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Abstract

Gambling disorder is a behavioral addiction associated with impairments in decision-making and reduced 
behavioral  flexibility.  Decision-making  in  volatile  environments  requires  a  flexible  trade-off  between 
exploitation of options with high expected values and exploration of novel options to adapt to changing 
reward contingencies. This classical problem is known as the exploration-exploitation dilemma. We hypothe-
sized gambling disorder to be associated with a specific reduction in directed (uncertainty-based) exploration 
compared to healthy controls,  accompanied by changes in brain activity in a fronto-parietal exploration-
related network.

Twenty-three frequent gamblers and nineteen matched controls performed a classical four-armed bandit task  
during functional magnetic resonance imaging. Computational modeling revealed that choice behavior in 
both groups contained signatures of directed exploration, random exploration and perseveration. Gamblers  
showed a specific reduction in directed exploration, while random exploration and perseveration were simi-
lar between groups.

Neuroimaging revealed no evidence for group differences in neural representations of expected value and  
reward prediction errors. Likewise, our hypothesis of attenuated fronto-parietal exploration effects in gam-
bling disorder was not supported. However, during directed exploration, gamblers showed reduced parietal  
and substantia nigra / ventral tegmental area activity. Cross-validated classification analyses revealed that  
connectivity in an exploration-related network was predictive of clinical status, suggesting alterations in net-
work dynamics in gambling disorder.

In sum, we show that reduced flexibility during reinforcement learning in volatile environments in gamblers 
is attributable to a reduction in directed exploration rather than an increase in perseveration. Neuroimaging  
findings suggest that patterns of network connectivity might be more diagnostic of gambling disorder than  
univariate value and prediction error effects. We provide a computational account of flexibility impairments 
in gamblers during reinforcement learning that might arise as a consequence of dopaminergic dysregulation  
in this disorder.
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Introduction

Gambling disorder (GD) is defined in the DSM-5 as “Persistent and recurrent problematic gambling behav -
ior leading to clinically significant impairment or distress” (American Psychiatric Association, 2013). It has a 
worldwide lifetime prevalence of around 1% (Kessler et al., 2008; Lorains, Cowlishaw, & Thomas, 2011). In 
the DSM-5, it is the only behavioral addiction classified in the category of substance use and addictive disor -
ders. This classification reflects the considerable overlap in the behavioral and neural correlates of gambling 
disorder  with  substance-based  addictions,  which  is  striking  since  no  pharmacological  agent  is  involved 
(Goudriaan, Brink, & Holst, 2019).

Decision-making impairments in gambling disorder include increased impulsivity in inter-temporal choice  
tasks (steeper temporal discounting, reflecting an increased preference for smaller-but-sooner over larger-
but-later rewards) and, though somewhat less consistently, increased risk-taking (Wiehler & Peters, 2015). In 
line with these behavioral findings, activity in reward-related brain regions, including the ventral striatum 
and medial prefrontal cortex, has repeatedly been found to differ between healthy controls and participants  
with GD. However, the direction of these differences shows considerable inconsistencies between studies 
(Balodis et al., 2012; Clark, Boileau, & Zack, 2019; Leyton & Vezina, 2012), which has been suggested to be 
due to contextual  (Miedl, Büchel, & Peters, 2014) and task-specific effects  (Clark et al., 2019; Leyton & 
Vezina, 2012).

Gambling disorder is also associated with cognitive impairments predominantly reflected in reduced behav -
ioral flexibility. For example, gamblers show impaired performance in the Stroop task and increased perse -
veration following rule changes in the Wisconsin Card Sorting Task (van Timmeren, Daams, van Holst, & 
Goudriaan, 2018). Similar impairments are observed in reversal learning tasks. Here, participants learn to 
select the stimulus with the higher reinforcement rate. Contingencies then reverse during the experiment,  
requiring participants to adapt to these changes, and gamblers make more perseveration errors following 
reversals (Boog et al., 2014; de Ruiter et al., 2009). More generally, such reward learning tasks can be under-
stood  as  entailing  a  trade-off  between  exploration  and  exploitation.  Agents  repeatedly  have  to  decide 
between exploiting choice options with known expected values and exploring other options with unknown,  
but potentially higher values. Reversal learning is a special case of this: After a reversal, the expected value  
of the formerly superior option is decreasing, requiring participants to explore the previously inferior option.  
Note that in reversal learning, exploration cannot readily be dissociated from perseveration behavior.

The  exploration-exploitation  trade-off  has  been  extensively  studied  in  psychology  and  cognitive  neuro-
sciences, ranging from foraging studies in animals to human psychology and computational modeling studies 
(Cohen, McClure, & Yu, 2007; Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006; Mehlhorn et al., 2015;  
Schulz & Gershman, 2019). A range of tasks has been developed to examine exploration in humans (see 
Addicott, Pearson, Sweitzer, Barack, & Platt (2017) for a review). One of the most widely used tasks is the 
multi-armed-bandit task, which also allows an examination of how exploration behavior unfolds over longer 
periods. Here, participants make repeated choices between multiple (typically independent) choice options  
(“bandits”) and observe a reward outcome following each choice. This task is assumed to require a balance  
between exploration and exploitation. Exploitation involves tracking each bandit’s expected value and choos-
ing the best. For exploration, on the other hand, at least two strategies are possible. First, exploration can be  
due to more or less stochastic selection of sub-optimal bandits, which in reinforcement learning can be mod-
eled via ε-greedy or softmax choice rules  (Daw et al., 2006; Schulz & Gershman, 2019; Sutton & Barto, 
1998). Second, exploration can also entail a goal-directed component. In such models, agents track not only 
expected value, but also uncertainty. The probability to explore a bandit then scales with uncertainty about its  
expected value, thus maximizing information gain during exploration (Auer, Cesa-Biachini, & Fischer, 2002; 
Schulz & Gershman, 2019; Speekenbrink & Konstantinidis, 2015). 
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Exploration is supported by a bilateral fronto-parietal network including intra-parietal sulcus and fronto-
polar cortex. (Badre, Doll, Long, & Frank, 2012; Daw et al., 2006; Raja Beharelle, Polania, Hare, & Ruff,  
2015).  While this network was initially characterized in the context  of  random exploration  (Daw et  al., 
2006), recent evidence points towards a role of the fronto-polar cortex specifically in directed exploration 
(Badre et al., 2012; Boorman, Behrens, Woolrich, & Rushworth, 2009; Boorman, Behrens, & Rushworth,  
2011; Zajkowski, Kossut, & Wilson, 2017). This is also supported by causal manipulations using transcranial 
magnetic stimulation (Zajkowski et al., 2017) and transcranial direct current stimulation (Raja Beharelle et 
al., 2015). 

There is substantial evidence implicating the neurotransmitter dopamine (DA) in both exploration behavior 
and the pathophysiology of gambling disorder. Traditionally, DA has been associated with reward prediction  
error coding and exploitation (Beeler, Daw, Frazier, & Zhuang, 2010; Pessiglione, Seymour, Flandin, Dolan, 
& Frith, 2006). But both theoretical accounts (Beeler, 2012) and empirical data (Chakroun, Mathar, Wiehler, 
Ganzer, & Peters, 2019; Cinotti et al., 2019; Frank, Doll, Oas-Terpstra, & Moreno, 2009; Gershman & Tzo -
varas, 2018; Kayser, Mitchell, Weinstein, & Frank, 2014) suggest a role of DA in regulating the exploration-
exploitation trade-off. DA also plays a role in problem gambling behavior. The most prominent empirical  
observation implicating DA in gambling comes from patients  suffering from Parkinson’s  disease.  These  
patients show higher rates of problem gambling behavior than the general population, which has been liked  
to pharmacological DA replacement therapy (Driver-Dunckley, Samanta, & Stacy, 2003; Voon et al., 2006). 
Gamblers may also exhibit increased pre-synaptic striatal DA levels (Boileau et al., 2014; van Holst et al., 
2017), but this is controversially discussed (Majuri et al., 2017; Potenza, 2018).

Based  on  these  observations,  we  hypothesized  gambling  disorder  to  be  associated  with  a  reduction  in 
directed (uncertainty-based) exploration compared to healthy controls. In line with previous findings of a  
critical role of frontal pole regions (Daw et al., 2006; Raja Beharelle et al., 2015) and prefrontal dopamine 
(Frank et al., 2009) in exploration, we further hypothesized that reduced frontal pole recruitment would con-
tribute to reduced exploration in gambling disorder. We addressed these issues by examining a group of gam-
bling disorder participants and a group of healthy, matched controls using an established 4-armed bandit task  
during functional magnetic resonance imaging (fMRI, Daw et al., 2006). We used computational modeling to 
disentangle the effects of directed exploration and perseveration on choice behavior. 
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Methods

Sample

We investigated a sample of n=23 frequent gamblers (age mean [SD] = 25.91 [6.47], all male). Sixteen gam-
blers fulfilled four or more DSM-5 criteria of gambling addiction (mean [SD] = 6.31 [1.45], previously 
defined as pathological gamblers). Seven gamblers fulfilled one to three criteria (mean [SD] = 2.43 [0.77],  
previously defined as problem gamblers). All participants reported no other addiction except for nicotine  
(Fagerstrom test for nicotine dependence (FTND), (Heatherton, Kozlowski, Frecker, & Fagerstrom, 1991)) 
score mean [SD] = 2.14 [2.58]). Current drug abstinence was verified via urine drug screening. All partici -
pants reported no history of other psychiatric or neurological disorder except depression. No participant was 
undergoing any psychiatric treatment. Current psychopathology was controlled using the Symptom Checklist 
90 Revised (SCL-90-R) questionnaire (Schmitz et al., 2000) and depression symptoms were assessed via the 
Beck Depression Inventory-II (BDI-II, Osman, Kopper, Barrios, Gutierrez, & Bagge, 2004). 

To further characterize gambling severity, we additionally conducted the German gambling questionnaire  
“Kurzfragebogen zum Glücksspielverhalten”  (KFG, Petry, 1996), the German version of the South Oaks 
Gambling Screen (SOGS, Lesieur & Blume, 1987). We recruited n=19 healthy control participants, matched 
for age, gender, education, income, alcohol  (Alcohol Use Disorders Identification Test, AUDIT, Saunders, 
Aasland,  Babor,  De la  Fuente,  & Grant,  1993) and nicotine  consumption  (Fagerstrom Test  of  Nicotine 
Dependence, FTND, Heatherton et al., 1991), see Table 1 for sample characteristics and group comparisons. 
Participants  were recruited via  advertisements  placed on local  internet  boards.  All  participants  provided 
informed written consent prior to participation and the study procedure was approved by the local institu -
tional review board (Hamburg Board of Physicians).

GD mean GD SD HC mean HC SD t df p

Age 25.91 6.47 26.58 6.52 -0.33 38.42 0.74

School years 11.64 1.77 11.79 1.40 -0.31 39.93 0.76

Monthly income in EUR 1439.86 835.84 1015.74 588.05 1.92 39.10 0.06

FTND 2.14 2.58 2.21 2.18 -0.10 39.98 0.92

AUDIT 6.09 7.14 6.84 4.91 -0.40 38.85 0.69

DSM-5 5.13 2.22 0.11 0.32 10.72 23.07 <0.001

KFG 25.90 14.15 0.58 1.22 8.55 22.39 <0.001

SOGS 8.64 4.46 0.21 0.54 8.99 22.77 <0.001

BDI-II 15.41 11.41 8.47 8.46 2.26 39.60 0.03

Table 1. Summary of demographics and group matching statistics. FTND: Fagerstrom Test of Nicotine De-
pendence, AUDIT: Alcohol Use Disorders Identification Test, KFG: Kurzfragebogen zum Glücksspielverhal-
ten, SOGS: South Oaks gambling screen, BDI-II: Beck Depression Inventory-II. GD: Gambling disorder.  
HC: Healthy controls.

Task and Procedure

Participants completed two sessions of testing on separate days. The first session included all questionnaires 
and  an  assessment  of  the  spontaneous  eye-blink  rate,  that  was  published  previously  (Mathar,  Wiehler, 
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Chakroun, Goltz, & Peters, 2018). The second session started with a behavioral training session of the task,  
followed by functional and structural magnetic resonance imaging (MRI). During fMRI, participants first 
completed the bandit task reported here. Subsequently, they performed an additional task in the scanner that 
will be reported elsewhere. 

We used a 4-armed bandit task, as described previously (Daw et al., 2006). We applied the same task as in 
the original publication, with the exception that we replaced the original slot machine images for each bandit 
with colored boxes (see Figure 1A). On each trial, participants selected one of the four bandits. Following 
the selection of a bandit, they received a payout between 0 and 100 points for the chosen bandit, which was  
added to a total score. The points that could be won on each trial were determined by Gaussian random 
walks, leading to payouts fluctuating slowly throughout the experiment (see  Figure 1B, for mathematical 
details see Daw et al. (2006)). Participants completed 300 trials in total that were split into four blocks sepa-
rated by short breaks. We instructed participants to gain as many points as possible during the experiment.  
Reimbursement was a fixed baseline amount plus a bonus that depended on the number of points won in the  
bandit task. In total, participants received between 70 and 100 Euros for participation.

Computational modeling

To quantify exploration behavior, participants’ choices were fitted with several reinforcement learning mod-
els of varying complexity. We first implemented a Q-learning model (Sutton & Barto, 1998). Here, partici-
pants update the expected value (Q-value) of the ith bandit on trial t via a prediction error δt:

(1)

with

(2)
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Here, Q is the expected value of the ith bandit on trial t, α is a learning rate, that determines the proportion of 
the prediction error δt that is used for the value update, and rt is the reward outcome on trial t. In this model, 
unchosen bandits are not updated but retain their previous Q-values. 

Q-values are transformed into action probabilities, using a softmax choice rule:

(3)

Here, p is the probability of choice ct of bandit i in trial t, given the estimated values Q from equation 1 for 
all j bandits. β denotes an inverse temperature parameter, that models choice stochasticity: For greater values 
of  β,  choices become more dependent  on the learned Q-values.  Conversely,  as  β  approaches 0,  choices 
become more random. In this model,  β  controls the exploration-exploitation trade-off such that for higher 
values of  β, exploitation dominates, whereas exploration increases as  β approaches 0.  Note, however, that 
this model does not incorporate uncertainty about Q-values, as only mean Q-values are tracked. 

We next examined the Bayesian learner model (Kalman filter) that was also applied by Daw et al.  (2006). 
This model assumes that participants use a representation of the Gaussian random walks that constitute the  
task’s payout structure. Thus, irrespective of the choice, mean and variance of each bandit i are updated on 
each trial t as follows:

(4)

(5)

Here, μ is the mean expected value, σ is the standard deviation of the expected value, λ is a decay rate (fixed 
to 0.9836), θ is the decay center (fixed to 50), and σd is the standard deviation of the diffusion noise (fixed to 
2.8). Note that these equations are used to generate the Gaussian walks (see Daw et al. (2006)). That is, with-
out sampling, each bandits’ mean value slowly decayed towards θ, and standard deviations increased σd units 
per trial.

The bandit chosen on trial t (ct) is additionally updated using a delta rule similar to equation (2):

(6)

with 

(7)

and
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(8)

Equation 6 is analogous to equation 1, with one important exception: While the Q-learning model assumes 
that the learning rate is constant, in the Kalman filter the model learning rate is uncertainty-dependent. The  
trial-wise learning rate κt (Kalman gain) depends on the current estimate of the uncertainty of the bandit that  
is sampled (as per Eq. 8) such that the mean expected value is more updated when bandits with higher uncer -
tainty are sampled. Specifically, σct,t refers to the estimated uncertainty of the expected value of the chosen 
bandit, and  σo is the observation standard deviation, that is, the variance of the normal distribution from 
which payouts are drawn (fixed to 4). The uncertainty of the expected value of the chosen bandit is then  
updated according to

(9)

Taken  together,  this  model  gives  rise  to  the  following  intuitions:  First,  participants  not  only  track  the 
expected mean payoff (μ) but also the uncertainty about the expected mean payoff (σ). The mean expected 
value of unsampled bandits is gradually moving towards the decay center and uncertainty about the value  
increases. Sampling of a bandit leads to a reduction in uncertainty (Eq. 9) that is proportional to the uncer -
tainty prior to sampling. Additionally, the bandit’s mean value is updated via the prediction error (Eq. 7) 
weighted by the trial-wise learning rate (Eq. 8) such that sampling from uncertain (but not certain) bandits  
leads to substantial updating. 

We next combined this algorithm for value updating with three different choice rules for action selection.  
First, we used a standard softmax model (see Eq. 3). Here, choices are only based on the mean value esti -
mates of the bandits μi,t, such that exploration occurs in inverse proportion to the softmax parameter β and the 
differences in value estimates: 

(10)

Second, we added an “exploration bonus” parameter  φ  that scales a bandit’s  uncertainty σi,t  and adds this 
scaled uncertainty as a value bonus for each bandit, as first described by Daw et al. (2006). This term imple-
ments directed exploration so that choices are specifically biased towards uncertain bandits.

(11)

Following a similar logic, we next included a parameter ρ modeling choice perseveration. ρ models a value 
bonus for the bandit chosen on the previous trial:

(12)
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(13)

Finally, we set up a full model including both directed exploration (φ) and perseveration (ρ) terms: 

(14)

In total, our model space consisted of five models: 1) a Q-learning model with softmax, 2) a Bayesian learner  
with softmax, 3) a Bayesian learner with softmax plus exploration bonus, 4) a Bayesian learner with softmax 
plus perseveration bonus and 5) a Bayesian learner with softmax plus exploration bonus plus perseveration 
bonus model. All models were fitted using hierarchical Bayesian estimation in Stan version 2.18.1 (Carpenter 
et al., 2017) with separate group-level normal distributions for gamblers and controls for each choice param-
eter (β,  φ, and  ρ), from which individual-participant parameters were drawn. We ran four chains with 5k 
warmup samples and retained 10k samples for analysis. Group-level priors for means were set to uniform 
distributions over sensible ranges. Group level priors for variance parameters were set to half-Cauchy with  
mode 0 and scale 3. 

Model comparison was performed using the Watanabe-Aikine Information Criteria, WAIC (Vehtari, Gelman, 
& Gabry, 2017; Watanabe, 2010) where smaller values indicate a better fit. To examine group differences in 
the parameters of interest (β, φ, and ρ) we examined the posterior distributions of the group-level parameter 
means. Specifically, we report mean posterior group differences, standardized effect sizes for group differ -
ences and Bayes Factors testing for directional effects (Marsman & Wagenmakers, 2017; Pedersen, Frank, & 
Biele, 2017). Directional Bayes Factors (dBF) were computed as dBF = i / 1-i where i is the integral of the 
posterior distribution of the group difference from 0 to +∞, which we estimated via non-parametric density  
estimation.

fMRI setup

MRI data were collected with a Siemens Trio 3T system using a 32 channel head coil. Functional MRI  
(fMRI) was recorded in four blocks. Each volume consisted of 40 slices (2 x 2 x 2 mm in-plane resolution  
and 1-mm gap, repetition time = 2.47s, echo time 26ms). We tilted volumes by 30° from the anterior and  
posterior commissures connection line to avoid distortions in the frontal cortex (Deichmann, Gottfried, Hut-
ton, & Turner, 2003). Participants viewed the screen via a head-coil mounted mirror. High-resolution T1 
weighted structural images were acquired after functional scanning was completed.

fMRI preprocessing

MRI data preprocessing and analysis was done using SPM12 (Wellcome Department of Cognitive Neurol-
ogy, London, United Kingdom). First, volumes were realigned and unwarped to account for head movement  
and distortion during scanning. Second, slice time correction to the onset of the middle slice was performed 
to account for the shifted acquisition time of slices within a volume. Third, structural images were co-regis -
tered to the functional images. Finally, all images were smoothed (8mm FWHM) and normalized to MNI-
space using DARTEL tools and the VBM8 template. 
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fMRI analysis

On the first  level,  we used two General  Linear Models (GLMs) to model task-evoked effects using the  
canonical hemodynamic response function implemented in SPM. GLM 1 included the following regressors: 
1) trial onset, 2) trial onset modulated by a binary parametric modulator coding whether the trial was a ran -
dom exploration trial, 3) trial onset modulated by a binary parametric modulator coding whether the trial was  
a directed exploration trial, 4) outcome onset, 5) outcome onset modulated by model-based prediction error,  
and 6) outcome onset modulated by model-based expected value of the chosen bandit. Based on the best-fit-
ting computational model, trials were classified as exploitation, directed exploration or random exploration.  
Exploitation trials are choices of the bandit with the highest expected value or the bandit with the highest 
sum of expected value and perseveration bonus. directed exploration trials are choices of the bandit with the 
highest exploration bonus. Finally, random exploration are all trials that are neither exploitation nor directed 
exploration. Error trials with missing responses were modeled separately. GLM 2 included the following re-
gressors: 1) trial onset, 2) outcome onset, and 3) outcome onset modulated by the number of points earned.  
Again, error trials were modeled separately. Group differences were assessed by taking the single-subject  
contrast images to a second-level random-effects analysis (two-sample t-test). Here we included z-scored co -
variates for depression (BDI-II score), alcohol consumption (AUDIT score), smoking (FTND score), and 
age.

Dynamic causal modeling

Dynamic causal modeling (DCM, Stephan et al., 2008) allows specifying all nodes and connections of a hy-
pothesized network model of brain activity. First, we extracted the BOLD time course of regions of interest 
(ROIs). ROIs were defined by group-level analysis (see results section). Time courses were extracted from a  
5mm sphere around the single subject peak within a mask of the thresholded group activation. Models were 
constructed in a way that includes all permutations of inputs while keeping connections constant between re-
gions. We assumed no modulations of connections. See the results section and the supplementary materials 
for more details on the tested models. 

Classification analysis

To predict the group membership of each participant based on the DCM parameters, we used an unbiased,  
leave-one-pair-out approach. Dues to the unequal sample sizes, we repeated the classification with all possi -
ble subgroups of gamblers to match both groups in sample size. Within each of these subgroups, we trained a  
linear support vector machine classifier  (SVM, Chang & Lin, 2011, C=1) on all  participants except one 
patient and one control. We computed the prediction accuracy based on the left-out pair. We repeated this for 
all possible pairs and averaged accuracies across left-out pairs and sub-sampled groups. We repeated this  
procedure 500 times with randomly shuffled labels to build a null-distribution which allows to assess the sig-
nificance of the observed accuracy.
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Results

Model free results

The group difference in the number of points earned was not significant (controls mean [SD] = 18277.85  
[1554.04],  gamblers mean [SD] = 18489.69 [1520.32],  t38.19 =  -0.44,  p  = 0.66).  Median response times 
trended to be shorter in gamblers (controls mean [SD] = 0.44s [0.06], patients mean [SD] = 0.40s [0.07], t39.37 

= 1.75, p = 0.09). 

Model comparison

Next,  we used model  comparison based on the Widely-Applicable  Information Criterion (WAIC,  where 
lower values indicate a better fit) to examine the behavioral data for evidence of directed exploration and 
perseveration. Choice data were fit in a hierarchical Bayesian estimation approach (see methods section) that  
assumes  that  individual  subject  parameters  are  drawn from group-level  Gaussian  distributions.  In  both 
groups, the Bayesian learning model (Kalman Filter) with softmax, exploration bonus, and perseveration  
bonus model accounted for the data best (see Figure 2). The same model ranking was replicated when we re-
analyzed the original behavioral data from the Daw et al. (2006) study using our hierarchical Bayesian esti-
mation approach (see Figure S1).

Parameters of the best-fitting model

Next, we analyzed the parameters of the best-fitting model in greater detail, focusing on the posterior distri -
butions of the group  means of choice stochasticity (softmax slope  β), exploration bonus (directed, uncer-

10

Figure  2.  Result of the model selection procedure based on WAIC (smaller  
WAIC = better  model  fit).  In both  gambling  disorder  patients  (GD)  and  
matched healthy controls (HC) a model based on a Kalman filter and includ-
ing an uncertainty bonus (φ) and a perseveration bonus (ρ) wins.
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tainty-based exploration φ), and perseveration bonus (ρ, see Figure 3 and Table 2). There was evidence for a 
decrease in φ in the gamblers (see Figure 3C, D and Table 2) reflecting a decrease in directed exploration in 
the gamblers. Choice stochasticity  β and perseveration  ρ, on the other hand, were similar between groups 
such that the group difference distributions were in each case centered at zero (see Figure 3A, B, E, F and 
Table 2).

Parameter Mdiff Cohen’s d dBF

β 0.002 0.16 1.22

φ 0.64 1.86 10.15

ρ 0.61 0.43 1.66

Table  2.  Summary of group differences for each choice parameter.  Mdiff: Non-standardized mean posterior  
group difference; Cohen’s d: standardized mean posterior group difference, computed via the group mean  
posterior estimates of mean and variance; dBF: Bayes factor testing for directional effects (see methods sec -
tion).

We next explored whether individual differences in gambling addiction severity were associated with explo-
ration behavior in the gamblers. As an index of addiction severity, we computed the mean z-score of SOGS  
and KFG scores. The correlation between addiction severity and single-participant φ parameters was not sig-
nificant (r=0.01, p = 0.95).
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fMRI

Group conjunctions

We first examined standard parametric and categorical contrasts, focusing on conjunction effects testing for  
consistent effects across groups. A first analysis examined outcome value, i.e. the parametric effect of points 
earned. Ventro-medial prefrontal cortex (vmPFC), ventral striatum (VS) and posterior cingulate cortex (PCC) 
parametrically tracked outcome value, in line with numerous previous studies and meta-analyses  (Bartra, 
McGuire, & Kable, 2013; Clithero & Rangel, 2014; Daw et al., 2006, see Figure 4 and Table S1). Impor-
tantly, outcome value effects in these regions were observed across controls and patients, with no evidence  
for a group difference.

12

Figure 3. Group parameters of the best-fitting model. GD: Gambling disor-
der, HC: Healthy controls. A, C, E: Posterior distribution of group-level pa-
rameters per group.  B, D, F: Density of posterior distribution differences  
between groups. Bottom lines indicate the 85% and 95% highest density in-
terval of the distribution. dBF: Directed Bayes factor, the proportion of the  
difference distribution above 0 over the proportion of the difference distribu-
tion below 0. 
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We next computed model-based prediction errors for each trial based on the single-subject parameter esti -
mates  (medians of  the  posterior  distribution) of the best-fitting hierarchical  model.  The ventral  striatum 
coded prediction error in both groups (peak at x=-12, y=8, z=-16, main effect FWE corrected p<0.05, see  
Figure S2), as previously described in healthy participants (Daw et al., 2006; Pessiglione et al., 2006). 

Next,  we analyzed exploration-related effects.  Based on the best-fitting computational model,  trials were 
classified as exploitation, directed exploration or random exploration (see Methods section). Figure 5A and 
B show the main effect of directed exploration with extensive effects in a fronto-parietal network, replicating  
previous findings using the same task (Daw et al., 2006, see also Table S2). Region-of-interest (ROI) analy-
ses confirmed significant main effect clusters bilaterally in the frontal pole (10mm spheres at -27, 48, 4 and 
27, 57, 6, (Daw et al., 2006)).

Group differences in exploration-related effects
We next tested our initial hypothesis of reduced frontal pole effects during directed exploration in the gam-
blers. Using an ROI approach, we checked previously identified bilateral frontal pole regions for evidence of  
group differences. Small volume FWE corrected analyses within 10mm spheres around peak activations of  
Daw et al. (2006) in the left (-27, 48, 4) and right (27, 57, 6) frontopolar cortex revealed no supra-threshold 
voxels (p < 0.05). We next performed an exploratory whole-brain analysis (at p<0.001 uncorrected) of group 
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differences in brain activity during directed exploration. Controls showed greater activation in parietal cortex  
(56, -26, 46, p<0.001 uncorrected) and in the substantia nigra / ventral tegmental area (SN/VTA, -12, -18, -
10, p<0.001 uncorrected, Figure 6 and Table S3). An exploration for effects of gambling severity on explo-
ration-related brain activity in the gambling group revealed no supra-threshold effects even at an uncorrected  
threshold of p<0.001. 

Dynamic causal modeling and group differences in connectivity
Given the observation of largely overlapping exploration-related effects in fronto-parietal regions in the two 
groups, we next reasoned that group differences in network interactions might also contribute to the observed  
exploration  deficit  in  the  gambling  group.  Functional  interactions  within  the  task  network  might  differ  
between groups and might thus be predictive of group status. To examine this possibility, we used dynamic 
causal modeling (DCM), a method to formally test and compare different causal models underlying observed 
task-related BOLD time courses. For each participant, we extracted the BOLD time-courses in three regions  
of interest (ROI) showing exploration-related effects at the group level: 1) left intraparietal sulcus (-46, -26, 
54, main effect peak from the directed exploration contrast), 2) left frontopolar cortex (-34, 52, 14, main  
effect peak from the directed exploration contrast), and 3) left SN/VTA (-12, -18, -10, peak from the group 
comparison contrast directed exploration). We focused on the left hemisphere, as subcortical group differ -
ences were localized to the left SN/VTA. 
As driving input, we used a binary regressor coding directed exploration trials (1) vs. other trials (0). All 
models included all reciprocal connections between the ROIs, but varied in the position of the input, ranging 
from no input to an input to all three ROIs (see Figure S3 for an illustration of all models). Bayesian model 
selection (Stephan, Penny, Daunizeau, Moran, & Friston, 2009) revealed that the model with input confined 
to the parietal cortex accounted for the data best (expected probability = 0.59, exceedance probability = 0.99, 
see Figure 7A for a graphical depiction of the winning model and Figure S4 for the model selection results). 
Further analysis then proceeded in two steps. 
First,  we  extracted  single-participant  coupling  and  input-weight  parameters  and  compared  parameters  
between groups. Due to slightly different winning models between groups, we used Bayesian model averag -
ing  (Penny et  al.,  2010) which  normalizes  extracted  parameters  by the model  evidence per  participant.  
Parameters were compared between groups with two-sample t-tests and FDR correction for multiple compar-
isons. Several parameters showed a trend-level reduction in gamblers vs. controls (p<0.1, FDR corrected, 
frontal pole to frontal pole, input of explore in parietal cortex, input of explore in frontal pole, see Figure 
S5). 
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Second, we tested the hypothesis that the overall connectivity pattern contained information predictive of  
group membership (Brodersen et al., 2014). To this end, we used a support vector machine classifier to pre-
dict group membership based on all model parameters via a leave-one-pair-out, group-size balanced cross-
validation scheme. The observed classification accuracy of 70.27%  was significantly above chance level 
(p<0.01, permutation test with 500 randomly shuffled group labels, see Figure 7B). Thus, the DCM analyses 
confirmed that  the  pattern  of  functional  network  interactions  contained  information  about  group status, 
although several univariate analyses in these same ROIs did not reveal group differences.
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Discussion

Here we used a combination of computational modeling and fMRI in the context of a well-established rein-
forcement learning task (four-armed restless bandit) to investigate reward exploration in gambling disorder.  
Computational modeling revealed that gamblers showed reduced directed exploration, whereas no group dif-
ferences in perseveration were observed. FMRI revealed no significant group differences in the representa-
tion of basic task variables such as outcome value and reward prediction error. An exploratory analysis, how-
ever, revealed reduced activity during directed exploration in SN/VTA in gamblers. Dynamic causal model -
ing then showed that coupling among regions of an exploration network including parietal cortex, frontal 
pole, and SN/VTA was diagnostic of group membership (gamblers vs. controls).

Balancing exploration and exploitation is essential for reward maximization in volatile environments. Previ-
ous work showed that agents take the uncertainty of option values into account when making choices, that is,  
they show directed exploration (Schulz & Gershman, 2019). Our model comparison supported this. In both 
groups, the data were best accounted for by a Bayesian model that includes an exploration bonus term. How-
ever,  in  earlier  models,  estimates  of  exploration  might  have  been  confounded  by  choice  perseveration 
(Payzan-LeNestour & Bossaerts, 2012; Wilson, Geana, White, Ludvig, & Cohen, 2014). If perseveration 
behavior is not accounted for in the model, this might lead to an underestimation of directed exploration. The  
reason is that perseveration-related variance can be misattributed as an exploration penalty, thereby increas-
ing the proportion of participants showing negative φ parameters. This is particularly important in the con-
text of clinical groups that are known to show increased perseveration  (van Timmeren et al., 2018). We 
addressed this issue by extending existing models of exploration with an additional  perseveration bonus  
term, such that final estimates of directed exploration are unconfounded by potential group differences in  
perseveration (Chakroun et al., 2019). Indeed, the full model including both directed exploration and perse-
veration terms accounted for the data best in both groups. Importantly, we replicated this model ranking in a  
re-analysis of the behavioral data from Daw et al. (2006, see supplemental information). 

In the light of previous findings of reduced behavioral flexibility in gambling disorder, we hypothesized  
gamblers to show a specific reduction in directed exploration. This was supported by an examination of the  
posterior distributions of group-level model parameters. While both perseveration bonus parameter (ρ) and 
the random exploration / choice stochasticity β were very similar between groups, the directed exploration φ 
was substantially reduced in gamblers vs. controls (Cohen’s d = 1.86). Alterations in reward-based learning 
and decision-making are well described in gambling disorder (Wiehler & Peters, 2015) and persistent gam-
bling in the face of accumulating losses is a hallmark feature of the disorder. Through computational model-
ing, we disentangled perseveration and exploration accounts of flexibility impairments during reinforcement  
learning in gamblers and identified reduced directed exploration as the primary source of reduced explo-
ration in gamblers. This finding might reflect an interference of maladaptive beliefs about environmental reg-
ularities and/or sources of influence on stochastic processes in gamblers with a “normal” or “natural” ten-
dency to employ directed exploration. This reduction in directed exploration was not modulated by addiction  
severity, pointing towards a potential application of such paradigms in problem gamblers that show sub-clini-
cal scores in traditional questionnaires, but might still be at risk to develop a more severe gambling disorder.  
Since gambling-related cognitive distortions can improve under cognitive-behavioral psychotherapy (Casey 
et al., 2017), this may also have the potential to attenuate such maladaptive interference processes.

While perseveration had a similar impact on decision-making in gamblers and controls in the restless bandit 
task, this does not rule out that perseveration might contribute to impairments in other tasks in gambling dis -
order. During reversal learning tasks, gamblers take more trials than controls to adapt to contingency changes 
(Boog et al., 2014; de Ruiter et al., 2009). Here, a continuous exploration of the alternative option could sup-
port a timely detection of reversals. Yet, increased perseveration could also underlie the reduced performance  
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of gamblers during reversal learning. However, after multiple reversals, the increased volatility of the envi -
ronment  (Behrens, Woolrich, Walton, & Rushworth, 2007) might drive participants to show more directed 
exploration, allowing a quicker detection of reversals. Reduced exploration could finally also apply to cogni-
tive flexibility tasks like the Wisconsin Card Sorting Task, where participants are aware of frequent rule  
changes and could actively explore the possibility of a rule change (van Timmeren et al., 2018). 

At the neural level, we found that basic task parameters were similarly represented in both groups. Value  
effects were localized in a well-characterized network encompassing vmPFC, ventral striatum and posterior  
cingulate cortex with no evidence for group differences, in line with previous meta-analysis  (Bartra et al., 
2013; Clithero & Rangel, 2014). Likewise, striatal prediction error signals were similar between groups.  
Again, this replicates findings in controls (McClure, Berns, & Montague, 2003; Pessiglione et al., 2006), and 
shows relatively intact prediction error signaling in gamblers. However, the nature of reward signals in gam-
bling addiction remains an issue of considerable debate and inconsistency (Balodis et al., 2012; Clark et al., 
2019; Leyton & Vezina, 2012; Miedl et al., 2014; Van Holst, Veltman, Van Den Brink, & Goudriaan, 2012) . 
These inconsistencies might be due to specific differences in the implementation and/or analysis of the dif-
ferent tasks (e.g. anticipation vs. outcome processing, gain vs. loss domain, presence vs. absence of gam -
bling-related cues or task-characteristics). However, our version of the four-armed bandit task includes nei -
ther gambling cues nor monetary reward cues or explicit probability information. These factors may have  
contributed to the null findings regarding the basic parametric effects of value and prediction error (Leyton 
& Vezina, 2012). Furthermore, few participants in our sample exhibited very high levels of addiction severity 
(compared to e.g. Miedl et al. (2012)). This might have precluded us from detecting more pronounced group 
differences in neural value and prediction error effects. We also did not observe correlations between addic -
tion severity and behavioral and/or fMRI readouts. While this contrasts with some previous findings using 
other tasks (Miedl et al., 2012; Reuter et al., 2005; van Holst, Veltman, Büchel, van den Brink, & Goudriaan, 
2012), overall such effects show considerable variability, both regarding behavior (Wiehler & Peters, 2015) 
and in reward-related imaging findings. Our study still included a considerable range of addiction severity 
(e.g. SOGS scores ranged from 3 to 17) suggesting that range restriction is an unlikely explanation for the  
lack of correlations. However, given the limited sample size typical of studies in addiction populations, sta-
tistical power is an additional concern also in the present study. 

For the analysis of neural exploration effects, we extended previous approaches (Daw et al., 2006) by sepa-
rating the neural effects of directed and random exploration via a model-based classification of trials. Again, 
overall effects were highly similar between groups and consistent with previous studies, such that directed  
exploration recruited a fronto-parietal network including frontal pole regions (Badre et al., 2012; Daw et al., 
2006; Raja Beharelle et al., 2015). Importantly, our initial hypothesis that the reduction in directed explo-
ration in gamblers was due to a down-regulation of frontal  pole regions implicated in meta-control  and 
exploration in decision-making  (Shenhav,  Cohen, & Botvinick, 2016) could not  be confirmed. Although 
frontal pole and IPS effects of directed exploration were numerically smaller in the gamblers (see Figure 5), 
neither group difference was significant. Frontal pole effects of directed exploration were of very similar  
magnitude and distribution in both groups. The fact that frontal pole effects showed a right-lateralization as 
previously reported for explorations (Daw et al., 2006; Zajkowski et al., 2017), increasing our confidence in 
the robustness of the overall exploration effects in the imaging data.

We next examined functional connectivity within this exploration-related network via dynamic causal model-
ing. This revealed that group membership could be decoded from the DCM coupling parameters with a sig-
nificantly above chance accuracy of 70.27%. This observation supports the idea that network interactions 
might contain more information reflecting a participants’ clinical status than univariate contrasts (Brodersen 
et al., 2014). However, we emphasize that the overall prediction accuracy, though significantly above chance,  
is still too low for potential clinical decision making. 
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Given that dopamine has been implicated in both the exploration/exploitation trade-off (Beeler, 2012; Frank 
et al., 2009; Gardner, Schoenbaum, & Gershman, 2018; Kayser et al., 2014) and gambling disorder (Boileau 
et al., 2014; Majuri et al., 2017; Potenza, 2018; van Holst et al., 2017; Voon et al., 2006), we additionally car-
ried out an exploratory analysis of subcortical correlates of directed exploration. Indeed, exploration-related  
activation in the dopaminergic midbrain (SN/VTA) was attenuated in gamblers. This finding resonates nicely 
with a recent study that reported increased dopamine synthesis capacity in striatal regions in gamblers (van 
Holst  et  al.,  2017),  but  see  Potenza  (2018) for  a  critical  discussion.  Given  the  reciprocal  connectivity 
between striatum and SN/VTA (Haber & Knutson, 2010), increased striatal-midbrain feedback inhibition 
might be one mechanism underlying the attenuated exploration-related midbrain activity. However, further 
sources of influence are possible given the alterations in circuit dynamics that we observed in the DCM anal-
ysis. Our categorical analysis of exploration is limited to the propensity to explore was analyzed for each 
given trial. This approach might neglect exploration tendencies that accumulate over longer periods, e.g. in  
networks tracking overall uncertainty, and this might constitute an interesting avenue for future research. 

In addition to the limitations already addressed in previous sections (sample size, the magnitude of addiction 
severity scores), additional limitations need to be addressed. We did not randomize the position of the bandits 
on the screen. This precludes us from disentangling subcomponents of perseveration – perseveration might  
be due to selecting the same bandit again or to a repetition of the same motor action. Future studies might  
benefit from additionally randomizing bandit position between trials. Furthermore, it is still unclear whether  
exploration measured using different tasks taps into the same construct  (von Helversen, Mata, Samanez-
Larkin, & Wilke, 2018). It would thus be interesting to examine other tasks that operationalize exploration 
somewhat differently (Frank et al., 2009; Wilson et al., 2014; Zajkowski et al., 2017). As in previous studies 
using the four-armed bandit task (Raja Beharelle et al., 2015), reduced directed exploration did not translate 
into a reduced payoff. This appears to be an interesting feature of this task: Participants regularly adopt a  
directed exploration strategy, but this does not necessarily lead to a maximization of the overall payoff. It  
also remains unclear whether reduced directed exploration constitutes a vulnerability factor or a consequence 
of continuous gambling. As with other decision-making impairments in gambling disorder, it would be inter-
esting to see whether these effects are tied to the clinical development of patients (e.g. to the escalation of 
gambling behavior or treatment effects of cognitive-behavioral therapy) or whether they manifest as stable 
factors that increase the risk for the development of the disorder. To clarify this, the field would need to 
move towards more longitudinal approaches. Finally, a comparison to substance-based disorders would be of 
considerable interest, in particular given the overlap in terms of decision-making impairments.

Impairments in reward-based learning, decision-making and cognitive control are hallmarks of gambling dis-
order. Here we show using computational modeling that during reinforcement learning in a four-armed rest-
less bandit task, gamblers’ behavioral impairments were attributable to reductions in directed exploration 
rather than increased perseveration. We observed no significant differences in the neural representations of  
model-based  expected  value  and  reward  prediction  error  in  striatal  and  ventromedial  prefrontal  cortex  
regions  in  gamblers  and  controls.  Fronto-parietal  exploration-related  activity  was  also  similar  between 
groups but coupling parameters from a dynamic causal model of an exploration-related network contained  
information  of  clinical  status.  Finally,  an  analysis  of  subcortical  exploration-related  group  differences 
revealed  reduced  activity  in  the  SN/VTA in  gamblers,  which  complements  accumulating  evidence  for  
dopaminergic dysfunctions associated with this disorder  (Boileau et al., 2014; van Timmeren et al., 2018). 
Taken together, our findings highlight a computational mechanism underlying decision-making impairments  
in gambling disorder during reinforcement learning and lend further support to the idea that dopaminergic  
dysregulation as a contributing factor.
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