDB entry lacks atomic coordinates for residues 286-309 in a 

disordered region – however, given the local sampling carried out by FoldX, the missing 

residues are likely to affect only residues in the proximity of the loop. We thus did not 

model the missing region since this calculation serves only for illustrative purposes.  

The results from the scan were visualized exploiting different post-processing tools available 

within MutateX. We first analyzed the outcome of the scan using heatmaps (produced by 

the ddg2heatmap tool) and boxplots (ddg2distribution), which provide a comprehensive 

overview of the free energy changes upon mutations along the protein sequence. In 

particular, the ddg2distribution tool has been designed to produce different representations 

of the obtained ΔΔGs on a per-residue distribution basis. The heatmap and box plots shown 

in Fig. 4A and 4B depict the change of ΔΔGs in the region 64-113 of PTEN, corresponding to 

the middle part of the phosphatase domain. The results may be classified into the following 

scenarios: 

i) the ΔΔG is not influenced by substitution of the wild-type amino acid. An overall lack of 

change in ΔΔGs at a certain site indicates that the wild-type residue is not essential for 

protein stability. This is often the case when residues that are located at the protein surface 

and lack interactions with the neighboring residues, or for those residues located in flexible 

regions (such as the residue D77). 

ii) The ΔΔG increases upon mutations of the wild-type residue for a certain subset of other 

residues. This subset is likely to have something in common, e.g. residues are hydrophobic, 

hydrophilic, charged, small/large or have an aromatic side chain. Substitutions of a small 

uncharged residue for another is unlikely to alter protein stability, whereas substitution to a 

large aromatic side chain could have a marked effect (such as in the case of N69). 
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iii) The ΔΔG increases regardless of what the wild-type amino acid is mutated to, indicating 

that the native residue may play an essential/specific role in the preservation of the protein 

structure (such as the example of P95 and P96). 

iv) The ΔΔG decreases when the wild-type residue is mutated to one or a subset of other 

residues - e.g. the substitutions result in a more stable protein variant. An observed 

decrease in ΔΔG is expected to be significantly more modest is size and observed less often 

as protein structure/stability is evolutionary optimized (on example is the substitution of 

residue Q with Y or F at position 87).  

To determine which of the 351 PTEN amino acids were most important for protein stability, 

we have used ddg2distribution to plot the per-site average ΔΔG over all of the residues of 

PTEN. We have further annotated with residue names the ten positions with the largest 

average ΔΔG (Fig. 4C and 4D). 

 

 
 

Figure 4. Saturation mutagenesis scan of the tumor suppressor PTEN by MutateX. The 

heatmap (A) and box plot (B) of the mutational scan corresponding to the residues 64-113 is 

shown as an example. It includes the folding ΔΔGs estimated for the mutation of every 

mutation site (x axis) to every natural amino-acid (y axis) using FoldX. The values of free 

energy difference have been limited to the range -3-5 kcal/mol, meaning that values above 

5 or below -3 kcal/mol are shown as the extremes of the range. In panel D, the average ΔΔG 

for the mutation of each residue to all the 20 natural residue types is shown; then the ten 

sites with largest average ΔΔG are labeled. The same mutations are shown on the structure 

of PTEN in panel D, produced with PyMOL. 
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The residues that on average have a larger effect on stability upon mutation for PTEN 

stability were found to be position 83, 95, 96, 127, 132, 151, 165, 204, 213 and 328. The top 

10 residue are highlighted with dots/sticks on the 3D structure of the protein reported in 

Fig. 4C. The mutation predicted to be most sensitive to substitution is the glycine residue at 

position 127, which is located in a loop right before the third α-helix in PTEN. Glycine 

residues located in disordered regions such as loops provide a certain degree of flexibility, 

which is important for the proper functional breathing motions of the protein 
26

. It should 

also be noted that, since FoldX does not relax the protein backbone upon mutation, 

replacing a residue without side-chain with larger ones can result in steric clashes that 

artificially increase the obtained ΔΔG values. 

The MutateX full mutational scan of PTEN also allowed us a better understanding of the 

effects induced by disease-related mutations. As PTEN functions as a tumor suppressor in 

many cancer types we extracted 1116 missense cancer-associated mutations of PTEN using 

the cBioPortal database 
8
 (August 2019) - a comprehensive collection of cancer mutations 

identified by genomic initiative of high-throughput profiling of samples from cancer 

patients. Intriguingly, eight out of ten of the top ten candidates identified in the MutateX 

scan were annotated in Cbioportal and are reported in Table 1. In particular, mutations of 

G127, G132 and G165 were among the most frequent PTEN mutations in cancer patients.  

Table 1. Residues with largest average ΔΔG annotated with information from cBoPortal 

residue 

position 

WT 

amino 

acid 

Annotated 

mutant 

amino acid 

 

Number of 

missense 

annotations 

 

Cancer type  Location within 

PTEN structure 

83 C NA NA NA Phosphatase 

domain 

95 P S, L 5 Glioblastoma Multiforme, Uterine Endometrioid Carcinoma, 

Colorectal Adenocarcinoma, Mixed Germ Cell Tumor 

Phosphatase 

domain 

96 P A, L , S, T 4 Uterine Endometrioid Carcinoma, Chromophobe Renal Cell 

Carcinoma, Glioblastoma Multiforme, Uterine Endometrioid 

Carcinoma 

Phosphatase 

domain 

127 G E, R, V 15 Lung Adenocarcinoma, Glioblastoma Multiforme, Hepatocellular 

Carcinoma, Cutaneous  Melanoma,  

Uterine Endometrioid Carcinoma, Colorectal Adenocarcinoma, 

Ampullary Carcinoma, Teratoma, Uterine Clear Cell Carcinoma, 

Uterine Serous Carcinom 

Phosphatase 

domain 

132 G A, C, D, S, V 23  Solitary Fibrous Tumor, Uterine Carcinosarcoma, Glioblastoma 

Multiforme, Cutaneous Melanoma, Colorectal Adenocarcinoma, 

Lung Adenocarcinoma, Astrocytoma, Uterine Endometrioid 

Carcinoma, Esophageal Squamous Cell Carcinoma, 

Medulloblastoma, Prostate Adenocarcinoma, Rectal 

Adenocarcino 

Phosphatase 

domain 

151 A G, T, D, V 4 Breast Invasive Lobular Carcinoma, Colorectal Adenocarcinoma 

, Uterine Carcinosarcoma, Glioblastoma Multiforme 

  

Phosphatase 

domain 

165 G E, R 15 Small Cell Lung Cancer, Renal Non-Clear Cell Carcinoma, 

Medulloblastoma, Cutaneous Melanoma, Glioblastoma 

Multiforme, Rectal Adenocarcinoma, Uterine Endometrioid 

Carcinoma 

Phosphatase 

domain 

204 P L, R, S 7 Melanoma, Glioblastoma Multiforme, Uterine Endometrioid 

Carcinoma, Uterine Carcinosarcoma, Colorectal 

Adenocarcinoma, Cutaneous Melanoma 

C2 domain 
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213 P R 1 Prostate Adenocarcinoma C2 domain 

328 A NA NA NA C2 domain 

 

Saturation mutagenesis to identify hotspot residues at the binding interface for 

tetramerization of p53  

 

The tumor suppressor p53 is known as the guardian of the human genome. It is a stress-

response transcription factor that is involved in different cellular functions such as cell cycle 

arrest, senescence and apoptosis 
53

.  Mutations in the p53 gene occur at high frequency in a 

large variety of cancers 
54–56

. p53 exerts its function as a transcription factor by binding to 

DNA through its central folded DNA-binding domain (DBD, residues 94-292), which is also 

able to bind other proteins and acts as a signal integration hub 
53,57,58

. The activity of p53 

depends on its conformation: p53 is active in a tetrameric (dimer of dimers) conformation  

which is required for its ability to bind with high affinity to DNA and interact with various 

proteins 
53

. Formation of the tetramer happens through a specialized tetramerization (TET) 

domain; nonetheless, the DBD of the four p53 units in the tetramer still interact with one 

another and the binding is stabilized by protein-protein interactions 
59

. Many of the cancer-

related p53 mutations are located in the DBD and have destabilizing effects, but there are 

also mutations which do not fall within this class. To fully understand the effects of 

mutations on p53 and their roles in cancer, it is thus essential to identify hotspot mutations 

that could also induce structural changes at the binding interface for tetramerization of p53.  

As an example, we used MutateX to study the effects of mutations on the binding interfaces 

between DBDs in the p53 tetramer. We performed a saturation mutagenesis scan of p53 

tetramer, mutating each residue to all the 20 natural amino acids, using the crystal structure 

of the p53 DBD as a self-assembled tetramer (PDB ID 3KMD) 
60

 and calculated the 

differences in binding energies upon mutation. As the structure contains four protein chains 

with identical sequence, MutateX automatically recognized it as a tetramer and therefore 

performed the same mutation of each chain for every run. The software then calculated 

differences in binding energy considering every possible combination of protein chains (A-B, 

B-C, C-D, A-D, A-C, B-D). The p53 dimer of dimer has a planar structure shaped as a 

parallelogram, with no contacts between monomers A-C and B-D. Interface A-B connects 

two p53 monomers into a dimer (dimer interface), while interface A-D connects two dimers 

into the tetramer (dimer-dimer interface). We here considered only differences in free 

energy of binding between pairs A-B and A-D, as the other two interfaces are identical to 

these. We first plotted a heatmap of binding ΔΔGs using ddg2heatmap, which provides a 

comprehensive visual representation of the free energy changes, limiting the plotted values 

between -3.0 and 5 kcal/mol (Fig. 5A and 5C). We’ve also plotted the per-site ΔΔG 

distributions using ddg2distribution, obtaining either a violin or a stem plot (Fig. 5B and 5D). 

Among the tested mutations, those that significantly change the free energy of interaction 

between chains A and B are in the regions C176-R181 and S241-C245 as shown in Fig. 5A. 

These correspond indeed with the dimerization interface of the two p53 chains A and B, 

which includes part of L2, around its short alpha-helix and L3, close to where the zinc-

binding site is located. Some key residues that were previously identified as important for 

forming the binding interface, such as P177, H178, E180, M243 and G244 and surrounding 

residues are those that show the highest binding ΔΔG increase when mutated. For instance, 

mutations of residue C176 to large aromatic residue (F, W, Y) or charged ones (K, R, H) affect 
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binding significantly, while in position P177 S, T, G and R are the most damaging mutations. 

Replacing key residues on the other side of the binding interface is predicted to be 

damaging in general, given the high ΔΔG we MutateX computed for mutations at M243 and 

G244. All the substitutions for M243 and G244 are predicted to result in weakened binding, 

with L, I and M being the most tolerated substitutions (binding ΔΔG < 1.0 kcal/mol).  

Next, we analyzed the interaction surface between chains A and D, which corresponds to 

the dimer-dimer interface. The interface is broader and includes two patches of residues, 

formed by loops connecting the beta strands as well as the DBD N-terminal tail and loop 2. 

One patch of this interface (patch I) is described as formed by L93, S94, S95, S166, Q167, 

T170, and F212 of monomer A and L201, and T140, E198, G199, M200, R202, H233 of 

monomer D. Of these residues, our scan identifies L93, Q167, G199, L201 and H233 as those 

harboring the most destabilizing mutations. In particular, G199 is deeply buried within patch 

1 and faces T170 directly; its mutation to bulky amino acids (such as F, W, Y, H, but also D 

and E) is found to be very destabilizing. It should be noted that FoldX does not rearrange the 

protein backbone after side-chain replacement and remodeling, meaning the mutation 

might be predicted as more destabilizing than it would be if the whole structure could be 

fully relaxed. Patch 2 is smaller and composed of residue Q100 and K101 on monomer A and 

E224 and V225 on chain D. Of these potential mutation sites, E224 is predicted to be the 

most sensitive by far, with most mutations predicted to be destabilizing. 
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Figure 5. Saturation mutagenesis for tetramerization of p53.         

A. Heatmaps of interaction ΔΔG for p53 generated using MutateX. Only the residues that take part in the 

interaction between the different chains are shown. On the left column, the difference interaction energies are 

between chains A and B, while on the right they are for chains A and D. Heatmaps for both cases have been 

generated using the ddg2heatmap tool, white a violin plot and a stem plot have been generated using 

ddg2distribution. Each point in the stem plot shows the average difference in interaction energy of that 

mutation site on the 20 reisdue types its been mutated to, with the standard deviation show as a vertical bar. 

 

 

Saturation mutagenesis of protein-peptide complexes: identifying binding specificities of SH2 

domains  

 

Protein post-translational modifications (PTMs) play a critical role in cellular transduction. 

Phosphorylation is the most well-characterized PTM, and consists in the transfer of the 

terminal phosphate group from adenosine triphosphate (ATP) to the hydroxyl group of a 

serine, threonine or tyrosine residue. Protein kinases and phosphatases control the levels of 

protein phosphorylation, regulating several processes such as proliferation, DNA repair, 

programmed cell death, differentiation, and immune responses 
61

. Indeed, the physiological 

phosphorylation pattern is frequently altered in pathological conditions such as cancer 
62

. 

Phosphorylation of short linear motifs creates docking sites recognized by binding domains, 

such as Src homology 2 (SH2) and others 
63

; SH2 domains specifically bind pTyr-containing 

linear motifs, and represent the largest class of pTyr-recognition domains 
64

. SH2 domains 

have been studied biochemically and the peptide recognition specificity of different 

members of the SH2 family has been addressed by means of high-throughput approaches 
64–67

. These studies gave considerable insight in the understanding of SH2 recognition 

preference and in the SH2 mediated protein interaction network. 

We have used MutateX to evaluate how post-translational modifications can modulate the 

interaction between SH2 domain and phosphorylated or non-phophorylated peptides, 

aiming at predicting the change of free energy of binding upon mutation of the SH2 peptide. 

This allowed us to understand which mutations influence the binding and thus correlate our 

results with the experimentally known binding specificity of phosphopeptides to SH2 

domains. 

We performed a MutateX saturation mutagenesis scan of different SH2 containing proteins 

complexed with phospho-tyrosine peptides::CRK protooncogene, bound to a CRK-derived 

phosphopeptide (PDB ID 1JU5 
68

), GRB2 SH2 domain bound to a phosphorylated peptide 

(PDB ID 1JYR 
69

) and SHP2 phosphatase complexed with a with RLNpYAQLWHR peptide (PDB 

ID 3TL0 
70

. We selected these complexes because of their known heterogeneous binding 

specificities 
66,71

 and because 3D experimental structures were available. 

We compared our results with the target consensus described in Tinti et al. 
66

, in which high-

density peptide chip technology has been used to define the binding specificity of 70 

different SH2 domains to pTyr peptides. Results from this article indicate that: i) CRK SH2 

domain has a strong preference for Proline in position +3, ii) GRB2 SH2 domain has a strong 

preference for Asparagine in position +2 (from phospho-tyrosine) and iii) N-terminal SH2 

domain of SHP2 has a preference for hydrophobic residues at positions –2, +1 and +3. 

Following the MutateX run we analyzed the results by using the post-processing scripts from 

the MutateX suite of tools. At first, we used ddg2distribution to analyze the site averages of 

all the calculated ΔΔGs focusing our attention on the phosphopeptides. This tool was used 

to identify the residue positions that if mutated were impacting more on the free energy 
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states of the complex. (Fig. 6, center). Next, we used the ddg2heatmap tool to generate 

heatmaps of binding interface ΔΔGs, including all 20 natural occurring amino acids (Fig. 6, 

left). This tool provided an immediate graphical representation of the residues, which were 

either more or less perturbing the interaction between the SH2 domains and the 

phosphopeptides, and gave more details on which substitutions are more likely to affect the 

interaction. We also used the ddg2histo tool to plot in graph bars the binding interface ΔΔGs 

for each residue in the phosphopeptides from positions -2 to +3 (Fig. 6, right). 

As it is clearly shown in Fig. 6, in all the SH2/phosphopeptide complexes, mutations of the 

pTyr residues are associated with high ΔΔGs, indicating a strong impact on the binding 

affinity. The substitution tyrosine/pTyr shows elevated ΔΔGs, in agreement with 

experimental data according to which the tyrosine phosphorylation is prerequisite for the 

binding. Interestingly, the ΔΔGs were higher upon mutations in the residue positions that 

were shown to be mostly conserved in the different SH2 domain target consensus. 

More in details the analysis showed that i) CRK SH2 domain displays a strong preference for 

Proline residue in position +3, while all the other mutations affect the interaction, except for 

branched-chain amino acids and Met, which present lower ΔΔGs; ii) GRB2 SH2 domain 

shows a strong preference in position +2 for Asn, with  aromatic and charged amino acids 

being the most disrupting substitutions iii) SHP2 N terminal SH2 shows a moderate 

preference of hydrophobic residues in position -2 and +1 and a more pronounced 

preference in position +3 for Leu and Met. 

Our predictions were consistent with experimental data which defined the SH2 domains 

consensus. Summarizing, this example clearly indicates that MutateX is a useful tool for the 

prediction of binding specificities and protein-peptide interaction analysis. 
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Figure 6. Changes in binding free energy in complexes of SH2-peptide upon phosphorylation. A) For each of 

the SH2 domain-complexes, we have plotted the calculated ΔΔG for the mutation of key residues of the 

phosphopeptide. These are shown as heatmaps, generated by ddg2heatmap, box plots, generated by 

ddg2distribution. The ΔΔG of a single key mutation sites are then shown more in details as histograms, 

generated using the ddg2histo tool.   

 

Availability and Future Direction  
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MutateX is a collection of Python-based script and requires Python 2.7 and 3 or higher to be 

available on the system together with open source Python libraries, whose installation in 

straightforward on macOS and Linux distributions. MutateX comes with a standard 

installation script that takes care of installing all the necessary requirements as well. It is 

available at https://github.com/ELELAB/mutatex. The package also includes templates for 

input preparation, in-depth documentation and test cases. It should be noted however that 

in order to perform the mutagenesis calculation, the most recent version of the FoldX Suite 

needs to be available in the system. The FoldX Suite is free of charge for academic use and it 

is currently available at http://foldxsuite.crg.eu. While MutateX currently supports the FoldX 

Suite only, we plan on adding support for other software packages or web servers in the 

future, along with to provide customized support to other energy functions available in the 

literature and of potential interest for the user community.  

The potential of MutateX is attested by recent publications where a preliminary suite of 

tools design by us was employed to perform saturation mutational scans for several systems 

of biological interest, such as enzymes of industrial and pharmacological interest 
72

, the 

Parkinson-related DJ1 protein 
73

, transcription factors as MZF1 
74

, proteins involved in 

mismatch repair 
38,39

,  and other disease-related targets 
38

. The aforementioned studies, 

along with the examples reported in this manuscript, provide insight into the mutational 

landscape of known cancer- or disease-related proteins, post-translational modifications 

and technologically important enzymes, allowing to predict the impact of these mutations in 

the context of important biological pathways or to design enzymes with different thermal 

stabilities. 

MutateX provide a powerful complementary tool in experimental biochemistry, 

biotechnology and molecular/cellular biology, along with for the molecular understanding 

and classification of disease-causing mutations.  
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