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Abstract 11 

Population receptive field (pRF) modelling is a common technique for estimating the stimulus-12 

selectivity of populations of neurons using neuroimaging. Here, we aimed to address if pRF 13 

properties estimated with this method depend on the spatio-temporal structure and the 14 

predictability of the mapping stimulus. We mapped the polar angle preference and tuning width of 15 

voxels in visual cortex (V1-V4) of healthy, adult volunteers. We compared sequences orderly 16 

sweeping through the visual field or jumping from location to location employing stimuli of 17 

different width (45° vs 6°) and cycles of variable duration (8s vs 60s). While we did not observe 18 

any systematic influence of stimulus predictability, the temporal structure of the sequences 19 

significantly affected tuning width estimates. Ordered designs with large wedges and short cycles 20 

produced systematically smaller estimates than random sequences. Interestingly, when we used 21 

small wedges and long cycles, we obtained larger tuning width estimates for ordered than random 22 

sequences. We suggest that, ordered and random mapping protocols show different susceptibility 23 

to other design choices such as stimulus type and duration of the mapping cycle and can produce 24 

significantly different pRF results. 25 

 26 

 27 

 28 
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 2 

Introduction 29 

 30 

Topographic organization is a fundamental principle of the human sensory brain and the study of 31 

its properties plays a crucial role in understanding how the brain responds adaptively to properties 32 

of the environment and current goals. Important progress in brain mapping was encouraged by the 33 

introduction of population receptive field (pRF) modelling by Dumoulin & Wandell (2008). This 34 

approach aims at estimating the aggregate receptive field of all neurons within a voxel in functional 35 

magnetic resonance imaging (fMRI) scans. Essentially, a pRF identifies the location in sensory 36 

space that drives a voxel’s response, the spread of the responsive region and its shape (Dumoulin 37 

& Wandell, 2008; Silson, Reynolds, Kravitz, & Baker, 2018; Wandell & Winawer, 2015; 38 

Zeidman, Silson, Schwarzkopf, Baker, & Penny, 2018; Zuiderbaan, Harvey, & Dumoulin, 2012). 39 

A flourishing literature in the past ten years has shown that pRF modelling constitutes a powerful 40 

and sensitive approach for describing the fundamental properties of human visual cortex. The pRF 41 

size increases with increasing eccentricity and along the visual hierarchy (Amano, Wandell, & 42 

Dumoulin, 2009; Dumoulin & Wandell, 2008). Heterogeneities in pRF properties have been 43 

revealed also between different portions of the visual field (Moutsiana et al., 2016; Silson et al., 44 

2018; Silva et al., 2018), across individuals (Moutsiana et al., 2016) and across populations 45 

(Anderson et al., 2016; Schwarzkopf, Anderson, de Haas, White, & Rees, 2014; Smittenaar, 46 

Macsweeney, Sereno, & Schwarzkopf, 2016). Moreover, pRF properties have been used to 47 

investigate neural plasticity of the visual system during development (Dekker, Schwarzkopf, de 48 

Haas, Nardini, & Sereno, 2017, 2019; Gomez, Natu, Jeska, Barnett, & Grill-Spector, 2018) or 49 

evaluate adaptive changes in the human brain resulting from diseases or trauma with pRF changes 50 

mirroring changes in visual function (Dumoulin & Knapen, 2018). 51 

Interestingly, recent studies have also shown that pRF properties flexibly adapt to how observers 52 

engage with the stimulus. Changes in the locus of attention induce shifts in pRFs preferred location 53 

in the direction of the attended location across the entire visual field (Kay, Weiner, & Grill-Spector, 54 

2015; Klein, Harvey, & Dumoulin, 2014; Sheremata & Silver, 2015; Vo, Sprague, & Serences, 55 

2017). Such global changes are larger in higher visual areas (Klein et al., 2014) along both the 56 

ventral (Kay et al., 2015) and the dorsal stream (Sheremata & Silver, 2015). Moreover, recent 57 

studies indicate that pRF size and eccentricity vary in concert when the task requires to move the 58 

focus of attention from fixation to the mapping stimulus, suggesting that processing resources are 59 
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adaptively redistributed to optimize the sampling of the visual stimulus according to task 60 

requirements (Kay et al., 2015; van Es, Theeuwes, & Knapen, 2018). Similarly, changes in spatial 61 

tuning of population receptive field and in their eccentricity have been observed as a consequence 62 

of changes in attentional load at fixation (de Haas, Schwarzkopf, Anderson, & Rees, 2014). 63 

One aspect this literature has mostly overlooked is the influence of spatial predictability of visual 64 

stimuli in mapping estimates. Phase-encoded retinotopic mapping experiments (Engel et al., 1994; 65 

Sereno et al., 1995) and most pRF studies (e.g. Dumoulin & Wandell, 2008; Harvey & Dumoulin, 66 

2011; Moutsiana et al., 2016; van Dijk, de Haas, Moutsiana, & Schwarzkopf, 2016; Yildirim, 67 

Carvalho, & Cornelissen, 2018 with few exceptions, e.g.  Binda, Thomas, Boynton, & Fine, 2013; 68 

Kay et al., 2015; Thomas et al., 2015) typically employ ordered stimulus sequences - such as 69 

rotating wedges, contracting and expanding rings, or sweeping bars - to map visual areas. In such 70 

designs, the orderly presentation of the stimulus carries an inherent spatiotemporal regularity in 71 

the mapping sequence. Such regularity has two main consequences: 1) the predictability of the 72 

stimulus location, 2) the systematic consecutive stimulation of adjacent spatial locations.  73 

Both consequences could result in fMRI responses beyond the directly stimulated voxels. 74 

Specifically, the position of a coherently moving stimulus can be anticipated based on its current 75 

location and the direction of motion. The predictability of the stimulus location could induce an 76 

anticipatory response in such locations (Ekman, Kok, & de Lange, 2017). Moreover, knowledge 77 

of the upcoming stimulus location can provide spatial cues to direct attention to the relevant portion 78 

of the screen affecting pRF estimates accordingly (Kastner, Pinsk, De Weerd, Desimone, & 79 

Ungerleider, 1999). On the other hand, the consecutive stimulation of adjacent locations in space 80 

can generate a ‘‘traveling wave’’ of activity across the cortical surface that would cause the BOLD 81 

signal to spread across neighboring voxels (Engel et al., 1994). The permeability of pRF estimates 82 

to spatiotemporal properties of the sequences has important implications also for the reliability of 83 

the estimated parameters. 84 

In a study aiming to minimize biases when measuring visual cortex reorganization, Binda and 85 

colleagues (2013) compared pRF estimates using ordered sequences (i.e. sweeping bars) and m-86 

sequences of multifocal stimuli. The multifocal method consists in the presentation of multiple 87 

visual stimuli presented at different locations designed to minimize the spatiotemporal correlation 88 

of visual stimulation (Vanni et al., 2005). They fitted a standard 2D-Gaussian model to voxel 89 

responses and observed that pRF size estimates () in areas V1-V3 were systematically larger 90 
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when ordered mapping sequence were employed. The authors suggested that differences in the 91 

mapping sequence can lead to different pRF estimates, but they did not directly address the 92 

distinctive impact of expectations and spatiotemporal regularities. Moreover, in this study the two 93 

mapping protocols differed not only in their spatiotemporal sequence dependencies, but also in 94 

stimulus shape and size, field coverage, and scanning protocol. 95 

In this study, we aim to characterize to what extent spatiotemporal regularities in the mapping 96 

sequence affect the pRF parameter estimates in visual cortex, disentangling the role of spatial 97 

expectations and the impact of non-linear summation of the BOLD signal when adjacent locations 98 

are stimulated over a short interval. We employed functional MRI and a pRF mapping approach 99 

(Dumoulin & Wandell, 2008) to estimate the polar angle preference and the tuning response of 100 

voxels in visual cortex. We tested the same participants in three fMRI experiments using mapping 101 

sequences that differed in the spatial contingencies of consecutive wedge stimuli and in their 102 

predictability: ordered (rotating clockwise or anticlockwise), predictable, and unpredictable. In 103 

addition, we compared sequences employing stimuli of different width (wedge angle of 45deg vs 104 

6deg) that covered the entire visual field in cycles of variable duration (9s vs 60s). We modelled 105 

pRFs of polar angle as a circular Gaussian tuning function with two parameters: the polar angle 106 

preferred response and its spread quantified as full-width half-maximum (FWHM). We compared 107 

polar angle estimates and tuning functions of pRFs in functionally defined occipital ROIs (V1, V2, 108 

V3, V3A, V4) based on the individual maps obtained from an independent mapping experiment 109 

using typical methods. Finally, we compared empirical results and simulated data as an aid for 110 

understanding the biases and reliabilities of pRF estimates.  111 

Results suggest that the spatiotemporal regularities in the mapping protocol significantly affected 112 

pRF size (tuning width) estimates in agreement with what was previously observed for pRF size 113 

in the visual (Binda et al., 2013) and the auditory domain (Thomas et al., 2015). Moreover, we 114 

observed that the direction of the effect depended on the duration of the mapping cycle. Our results, 115 

however, do not indicate any reliable influence of stimulus predictability on pRF properties. 116 

Finally, we observed that while the ordered sequence led to the highest goodness of fit, the 117 

parameters estimated in this condition were not superior to those obtained with random conditions.  118 
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Experiment 1 119 

Here we asked whether the spatiotemporal structure of mapping sequences used in retinotopic 120 

mapping experiments influences the resulting parameter estimates. In particular, we tested whether 121 

pRF parameters depend on the subsequent stimulation of adjacent locations that characterize 122 

ordered mapping protocols by contrasting an ordered rotating condition with a random one. We 123 

further tested the hypothesis that such effects on parameter estimates depend on the predictability 124 

of the stimulus location by contrasting a predictable, non-ordered, condition with a random one. 125 

Materials and methods 126 

Participants  127 

Five experienced participants took part in two sessions of the experiment (1 author; age range: 128 

[24-35]; 4 females; one left-handed). All participants had normal or corrected-to-normal visual 129 

acuity. Participants gave their written informed consent to take part in the study and were 130 

financially compensated for their participation. All procedures were approved by the University 131 

College London Research Ethics Committee.  132 

Stimuli and Task 133 

Stimuli were presented using a custom MATLAB script (Mathworks Inc., Massachusetts, USA) 134 

and the Psychophysics Toolbox 3.8 (Brainard, 1997; Pelli, 1997). They were projected on a screen 135 

(1920 x 1080 pixels; 36.8 x 20.2 cm) at the back of the scanner bore and presented by means of a 136 

mirror mounted on the head coil at a total viewing distance of approximately 68 cm.  137 

The mapping stimulus was a discretely moving wedge-shaped aperture that showed coloured 138 

natural images (1080 x 1080 pixels) depicting landscapes, textures, animals, faces, or pieces of 139 

writing randomly redrawn every 500 ms and presented on a mid-grey background. The wedge 140 

aperture extended from 0.38 to 8.5 degrees of visual angle (dva) in eccentricity. Each wedge 141 

aperture subtended 45° in terms of polar angle and was centred at one of eight polar angles (0°, 142 

45°, 90°, 135°, 180°, 225°, 270°, 315°) dividing the circle in 8 non-overlapping locations (Figure 143 

1A). The centre of the wedges was shifted by 15° in separate runs in order to increase the spatial 144 

granularity of the mapping.  145 

Participants were instructed to continually maintain their gaze on a central fixation dot with a 146 

diameter of 0.13° while covertly monitoring the movement of the mapping stimuli in the surround. 147 

To ensure that both requirements were met, we used a dual-detection task in which participants 148 
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 6 

had to report whether the colour of the fixation dot turned red (fixation task) and whether an 149 

Anderson tartan pattern was presented on the wedges (image detection task) (Moutsiana et al., 150 

2016; van Dijk et al., 2016). To aid participant’s compliance with fixation requirements, a low 151 

contrast polar grid (line width of 0.02°; opacity of 10.2%) composed of 10 circles (radii evenly 152 

spaced between 0.13° and 15.14°) and 12 evenly spaced radial lines extended from fixation to the 153 

edges of the screen was superimposed onto the grey foreground and stimuli at all time. Eye 154 

movements were further monitored by means of an MRI-compatible SR Research EyeLink 1000 155 

eye tracker. 156 

 157 
Figure 1. Stimuli and mapping sequences for Experiments 1-3 and the standard 2D mapping experiment. A) Large wedge 158 
mapping stimuli used in Experiments 1-2, B) thin wedge mapping stimulus used in Experiment 3, and C) wedge-and-ring 159 
mapping stimulus used in the Standard experiment. D) Spatiotemporal structure for ordered, random and predictable sequences 160 
in Experiment 1, each square represents 1 s and the colour denotes the polar angle (see colour wheel). E-F) Central cue used in 161 
predictable and random-cue sequences in Experiment 2 and 3. 162 
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Mapping sequences 163 

Three mapping conditions were presented to each participant: ordered, predictable and random 164 

(i.e. unpredictable) (Figure 1D). In the ordered runs, the wedge rotated around fixation either 165 

clockwise or anticlockwise starting randomly at one of the 8 locations. The same direction of 166 

motion and the same starting location was maintained within each run. In the predictable runs, the 167 

wedge was presented at the 8 locations according to a predefined pseudorandomized order such 168 

that no adjacent locations were stimulated one after the other. The sequence started at a random 169 

location in different runs, but the same starting point and the same order were maintained 170 

throughout the run. Six maximally distinctive sequences were selected for each participant, three 171 

for each session. In the unpredictable runs, wedges were presented at the 8 locations in 172 

pseudorandom order (no adjacent locations could be presented in a row) and from a random 173 

starting point. A different, randomly generated, sequence was presented in each cycle (Figure 1D). 174 

For all conditions, each step of the wedge was presented for 1 s such that an entire cycle was 175 

completed in 8 s. The wedge completed 16 cycles in each run. Cycles were separated by fixation 176 

intervals of variable duration pseudo-randomized to range from 1 to 8 s in discrete steps of 1 s.  177 

Before entering in the scanner, participants performed a 30-minute task to familiarize themselves 178 

with the predictable sequences that they would encounter during the scanning session. Each 179 

sequence was presented in a separate block. Each block started with a presentation of the 8-steps 180 

sequence, presented for 7 times, after which we introduced a violation of the location order in the 181 

sequence. The participant’s task was to detect this violation of regularity and report it with a button 182 

press. Each sequence was presented in 6 consecutive blocks and was presented 20 times per block 183 

(9 correct sequences and 11 sequences with violations). In the scanner, a familiarization block 184 

preceded each mapping run in order to familiarize participants with the sequence that they would 185 

encounter during the following scanning run. Similar familiarization blocks were repeated before 186 

each run of the ordered and random conditions. For both the ordered and the predictable condition, 187 

participants performed a sequence violation-detection task in which they reported when a wedge 188 

appeared in an unexpected location according to the learned sequence (predictable condition) or 189 

the direction of motion (ordered condition). In the random condition, participants performed a 2-190 

back task in which they reported when a stimulus was presented in a location that was occupied 2 191 

stimuli before. 192 
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Reference retinotopic maps were obtained for each participant in an additional experiment using a 193 

combined wedge-and-ring aperture (Figure 1C) similar to what has been reported in previous 194 

studies (Alvarez, de Haas, Clark, Rees, & Schwarzkopf, 2015; Moutsiana et al., 2016; van Dijk et 195 

al., 2016). The wedge aperture extended up to 8.5 degrees of visual angle in eccentricity and 196 

subtended 12° rotating either clockwise or counter-clockwise in 60 discrete steps (1 step/s, 6° 197 

overlap between consecutive wedges). The ring aperture expanded or contracted in 36 logarithmic 198 

steps while keeping the radius of the inner circle 56-58% of that of the outer ring (minimal radius 199 

of 0.48 dva, 1 step/s, ~90% overlap between consecutive rings). The mapping stimulus showed 200 

coloured natural images or phase-scrambled versions of them that changed every 500 ms and 201 

appeared on a mid-grey background. The type of image (intact vs phase-scrambled) alternated 202 

every 15 s. The images and the wedge-and-ring aperture were centred on a central black fixation 203 

dot (diameter: 0.13 degrees in visual angle) which was superimposed onto central disk (diameter: 204 

0.38 degrees in visual angle). Also, a low contrast polar grid was superimposed on the stimulus. 205 

As for the previous experiments, participants performed a dual-detection task (fixation task and 206 

image detection task) while maintaining fixation on the central fixation dot.  207 

The mapping experiment consisted of 3 runs. The wedge-and-ring aperture was presented in four 208 

blocks of 90 s (1.5 cycles of wedge rotation; 2.5 cycles of ring expansion/contraction) interleaved 209 

with a 30 s blank interval. The order of aperture movement in each run was first clockwise and 210 

expanding, then clockwise and contracting, anticlockwise and expanding, or anticlockwise and 211 

contracting.  212 

Data acquisition 213 

We acquired functional and anatomical scans using a Siemens Avanto 1.5 T MRI scanner with a 214 

customized 32-channel head coil located at the Birkbeck-UCL Centre for Neuroimaging. The two 215 

anterior channels were removed from the front half of the coil to allow unrestricted field of view 216 

leaving 30 effective channels.  217 

Functional images were acquired using a T2*- weighted 2D echo-planar images multi-band 218 

(Breuer et al., 2005) sequence (TR = 1 ms, TE = 55 ms, 36 slices, flip angle = 75°, acceleration = 219 

4, FOV = 96 × 96 voxels) at a resolution of 2.3 mm isotropic voxels. Each functional scan consisted 220 

of 222 acquisitions. Data were collected in two sessions (performed on consecutive days or one 221 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/821918doi: bioRxiv preprint 

https://doi.org/10.1101/821918
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

day apart) of 9 runs each taking approximately 90 minutes1. Each condition was repeated in 3 222 

separate runs in each session. The order of runs was pseudo-randomized, with all conditions 223 

repeated every 3 runs. The ring-and-wedge mapping procedure was acquired in a separate session 224 

using the same protocol, for a total of 3 runs and 490 volumes per run. 225 

A T1-weighted anatomical magnetization-prepared rapid acquisition with gradient echo 226 

(MPRAGE) image was acquired in a separate session (TR = 2730 ms, TE = 3.57 ms, 176 sagittal 227 

slices, FOV = 256 × 256 voxels) at a resolution of 1 mm isotropic voxels. 228 

fMRI pre-processing 229 

The data were pre-processed using SPM12 (www.fil.ion.ucl.ac.uk/spm, Wellcome Centre for 230 

Human Neuroimaging, London, UK). The first 10 volumes of each run were discarded to allow 231 

the signal to reach equilibrium. Functional images were intensity bias-corrected, realigned to the 232 

mean image of each run and then co-registered to the structural scan. All further analyses were 233 

performed using custom MATLAB code. The time series for each voxel in each run were linearly 234 

de-trended and z-score normalized. Finally, all runs belonging to the same condition were 235 

concatenated before further analyses whereas in the wedge-and-ring standard mapping experiment, 236 

the time series were averaged before the fitting analysis to increase signal to noise ratio. Functional 237 

data of each participant were projected on a surface reconstruction of the grey white matter surface 238 

estimated with FreeSurfer (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999) by finding 239 

the voxel at the medial position between the grey-white matter boundary and the pial surface for 240 

each vertex in the mesh (using custom made Matlab scripts and SamSrf toolbox). All the following 241 

analyses were performed at the surface level. The same procedures were adopted for Experiment 242 

2 and 3. 243 

pRF estimates 244 

The data from the different protocols were used to obtain independent estimates of the population 245 

receptive fields (pRFs) using a custom MATLAB toolbox for pRF analysis (SamSrf v5.84, 246 

https://doi.org/10.6084/m9.figshare.1344765.v24). For all mapping sequences, we combined a 247 

binary aperture describing the position of the mapping stimuli within each scanning volume with 248 

a model of the underlying neuronal population and convolved this with a canonical haemodynamic 249 

response function (HRF) to predict the BOLD signal in each experimental condition. For the 250 

                                                 
1 One participant performed 15 runs in one single session in Experiment 1. 
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standard wedge and ring mapping sequence, the binary aperture was a two-dimensional mask 251 

(100x100) corresponding to the stimulus location on the screen at each time point. For the main 252 

experiment, the binary aperture was a vector mask (1x360) indicating the polar angle coordinates 253 

corresponding to the mapping stimulus at each time point. 254 

For the standard wedge and ring mapping sequence, we estimated the position and size of pRFs  255 

using a two-dimensional Gaussian function (Dumoulin & Wandell, 2008). For the polar mapping 256 

experiments, we modelled pRFs using a von Mises distribution, with µ indicating the preferred 257 

polar angle of the voxel and k corresponding to the concentration of the response (for clarity k 258 

values were transformed into full width half maximum (FWHM) as an indicator of the spread of 259 

the response of each voxel). We used a coarse-to-fine approach to determine the pRF parameters 260 

to obtain the best possible fit of the predicted time series with the observed data (Alvarez et al., 261 

2015; Dumoulin & Wandell, 2008; Moutsiana et al., 2016; van Dijk et al., 2016). The final fine 262 

fitting also included a β parameter for the response amplitude. 263 

Analyses 264 

We only analysed the fitted parameters of those vertices for which we obtained realistic estimates 265 

(k>0) and that had a goodness of fit, R2, higher than a critical value based on a fixed p-value (p = 266 

10-8). This corresponds to R2>0.026 2 in Experiment 1, and R2>0.067 in the wedge-and-ring 267 

experiment depending on the different degrees of freedom in the three experiments3.  268 

The pRF estimated coordinates from the standard wedge and ring mapping experiment were used 269 

to compute polar angle and eccentricity. Using the Delineation toolbox in SamSrf, we manually 270 

delineated the regions of interest using mirror reversals in the polar angle map, and guided by the 271 

eccentricity and field-sign map (Sereno, McDonald, & Allman, 1994). The region of interests 272 

included in our analyses were V1, V2, V3, V3A and V4. We performed all the following analyses 273 

separately for each visual ROI in each individual participant. Given the small number of 274 

participants, we did not report group statistics in the main text, but we summarized the results for 275 

single subject statistics instead. 276 

                                                 
2 The R2 threshold was adjusted to 0.035 for the participant that performed a smaller number of runs in Experiment 
1. 
3 Here we are not accounting for the degrees of freedom in the pRF model (the p-value would only be marginally 
different) but the purpose of this procedure is simply to define an objective threshold for the data rather than 
accurately estimating p-values. 
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We compared the quality of the fits across the different spatiotemporal sequences. We compared 277 

the number of responsive vertices and the median goodness of fit for each individual by means of 278 

repeated paired t-tests and Wilcoxon tests. We also used a correlation analyses to evaluate the 279 

correspondence between the observed time series for each condition and the predicted response 280 

given the stimulus location and the parameter estimates for each vertex obtained with each of the 281 

mapping protocols, convolved with an HRF. To further explore the coherence of the maps obtained 282 

with different mapping conditions, we computed the vertex-wise circular correlation of polar angle 283 

estimates and the Pearson correlation of FWHM and beta estimates between conditions, separately 284 

for each visual ROI and participant. Because vertices within a ROI are not statistically 285 

independent, we calculated the inter-correlation between the time series of all ROI vertices and 286 

used this information to correct the degrees of freedom of the correlation. Specifically, we 287 

calculated all unique pair-wise correlations between vertices (note that we treated pairs of vertices 288 

that were negatively correlated as independent, i.e. r = 0). We then calculated a weight for each 289 

vertex by subtracting these correlations from 1 and averaging the values for all pair-wise 290 

comparisons of a given vertex. Thus, in theory, if the time series of all vertices were completely 291 

independent from one another, each vertex would be weighted as 1. Conversely, if all vertices were 292 

identical, they would all be weighted as 0. The sum across these weights plus 1 is therefore a 293 

weighted estimate of the sample size which we used to determine the degrees of freedom. 294 

Moreover, we correlated the observed time courses for each condition with the predicted time 295 

course given the estimated pRF parameters for each vertex in each experimental condition.  296 

Finally, we compared the mean FWHM across conditions and ROIs using paired t-tests at the 297 

subject level (with degrees of freedom corrected for inter-correlation between time series as 298 

described above). In these analyses, we averaged FWHM across vertices encompassing different 299 

eccentricities, as our mapping stimulus did not allow differentiating responses at different 300 

eccentricities (i.e. each wedge had a fixed radius that covered the entire visual field mapped). 301 

Results 302 

We obtained reliable polar angle maps with all mapping conditions for our ROIs (Figure 2).  303 
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 304 
Figure 2. Smoothed polar angle maps for all conditions - ordered, random and predictable - in Experiment 1. In this and the 305 

following figures, images display an inflated spherical model of the left hemisphere of participant 4 (S4). 306 

Ordered sequences provided better fits and a larger proportion of responsive vertices than the other 307 

mapping sequences in all ROIs (Mean of median R2 across ROIs: Mord = .10, Mpred = .08, Mrnd = 308 

.08; Mean of responsive vertices across ROIs: Mord = 35%, Mpred = 25%, Mrnd = 28%). Moreover, 309 

we observed better fits for higher visual areas (Figure S 1A, D). The relatively low goodness of fit 310 

obtained with this paradigm is not surprising given the high number of degrees of freedom in our 311 

paradigm (due to concatenated time series rather than averaging experimental runs) and the 312 

simplified model used for fitting. Importantly, all vertices considered for comparisons provided a 313 

fitting that met our fixed p-value criterion of 10-8 in all the mapping conditions. Interestingly, 314 

parameter estimates obtained with different mapping sequences performed similarly well in 315 

predicting the observed time series for all mapping protocols, with generally more robust 316 

predictions of the ordered sequences regardless of the mapping protocol used for the estimates 317 

(Figure S 1A). Consistently, correlation analyses of model fitting results (polar angle, FWHM, 318 

beta, and R2) revealed substantial consistency across different mapping conditions in all 319 

experiments and all visual areas tested. We observed high significant vertex-wise correlation 320 

between R2 (Mord-rand = .79, Mord-pred = .77, Mrand-pred = .82; Figure 3A) in different conditions for 321 

all participants and ROIs (p<.05, Bonferroni corrected for multiple comparisons). The polar angle 322 

estimates were highly robust across conditions but showed a decrease in coherence moving up in 323 

the visual hierarchy for the predictable condition (Mord-rand= .86, Mord-pred= .56, Mrand-pred= .68; 324 

Figure 3B).  325 
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 326 
Figure 3. Group mean correlation matrices for A) the model goodness of fit (R2), B) polar angle estimates), and C) FWHM estimates 327 
in Experiment 1. Inset numbers (in this and the following figures) in each cell of the correlation matrix indicate the value of the 328 

average correlation and the proportion of participants that showed a significant correlation for each pair of conditions. 329 

We observed positive but substantially weaker correlations for FWHM estimated, particularly in 330 

lower visual areas, V1-V2 (Mord-rand = .24, Mord-pred = .17, Mrand-pred = .35; Figure 3C).  331 

We further explored potential biases and differences across mapping conditions and ROIs. As 332 

expected, FWHM estimates increased in the visual hierarchy. Interestingly, FWHM was also 333 

systematically influenced by the mapping sequence and a general pattern emerges for all visual 334 

areas (with the exception of V1 that shows noisier results) with results highly consistent across 335 

participants (Figure 4; significant results are reported for p<.05, Bonferroni corrected for multiple 336 

comparisons). The ordered sequence lead to significantly smaller FWHM estimates than the 337 

random sequence for most of the participants and ROIs (Figure 4B). We found similar differences 338 

between ordered and predictable sequences, although one participant showed a significant 339 

difference in the opposite direction. Interestingly, we measured smaller FWHM for predictable 340 

than random sequences (results are clearer for V2, V3 and V4). 341 
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 342 
Figure 4. Polar angle tuning width estimates in Experiment 1 (measured as Full-Width Half-Maximum). A) Individual and group 343 
mean FWHM estimates for different mapping sequences and visual areas. In this and the following figures, error bars in both the 344 
individual and group plots represent bootstrapped 95% confidence intervals. B) Visualisation of single subject statistics (p<.05 345 

corrected for multiple comparisons). 346 

 347 

Experiment 2 348 

Experiment 1 revealed systematic differences in polar angle tuning functions estimated with 349 

different mapping protocols. This suggests that predictability might influence the tuning response 350 

of population of neurons in visual cortex. However, the predictability of our mapping sequences 351 

depended on the repetition of fixed spatiotemporal structure throughout each run. Such 352 

idiosyncrasies in the predictable sequences could have been responsible for relatively narrow 353 
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tuning width estimates (Figure 4) and the poorer agreement in polar angle estimates of this 354 

sequence with the ordered and the random one (Figure 3B).  355 

To address whether the fixed spatiotemporal structure of the predictable sequence was responsible 356 

for the observed results, we repeated Experiment 1, but this time creating a predictable sequence 357 

that was structurally indistinguishable from the random one. Rather than using a repeated 358 

sequence, we rendered the sequence predictable by the use of a small visual cue. We then compared 359 

the tuning width response of this sequence with the random, non-predictable one. 360 

Materials and methods 361 

Participants  362 

Four of the original subjects took part in the two sessions of Experiment 2 (one author; age range: 363 

[24-35]; 3 females). All participants had normal or corrected-to-normal visual acuity and gave 364 

their written informed consent to participate to the experiment as in Experiment 1. 365 

Stimuli and Mapping sequences 366 

Experiment 2 was set up with the same apparatus and mapping stimuli used in Experiment 1 367 

(Figure 1A). We compared four mapping sequences - ordered, predictable and two random ones. 368 

Crucially, we changed how we induced the predictability of the wedge location in the predictable 369 

condition. The predictable and random sequences were generated using the same algorithm, i.e. 370 

wedges were presented at different locations in pseudorandom order with no adjacent locations 371 

presented in a row. In contrast to Experiment 1, we generated a different sequence in each cycle 372 

thus completely matching the spatiotemporal structure of random and predictable sequences. We 373 

maintained the difference in predictability of the wedge locations by means of a centrally presented 374 

oriented line that cued the location of the wedges (Figure 1E). The cue (0.33 x 0.07 degrees in 375 

visual angle) extended from the centre of the screen. It appeared 200 ms before the onset of each 376 

wedge stimulus and remained on the screen for 200 ms (Figure 1C). In the ordered and the 377 

predictable conditions, the cue pointed towards the centre of the upcoming wedge. The two 378 

random conditions were both unpredictable but differed for the presence or absence of the central 379 

cue. In the random condition with non-predictive cue (random-cue), the cue pointed to the location 380 

of the previous wedge. In the random condition without cue (random-no cue), no cue was 381 

presented. Thus, neither of the random conditions contained any information about the location of 382 

the upcoming wedge. 383 
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For all conditions, each step of the wedge was presented for 1 s such that an entire cycle was 384 

completed in 8 s. Cycles were separated by fixation intervals of variable duration ranging from 1 385 

to 8 s in steps of 1 s. Each functional scan consisted of 303 acquisitions. Data were collected in 386 

two sessions (performed on consecutive days or one day apart) of 12 runs each taking 387 

approximately 90 minutes. Each condition was repeated in 3 separate runs in each session. All 388 

conditions were presented in randomized order every 4 runs.  389 

Analyses 390 

As in Experiment 1, we only analysed the fitted parameters of those vertices for which we obtained 391 

realistic estimates (k>0) and that had a goodness of fit, R2, higher than a critical value based on a 392 

fixed p-value (p = 10-8). This corresponds to R2>0.019 in Experiment 2.  393 

Results 394 

Experiment 2 mostly replicated the results of Experiment 1 with even clearer polar angle maps 395 

(Figure 5) and higher consistencies between parameter estimates (Figure 6), possibly due to the 396 

higher number of volumes collected.  397 

 398 
Figure 5. Smoothed polar angle maps for all conditions - ordered, random with or without uninformative cue, and predictable - in 399 
Experiment 2.  400 

Ordered sequences provided better fits to the data than predictable and random sequences (Figure 401 

S 1B, E; Mean of median R2 across ROIs: Mord = .09, Mpred = .08, MrandNC = .08, MrandC = .08; Mean 402 

of responsive vertices across ROIs: Mord = 43%, Mpred = 41%, MrandC = 40%, MrandNC = 37%). 403 

However, our analyses confirmed that the parameters estimated in the different conditions 404 

performed equally well in predicting the time series data (Figure S 2B). 405 
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 406 
Figure 6. Mean correlation matrices for A) goodness of fit (R2). B) polar angle, and C) FWHM estimates in Experiment 2.  407 

We also replicated differences in FWHM estimates with different sequence structures with ordered 408 

sequences leading to systematically smaller FWHM estimates than random and predictable 409 

sequences (p<.05 corrected, for all participants and ROIs but one comparison for S2 V3A as 410 

illustrated in Figure 7Error! Reference source not found.). Importantly, we did not observe any 411 

systematic differences between predictable and random sequences with the exception of V2, where 412 

FWHM were systematically smaller for predictable than random sequences as also shown in 413 

Experiment 1 (significant difference for all participants in the comparison with the random-no cue 414 

condition and with all participants but one in the random-cue condition).  415 
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 416 
Figure 7. Polar angle tuning width estimates in Experiment 2. A) Individual and group mean FWHM estimates. B) Visualisation of 417 

single subject statistics (p<.05 corrected for multiple comparisons). 418 

 419 

Experiment 3 420 

Experiment 2 suggested that the spatiotemporal structure of the mapping sequence, rather than its 421 

predictability is responsible for the differences in FWHM estimates. The finding that ordered 422 

sequences yielded narrower tuning widths than random sequences in both Experiment 1 and 2 423 

contrasts with previous studies. A comparison of  orderly moving bars and multifocal stimuli 424 

revealed the opposite pattern of results, with the largest pRF estimates obtained with ordered 425 

sequences (Binda et al., 2013). However, it is not clear whether pRF size estimates might have 426 
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been affected by surround suppression of response in the multifocal stimuli (Pihlaja, Henriksson, 427 

James, & Vanni, 2008). Moreover, our results might be affected by the short mapping sequences 428 

we adopted. To address this hypothesis, we replicated Experiment 2 with the same mapping 429 

conditions and the same participants, but we varied the size of the mapping stimulus as well as the 430 

duration of the mapping cycle. 431 

Materials and methods 432 

Participants  433 

The same four participants (including one author) that took part in Experiment 1 and 2 participated 434 

also in both sessions of Experiment 3. All participants gave their written informed consent to 435 

participate to the experiment. 436 

Stimuli and Mapping sequences 437 

The mapping stimulus in Experiment 3 was a discretely moving wedge aperture subtending 6° and 438 

dividing the circle in 60 non-overlapping locations, no shifts were introduced across runs (Figure 439 

1B). The mapping sequences used in Experiment 3 were generated in the same way as those in 440 

Experiment 2 resulting in four experimental conditions: ordered, predictable, random-no cue, and 441 

random-no cue (Figure 1F). The distinctive difference between Experiment 2 and 3 is only the 442 

aperture size and, consequently, the duration of the mapping cycle. For all conditions, each step of 443 

the wedge was presented for 1 s such that an entire cycle was completed in 60 seconds (60 wedges 444 

of 6°, 4 cycles). Cycles were separated by fixation intervals of variable duration ranging from 1 to 445 

8 s in steps of 1 s. Each functional scan consisted of 295 acquisitions whilst other scanning details 446 

remained identical to Experiment 2. 447 

Analyses 448 

As in the previous experiments, we only analysed the fitted parameters of those vertices with k>0 449 

and goodness of fit, R2>0.019 (based on fixed p-value p = 10-8).  450 

Results 451 

Parameter estimates were consistent across mapping sequences (Figure 8, Figure 9; Figure S 2C). 452 
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 453 
Figure 8. Smoothed polar angle maps for all conditions - ordered, random with or without uninformative cue, and predictable - in 454 
Experiment 3. 455 

Ordered sequences provided much better fits to the data than predictable and random sequences 456 

(Mean of of median R2: Mord = .14, Mpred = .06, MrandNC = .06, MrandC = .06; Mean of responsive 457 

vertices across ROIs: Mord = 61%, Mpred = 37%, MrandC = 38%, MrandNC = 38%; Figure S 1C, F). 458 

However, the parameters estimated in the different conditions performed equally well in predicting 459 

the time series data and they all yielded the best results when predicting the ordered sequence 460 

(Figure S 2C).  461 

 462 
Figure 9 Mean correlation matrices for A) goodness of fit (R2). B) polar angle, and C) FWHM estimates in Experiment 3.  463 

Experiment 3 produced an interesting inversion of the pattern of results in terms of FWHM 464 

estimates (Figure 10) compared to the previous experiments. Although there was no consistent 465 
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pattern in the contrast between predictable and random sequences, FWHM estimates were 466 

systematically larger for ordered than random or predictable sequences for V3, V3A and V4. 467 

Similar results were found for V2 but with less consistent results across participants. Results for 468 

V1 were less clear but seem to suggest the opposite: FWHM were smaller for estimates obtained 469 

with an ordered rather than a random or predictable sequence. 470 

 471 
Figure 10. Polar angle tuning width estimates in Experiment 3. A) Individual and group mean FWHM estimates. B) Visualisation 472 

of single subject statistics (p<.05 corrected for multiple comparisons). 473 

Simulations 474 

With the following simulations, we addressed the hypothesis that the discrepancies in tuning width 475 

observed for the different mapping sequences in the previous experiments were caused by the 476 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/821918doi: bioRxiv preprint 

https://doi.org/10.1101/821918
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

spatiotemporal properties of the haemodynamic response (Aquino, Schira, Robinson, Drysdale, & 477 

Breakspear, 2012; Kriegeskorte, Cusack, & Bandettini, 2010). To test this possibility, we 478 

simulated the BOLD response for Experiments 1 and 3 using the stimBOLD toolbox 479 

(https://github.com/KevinAquino/stimBOLD, Aquino, Lacy, Robinson, & Schira, 2015). This 480 

toolbox takes a visual input, predicts the cortical neural response that it evokes in early visual 481 

cortex (areas V1-V3) and simulates the BOLD response taking into account the poroelastic 482 

properties of the brain tissue (Aquino, Robinson, Schira, & Breakspear, 2014; Aquino et al., 2012)  483 

 484 

Materials and methods 485 

Stimuli and mapping 486 

We used stimBOLD to simulate the BOLD response in visual areas V1-V3 for the left hemisphere 487 

of FreeSurfer average brain (fsaverage) (Benson et al., 2012; Dale et al., 1999; Fischl et al., 1999). 488 

We simulated the responses for all the conditions that differed in terms of spatiotemporal structure 489 

and stimulus size in the previous experiments. In particular, we selected the ordered, random, and 490 

predictable conditions in Experiment 1 – Simulation A – and the ordered and random conditions 491 

of Experiment 3 – Simulation B (in both cases we employed the mapping sequences used for 492 

participant 4).  493 

The mapping stimulus had the same physical properties adopted in our empirical experiments (max 494 

eccentricity = 8.5 dva; wedge size of 45° for Experiment 1 and 6° for Experiment 3). Each location 495 

of the visual field was stimulated for 1s, before moving to the next location in the sequence. Two 496 

images, selected from the original dataset of natural pictures, alternated every 500 ms.  497 

Six runs for each condition were simulated separately, then Gaussian noise was added to the signal. 498 

Gaussian noise was adjusted in order to produce approximately the same signal-to-noise ratio 499 

(SNR) across Simulation A and B (Simulation A, SNRord = .21; SNRpred = .17; SNRran = .17. 500 

Simulation B: SNRord = .21; SNRran = .11. We computed the SNR as the ratio between the standard 501 

deviation of the signal and the standard deviation of the residuals). The following analyses were 502 

performed for the simulated data with and without Gaussian noise. 503 

 504 

Analyses 505 

The signal was z-score normalized and the runs concatenated before modelling the pRF profiles 506 

following the same approach used for the empirical data. We focused our analyses on the 507 
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comparison of FWHM in the different conditions for Simulation A and B considering only those 508 

vertices with goodness of fit higher than a critical value based on a fixed p-value (p = 10-8, R2 > 509 

0.026 for Simulation A and R2 > 0.019 for simulation B). We averaged FWHM across 510 

eccentricities and ROIs (V1, V2, and V3) separately for each condition and tested their difference 511 

with paired t-tests (degrees of freedom corrected for time series correlation). 512 

 513 

Results 514 

The results qualitatively replicated the difference across conditions observed in the empirical data 515 

(Figure 11). In Simulation A, the ordered condition resulted in significantly lower estimates of 516 

FWHM than the random condition (V1-V3ord-rand: t(196.8) = -7.05, p < .001). The predictable 517 

condition lead to intermediate results (V1-V3ord-pred: t(205.8) = -2.98, p = .003; V1-V3rand-pred: 518 

t(200.0) = 2.97, p = .003). Crucially, the pattern of results reversed for Simulation B with the 519 

ordered condition leading to the significantly higher FWHM estimates than the random one (V1-520 

V3ord-rand: t(263.7) = 5.04, p < .001). The analyses of the predicted BOLD response without 521 

addition of Gaussian noise produces an inversion of the pattern of results for the ordered and 522 

predictable conditions in Simulation A (V1-V3ord-pred: t(618.0) = 10.72, p < .001; V1-V3rand-pred: 523 

t(593.0) = 10.72, p < .001). However, the crucial difference between ordered and random 524 

conditions is replicated in both simulations (Simulation A. V1-V3ord-rand: t(569.8) = -5.06, p < .001. 525 

Simulation B. V1-V3ord-rand: t(1150.7) = 5.51, p < .001) (Figure 11). 526 

 527 
Figure 11. Polar angle tuning width estimates for simulated BOLD responses with and without added Gaussian noise. Error bars 528 

in both the individual and group plots represent bootstrapped 95% confidence interval. A) Simulation A replicating the sequence 529 
structure and stimulus properties of Experiment 1. B) Simulation B replicating the sequence structure and stimulus properties of 530 
Experiment 3. 531 
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 532 

Discussion 533 

In this series of experiments, we investigated the reliability and biases of pRF modelling while 534 

disambiguating the impact of predictability and spatiotemporal regularities when mapping the 535 

visual cortex. We adopted a modified version of the pRF modelling approach (Dumoulin & 536 

Wandell, 2008) to estimate the polar angle preference of neural populations in visual cortex and 537 

designed mapping sequences characterized by different spatiotemporal structure and different 538 

duration. 539 

As reported in previous studies, polar angle estimates were robust across mapping sequences while 540 

estimates of pRF size were more volatile (van Dijk et al., 2016). Despite their general robustness, 541 

the polar angle estimates in visual areas with larger receptive fields (V3, V3A, V4) were more 542 

sensitive to the structure of the mapping sequence when short mapping cycles were adopted. This 543 

was particularly evident for the predictable condition in Experiment 1 in which the same short 544 

sequence was repeated throughout one run introducing systematic deviations in the measured polar 545 

angle estimates.  546 

In all experiments, we observed striking differences in pRF size for ordered and random sequences 547 

across the visual areas tested. Interestingly, in Experiment 1 we observed the narrowest tuning 548 

widths for ordered mapping sequences, intermediate results for the regular and predictable 549 

sequences and the widest tuning width for random sequences. These results are in contrast with 550 

previous reports of larger pRF size estimates for ordered sequences (Binda et al., 2013). To test 551 

whether such results were a consequence of the anticipation of the attended stimulus, we ran 552 

Experiments 2 and 3 where we used a spatial cue to orient attention and matched the spatiotemporal 553 

properties of predictable and random sequences. We replicated the findings for ordered and 554 

random sequences only and only when a short mapping cycle was employed while the opposite 555 

pattern of results emerged for slower designs. Such results argue against an impact of expectations 556 

in pRF estimates and suggest that other factors may contribute to these changes in tuning width.  557 

One possibility is that fast-paced designs are more susceptible to nonlinear spatiotemporal 558 

interactions of responses. For example, centre-surround suppression mechanisms have been 559 

suggested to modulate response amplitude when multiple stimuli are presented during mapping, 560 

as happens in multi-focal designs (Pihlaja et al., 2008). Alternatively, the rapid stimulation of 561 
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adjacent regions might induce hemodynamic stealing (Harel, Lee, Nagaoka, Kim, & Kim, 2002), 562 

or induce adaptation phenomena (Krekelberg, Boynton, & van Wezel, 2006) hence reduced BOLD 563 

signal. Such phenomena could influence pRF size estimates with greater impact on ordered 564 

protocols. While these possibilities are intriguing, they cannot easily explain the inversion of the 565 

pattern of results observed in our last experiment. Finally, it is possible that active changes in 566 

cortical vasculature might be responsible for spatiotemporal nonlinearities in the BOLD response 567 

and significantly affect the pRF estimates, particularly with small voxel sizes (Aquino et al., 2012; 568 

Kriegeskorte et al., 2010). Our simulations found general support for the last hypothesis indicating 569 

a possible mechanism by which the interplay of stimulus properties and mapping sequence can 570 

have a measurable impact of pRF estimates. 571 

In our study we did not find any clear evidence that the predictability of stimulus location can 572 

significantly bias polar angle or tuning width estimates. This result contradicts previous studies 573 

that showed attention can cause both a shift of the preferred location towards the attended location 574 

and an increase in pRF size (Kay et al., 2015; Klein et al., 2014; Sheremata & Silver, 2015; van 575 

Es et al., 2018; Vo et al., 2017). Such modulation had initially reported only been in the ventral 576 

cortex, higher up in the visual cortex (Kay et al., 2015) while more recent evidence suggest that 577 

both feature-based and spatial-based spatial attention can induce significant shifts in the response 578 

of neurons in areas as early as V1-V3 (van Es et al., 2018). It has been suggested that these changes 579 

are functional to increase the precision of the representation of the target at the attended location 580 

(Kay et al., 2015). While our design was not tailored to detect systematic changes in polar angle 581 

preferences, we hypothesized that the predictability of the mapping sequence would affect the 582 

tuning of neuronal responses. The discrepancy between our results and recent observations of 583 

attentional effects can be explained by a difference in task requirements among the studies. All 584 

former studies manipulated the focus of attention by varying the location at which participants 585 

were performing a perceptual task, either at fixation or on the mapping stimulus (Kay et al., 2015; 586 

Sheremata & Silver, 2015; van Es et al., 2018). Such demanding tasks required a redistribution of 587 

resources at the attended location. On the contrary, in our experiments, our task did not require a 588 

fine discrimination and the predictability of stimulus location was not strategically relevant for 589 

performing the task. Thus, expectations alone may not dynamically change pRF properties in early 590 

visual cortex to a significant extent, as long as there is no computational requirement for that.  591 
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Irrespective of the specific sequence, the fitting results described in the current study produced 592 

weaker fits than standard mapping approaches (Dumoulin & Wandell, 2008). Several reasons 593 

could contribute to these results. First, R2 depends considerably on the degrees of freedom. In our 594 

experiments, we concatenated the BOLD response in separate runs of the same condition leading 595 

to a large number of time points per condition (up to 1818 in Experiment 2) massively increasing 596 

the degrees of freedom and generally reducing R2 for at statistical significance levels equivalent to 597 

other studies. Second, in order to facilitate learning of the predictable sequences, we designed 598 

protocols with unusually short cycles in Experiment 1 while long cycles but thin mapping stimuli 599 

were employed in the last study. Despite these limitations, we obtained reliable maps in all 600 

conditions (Figure 2, Figure 5, Figure 8). 601 

Our study shows that pRF estimates are susceptible to the spatiotemporal properties of the mapping 602 

sequence. In particular, ordered and random mapping protocols show different susceptibility to 603 

other design choices such as stimulus type and duration of the mapping cycle and can produce 604 

significantly different pRF results. Finally, it is worth noting that while ordered sequences are 605 

typically preferred for their higher goodness of fit, this is not a guarantee of their robustness. More 606 

specifically, the pRF estimates obtained with different sequences, both ordered and random, 607 

performed comparably well in predicting the response to different mapping stimuli. To conclude, 608 

depending on other design constraints, one should consider which protocol is more suitable for the 609 

experimental purposes. 610 
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Supplementary Materials 759 

 760 

Control analyses and results 761 

In all three experiments, to ensure consistency in fixation stability and task engagement across 762 

conditions, we measured target detection accuracy in the dual-task across conditions. Moreover, 763 

we measured the mean absolute deviation of eye position from fixation along the x and y axes in 764 

degrees of visual angle (dva). 765 

In Experiment 1, we did not observe noticeable differences in participants’ accuracy in performing 766 

the dual-task (p(Hit): Mord(SD) = .77 (.11), Mpred(SD) =.74(.14), Mrand(SD) = .81(.05)) nor in 767 

stability of fixation (Absolute deviation from fixation along in dva. Deviation along x axis: 768 

Mord(SD) = .28(.15); Mpred(SD) =.24(.11); Mrand(SD) =.25(.10). Deviation along y axis:  Mord(SD) 769 

= .46(.42), Mpred(SD) = .41(.33), Mrand(SD) = .36(.26))  across conditions. 770 

Similarly, in Experiment 2, we did not observe significant differences in participants’ accuracy in 771 

the dual-task (p(Hit): Mord(SD) = .72 (.16), Mpred(SD) =.74(.17) , MrandNC(SD) = .68(.08), 772 

MrandC(SD) = .69(.14)) nor in stability of fixation (Absolute deviation from fixation along in dva. 773 

Deviation along x axis: Mord(SD) = .21(.08), Mpred(SD) =.19(.06), MrandNC(SD) =.23(.09) , 774 

MrandC(SD) =.21(.09). Deviation along y axis:  Mord(SD) = .31(.23), Mpred(SD) = .30(.20), 775 

MrandNC(SD) = .32(.20) , MrandC(SD) =.34(.24)  across conditions. 776 

Consistent with the previous experiments, also in Experiment 3, we did not observe significant 777 

differences in participants’ accuracy in the dual-task (p(Hit): Mord(SD) = .89 (.07), Mpred(SD) 778 

=.86(.15) , MrandNC(SD) = .89(.12), MrandC(SD) = .93(.06)) nor in stability of fixation (Absolute 779 

deviation from fixation along in dva. Deviation along x axis: Mord(SD) = .23(.12), Mpred(SD) 780 

=.24(.10), MrandNC(SD) =.32(.21) , MrandC(SD) =.27(.13). Deviation along y axis:  Mord(SD) = 781 

.31(.22), Mpred(SD) = .42(.38), MrandNC(SD) = .54(.61) , MrandC(SD) =.37(.58)  across conditions. 782 

 783 
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 786 

 787 
Figure S 1 Data quality in Experiments 1-3. (A-C) Percentage of responsive vertices in each visual area and condition tested. (D-F) 788 
Median goodness of fit (R2). Large dots indicate mean group results and small dots indicate individual participants’ data. Ordered 789 

(green), random (blue) and predictable (fuchsia) sequences are displayed for all experiments. In Experiments 2 and 3, the light 790 
blue dots and the dark blue dots depict results for the random no-cue and random cue conditions respectively.  791 

 792 
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 794 

 795 

 796 

Figure S 2 Group mean Pearson correlation matrices of predicted and observed time series in Experiments 1-3. The parameters 797 
obtained from fitting each of the mapping sequences (x-axis) are employed to generate time series for each of the conditions in 798 
the experiment. The resulting predicted responses are then correlated with the measured time series (y-axis). In all experiments, 799 
the ordered sequences are predicted with more accuracy than any of the other sequences irrespective of the parameters used for 800 
generating the times series. 801 

 802 
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