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Abstract 
Background: Ageing is associated with DNA methylation changes in all human tissues, and epigenetic markers 

can estimate chronological age based on DNA methylation patterns across tissues. However, the construction of 

the original pan-tissue epigenetic clock did not include skeletal muscle samples, and hence exhibited a strong 

deviation between DNA methylation and chronological age in this tissue. 

Methods: To address this, we developed a more accurate, muscle-specific epigenetic clock based on the 

genome-wide DNA methylation data of 682 skeletal muscle samples from 12 independent datasets (18-89 years 

old, 22% women, 99% Caucasian), all generated with Illumina HumanMethylation arrays (HM27, HM450 or 

HMEPIC). We also took advantage of the large number of samples to conduct an epigenome-wide association 

study (EWAS) of age-associated DNA methylation patterns in skeletal muscle. 

Results: The newly developed clock uses 200 CpGs to estimate chronological age in skeletal muscle, 16 of 

which are in common with the 353 CpGs of the pan-tissue clock. The muscle clock outperformed the pan-tissue 

clock, with a median error of only 4.6 years across datasets (vs 13.1 years for the pan-tissue clock, p < 0.0001) 

and an average correlation of ρ = 0.62 between actual and predicted age across datasets (vs ρ = 0.51 for the pan-

tissue clock). Lastly, we identified 180 differentially methylated regions (DMRs) with age in skeletal muscle at 

a False Discovery Rate < 0.005. However, Gene Set Enrichment Analysis did not reveal any enrichment for 

Gene Ontologies. 

Conclusions: We have developed a muscle-specific epigenetic clock that predicts age with better accuracy than 

the pan-tissue clock. We implemented the muscle clock in an R package called MEAT available on 

Bioconductor to estimate epigenetic age in skeletal muscle samples. This clock may prove valuable in assessing 

the impact of environmental factors, such as exercise and diet, on muscle-specific biological ageing processes. 

Keywords 
Skeletal muscle, epigenetic clock, aging, DNA methylation, epigenetic age, biological age 

Introduction 
Ageing is the normal, progressive decline of function occurring at the cellular, tissue and organismal levels over 

the lifespan1. Ageing increases susceptibility to a wide range of diseases, including cardiovascular and 

neurodegenerative diseases, metabolic disorders and many cancers1. It is therefore important to identify early 

and potentially modifiable molecular mechanisms that occur with advancing age. Changes in epigenetic patterns 

constitute a primary hallmark of ageing in all tissues of the human body2. Epigenetic marks are cellular 

properties conferring the ability to remember a previous biological event3, and some of these marks are sensitive 

to environmental stimuli such as diet, sleep4 and exercise training5,6. Epigenetic changes with age are 

particularly well characterised at the DNA methylation level7,8, including skeletal muscle9.  

The first DNA methylation-based estimator of chronological age (known as the pan-tissue epigenetic clock) was 

developed using a wide spectrum of tissues and nucleated cell types7. The resulting regression model could then 

be used to estimate the chronological age of tissue samples based on the DNA methylation levels of 353 CpGs 

(Cytosine-phosphate-Guanine dinucleotides). The difference between estimated DNA methylation age and 
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chronological age reflects not only technical noise but also biologically meaningful variation seen in 

epidemiological studies linking epigenetic aging rates to mortality risk, Alzheimer’s disease, and many age-

related conditions10,11. Age-related conditions are often associated with tissue-specific effects. For example, 

obesity is associated with strong epigenetic age acceleration in human liver samples but negligible effects in 

muscle tissue when assessed by the pan-tissue clock12. 

Most tissues exhibit similar epigenetic ages according to the pan-tissue clock but there are a few exceptions. For 

example, the cerebellum has been found to age more slowly13. Conversely, female breast tissue exhibits an 

increased epigenetic aging rate, especially in younger women7,14. The construction of the original pan-tissue 

clock did not include any skeletal muscle samples; instead, the pan-tissue clock was tested on few skeletal 

muscle samples (n = 66) with a strong deviation observed between DNA methylation and chronological age in 

this tissue7. While the pan-tissue clock has many applications, tissue-specific clocks developed exclusively in a 

given tissue, provide higher accuracy and specific application to specific tissues. In particular, blood tissue 

provides the opportunity to develop accurate predictors of lifespan and healthspan15,16, which is particularly 

useful as blood samples are little invasive. Specific epigenetic clocks have been developed for fibroblasts, 

keratinocytes, and buccal swabs17, and for cord blood samples18. However, to the best of our knowledge, no 

study to date has tackled the challenge of developing an epigenetic clock that is specific to human skeletal 

muscle.  

An epigenetic clock well calibrated in skeletal muscle could prove useful for studying the impact of 

environmental factors (e.g. exercise) on epigenetic ageing of this tissue, and the relationship with health and 

disease processes19. In general, skeletal muscle tissue is of great interest to aging researchers and clinicians 

because skeletal muscle mass is lost at a rate of 0.5–1% per year after age 5020. This muscle loss (sarcopenia) 

leads to a host of age related complications including frailty, as well as increased morbidity and mortality21. At 

the same time, skeletal muscle loses mitochondrial function and becomes increasingly resistant to insulin with 

age22. However, skeletal muscle is remarkably plastic, which makes it a highly responsive target tissue for 

lifestyle22. For example, changes in DNA methylation that occur with a healthy diet23, and exercise5,6 may be 

mechanistically involved in slowing down the ageing process1. 

In the current study, we aimed to address the poor performance of the pan-tissue clock in muscle by developing 

a muscle-specific epigenetic clock. We hypothesise that by using a large number of human skeletal muscle DNA 

methylation profiles, we can develop a muscle-specific epigenetic clock that outperforms the pan-tissue clock 

and that can estimate chronological age with high accuracy. We utilised DNA methylation data to estimate 

epigenetic age in a total of 682 male and female skeletal muscle samples aged 18-89. We also conducted an 

epigenome-wide association study (EWAS) to discover genes whose methylation change with age in skeletal 

muscle. We have made the muscle clock freely available in an R package called MEAT (Muscle Epigenetic Age 

Test) on Bioconductor. 

Results 
Description of the 12 skeletal muscle DNA methylation datasets   
We gathered skeletal muscle methylomes from 12 datasets generated with three different platforms: HM27, 

HM450 and the more recent HMEPIC, totalling n = 682 samples (Fig. 1, Additional file 1). Three datasets came 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 11, 2019. ; https://doi.org/10.1101/821009doi: bioRxiv preprint 

https://doi.org/10.1101/821009
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

from our own lab or collaborators, and the other nine were publicly available on the Gene Expression Omnibus 

(GEO) platform or the database of Genotypes and Phenotypes (dbGAP). Only three datasets included women 

and only two datasets included non-Caucasian individuals. Eight of the 12 datasets were paired designs (e.g. 

monozygotic twins discordant for disease or pre/post interventions, Additional file 1), meaning that some of the 

682 muscle samples were taken from healthy individuals at baseline or after a control diet, while other samples 

were taken after an exercise intervention, a high-fat diet, sleep deprivation, insulin stimulation, or were from 

individuals with T2D. We chose to keep all samples in the development of the muscle clock, as none of these 

factors were associated with drastic changes in age acceleration. For details on each individual dataset such as 

sample collection and DNA methylation assay, see Additional file 2. 

The 682 samples had a bimodal distribution of age, with an under-representation of 30-50 year olds (n = 242 

aged 18-30, n = 105 aged 30-50, n = 275 aged 50-70, n = 60 aged 70-90, Fig. 1). More importantly, datasets 

greatly differed in their mean age and age range (Fig. 1, Additional file 1). For example, dataset GSE50498 

contained younger (21.3 ± 2.4 years old), and older (73.2 ± 4.6 years old) but no middle-aged individuals; 

GSE36166 and GSE40798 had no variability in age, as all individuals were 24-25 years old.  

Development of a highly accurate skeletal muscle epigenetic clock 
To develop the muscle clock, we adopted the same approach as Horvath7. Briefly, we restricted our analysis to 

the 19,401 CpGs that were present in all 12 datasets. Then, we used dataset GSE50498 that had a large sample 

size (n = 48), and the broadest age range (18-89 years old), as a gold standard to calibrate all other datasets. 

Although it does not entirely remove variability from different labs and platforms, this step allows for a 

harmonisation of DNA methylation profiles between datasets. Then, a transformed version of chronological age 

was regressed on the 19,401 CpGs using a penalized regression model (elastic net). 

The elastic net model automatically selected 200 CpGs; with increasing age, 109 were hypomethylated and 91 

hypermethylated (Additional file 3). Sixteen were in common with the 353 CpGs used in the pan-tissue clock 

(Fig. 2a). This is more than expected by chance, as none of the 1,000,000 randomly drawn samples of 200 CpGs 

from our dataset had more than 14 CpGs in common with the 353 CpGs of the pan-tissue clock. In addition, the 

effect of age on the methylation levels of 15/16 of these common CpGs was the same in both clocks. This shows 

that the muscle clock includes some CpGs whose methylation changes with age in all human tissues. We then 

tested for enrichment of the 200 muscle clock CpGs in CpG islands, and in skeletal muscle chromatin states. 

These chromatin states were determined by the Roadmap Epigenomics Project and provide a powerful, accurate 

mapping of gene and enhancer activity in human skeletal muscle at individual genomic positions. While we did 

not find any enrichment in CpG islands, shores or shelves, the muscle clock CpGs that were hypomethylated 

with age showed depletion in regions flanking active promoters (False Discovery Rate (FDR) = 0.00085, Fig. 

2b). 

The muscle clock outperforms the pan-tissue clock 
As the number of datasets and samples were rather limited (around six times fewer samples than those used to 

develop the pan-tissue clock), we adopted a leave-one dataset-out-cross-validation (LOOCV) procedure to 

obtain unbiased estimates of the muscle clock accuracy7. LOOCV is performed by removing one dataset and 

developing the clock on the 11 remaining datasets; the omitted dataset is then used as a test set (Fig. 3). Since 

we had 12 available datasets, we performed 12 LOOCVs (one for each dataset); this is better than performing a 
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leave-one sample-out cross-validation procedure where the samples used to develop the clock contain samples 

from the same dataset as the omitted sample. This could lead to overly accurate age estimation, and would not 

apply well to new datasets. We then calculated three measures of accuracy: the correlation between predicted 

and actual age, the difference between predicted and actual age (AAdiff), and the residual from a linear 

regression of predicted age against actual age (AAresid) (Fig. 3). 

The skeletal muscle clock significantly outperformed the pan-tissue clock on the correlation between predicted 

and actual age (average ρ = 0.62 vs ρ = 0.51 across datasets, Fig. 4a, Additional file 4), and on the absolute 

AAdiff by 7.0 years (paired t-test p < 0.0001, Fig. 2b left panel, Additional file 4); however, the muscle clock 

was as accurate as the pan-tissue clock on the absolute AAresid (paired t-test p = 0.16, Figure 2b right panel, 

Additional file 4). We also estimated the accuracy of the muscle clock by calculating the median absolute error 

and the average difference between predicted age and chronological age for each dataset 7. While the median 

absolute error is a robust measure of prediction error, the average difference indicates whether the predicted age 

of a given dataset is consistently higher (or lower) than expected7 (Fig. 3). Across the 12 datasets, the muscle 

clock performed very well, with a median absolute AAdiff of only 4.6 years on average (range 2.4-10.6 years) vs 

12.0 years for the pan-tissue clock, and a median absolute AAresid of 3.4 years on average vs 2.7 years for the 

pan-tissue clock (Additional file 4). Unsurprisingly considering the biased age distribution between and within 

datasets (Fig. 1, Additional file 1), both the muscle and pan-tissue clocks tended to predict younger ages for 

older individuals using AAdiff (Fig. 5). However, this bias was significantly reduced in the muscle clock, and 

was inexistent for AAresid since by definition, AAresid is unrelated to age.  

EWAS of age 
We took advantage of the large number of samples to explore DNA methylation patterns associated with age in 

skeletal muscle. We found 1,975 age-associated Differentially Methylated Positions (DMPs), corresponding to 

180 Differentially Methylated Regions (DMRs) at FDR < 0.005 (Fig. 6a, Additional file 5). The direction of 

DNA methylation with age was balanced, with 51% of DMRs hypomethylated and 49% hypermethylated with 

advancing age (Additional file 5). 60% of the muscle clock CpGs were among the age-associated DMPs; one of 

these DMPs, located in Pipecolic Acid And Sarcosine Oxidase (PIPOX), was both in the muscle and pan-tissue 

clocks and showed one of the largest effect sizes (DNA methylation increased by 2.8% per decade of age, Fig 

6b, Additional file 5). Both hypo- and hypermethylated DMPs were depleted in CpG islands and active TSS 

while simultaneously enriched in CpG island shelves, open sea, actively transcribed regions and enhancers (Fig. 

6c). However, while hypomethylated DMPs were enriched in regions flanking active TSS and depleted in 

bivalent/poised TSS and in regions flanking bivalent TSS/enhancers, hypermethylated DMPs showed the 

opposite pattern (Fig. 6c). We then conducted a Gene Set Enrichment Analysis (GSEA) that takes into account 

the biased distribution of CpGs in genes, but found no enrichment of the DMPs for particular gene ontologies 

(GO) at FDR < 0.005. 

MEAT: an R package to determine the epigenetic age of skeletal muscle 
As part of the current investigation, we developed an open-access R package called MEAT (Muscle Epigenetic 

Age Test), available on Bioconductor. MEAT uses R code adapted from Horvath7 to calibrate skeletal muscle 

DNA methylation profiles to the GSE50498 gold standard. MEAT then calculates the epigenetic age of the 

calibrated samples using the muscle clock (elastic net model as implemented in glmnet). Users should provide a 
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pre-processed β-value matrix generated with the Illumina HumanMethylation platform, as well as an optional 

phenotype table containing information such as age, sex, health/disease status, etc. If age is provided, the 

package will not only estimate epigenetic age, but also age acceleration (AAdiff and AAresid). Users can also ask 

MEAT to fit standard or robust linear models to test associations between phenotypes of interest (e.g. sex) and 

age acceleration in their datasets. 

Discussion 
In the present study we developed an accurate epigenetic clock, specific to skeletal muscle, which outperformed 

the pan-tissue clock by an average of ~7 years across 682 samples, in 12 independent datasets. This clock uses 

DNA methylation levels at 200 CpGs to predict chronological age, with a median absolute error of only 4.6 

years, a significant improvement compared with the pan-tissue clock (12.0 years). We have made this clock 

available as an open-access R package called MEAT and available on Bioconductor. MEAT takes DNA 

methylation profiles assessed with the Illumina Infinium technology as input and outputs predicted age. This 

tool allows researchers to study the impact of environmental factors (e.g., exercise training, bed 

rest/immobilisation, diet, etc.) on the rate of aging in skeletal muscle samples. It could also be used to test 

whether diseased populations exhibit accelerated muscle-specific age acceleration compared with a matched 

healthy population, as was previously done using the pan-tissue clock12,24–26. 

We highlighted some important limitations in age distribution both within and between datasets that could 

influence the accuracy of the muscle clock. Despite these limitations, the accuracy of the age predictor was 

excellent. The remarkable accuracy in prediction can be explained by multiple factors, most of which previously 

mentioned by Horvath7. First, the largest datasets (GSE50498, GSE49908, Gene SMART and FUSION) were 

also those with the broadest age range, which limits the confounding effect of age with dataset. Second, 

measurements from Illumina DNA methylation arrays are known to be less affected by normalization issues 

compared with those from gene expression (mRNA) arrays. Third, the elastic net model used to develop the 

epigenetic clock automatically selects CpGs that are less sensitive to differences in cohorts, labs and platforms 

since it is trained on datasets from various cohorts, labs and platforms. Fourth, the relatively large number of 

datasets helps average out spurious results and artefacts. Lastly, age affects DNA methylation levels of tens of 

thousands of CpGs9. 

We found that there were more CpGs in common between the muscle- and pan-tissue clock7 than what would be 

expected by chance (as determined by our random sampling test). This suggests that the ageing process, despite 

being associated with many tissue-specific DNA methylation changes, is also associated with DNA methylation 

changes ubiquitous to all human cell types. The EWAS of age in skeletal muscle uncovered many genes whose 

methylation change with age. However, these genes were mostly distinct from the genes that are known to be 

differentially expressed in muscle with age27. Our relatively large sample size and wide age range allowed us to 

detect small effect sizes, and to uncover a large number of genes differentially methylated with aging in skeletal 

muscle. It is possible that age affects DNA methylation levels at these CpGs in all muscle cells. However, it is 

also possible that the DNA methylation differences between young and old individuals are due to differences in 

fibre type distribution, and perhaps also differences in satellite cell number and profiles. Slow- and fast-twitch 

fibres have distinct DNA methylation profiles28, and older muscle tends to have a greater proportion of slow-

twitch fibres than young muscle29. In addition, satellite cells maintain their multipotent state via distinct DNA 
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methylation profiles30 and both satellite cell numbers31 and DNA methylation profile32 change with age. The 

strength of this study lies in the utilisation of datasets that contained both young and older individuals from the 

general population; thus, it is likely that the muscle clock captured these DNA methylation changes due to fibre 

type changes with age. It was recently shown that controlling for heterogeneity in tissue/muscle fibre type 

reduces the number of physiological trait associations33, and it may also be the case that the epigenetic clock 

developed herein predicts different ages in different fibre types of a given individual. Uncovering which DNA 

methylation patterns change with age in fast-twitch fibres, slow-twitch fibres or in both fibres would be the next 

step to further enhance precision in the estimate of muscle age and in understanding how age affects muscle 

structure and function. 

Skeletal muscle follows a circadian rhythm whose phase can be changed by environmental cues such as food, 

exercise and sleep34. Importantly, epigenetic mechanisms are involved in circadian rhythms and some DNA 

methylation oscillations were recently shown to happen at the same CpG sites that show age-related DNA 

methylation shifts in mice35. In the datasets we used to develop the muscle clock, most biopsies were taken in 

the morning in a fasted state, following a control diet for > 24h and exercise restriction for > 48h, which limits 

short-term environmental influences on DNA methylation levels. However, some datasets containing middle-

aged and older individuals (GSE49908, GSE38291) did not have information on the conditions surrounding 

biopsy collection, so there is the possibility that some of these oscillations in DNA methylation are confounded 

with age in these datasets. We foresee that as more DNA methylation profiles in skeletal muscle are generated 

under controlled conditions and become publicly available, the muscle clock will be updated and gain in 

precision. 

Conclusions 
In conclusion, we have developed an advanced muscle-specific epigenetic clock, using all known available 

datasets. This clock is freely available on Bioconductor as an R package (MEAT) for the scientific community to 

calculate epigenetic age. This new clock significantly outperforms the previous pan-tissue clock, and can 

calculate the epigenetic age in skeletal muscle with a mean accuracy of 4.9 ± 4.5 years across 682 samples. This 

muscle clock will be of interest and potential use to researchers, clinicians and forensic scientists working in the 

fields of skeletal muscle, chronic diseases, and ageing. In the future, we intend to evaluate how environmental 

factors, such as exercise and diet, could influence ageing via this newly developed clock.  

Methods 
Description of datasets used 
We combined three datasets of DNA methylation in skeletal muscle (the Gene SMART (Skeletal Muscle 

Adaptive Response to Training)36, the E-MTAB-6908 study4, and the Bond University LITER study 

(unpublished)), with human skeletal muscle DNA methylation data from the open-access Gene Expression 

Omnibus (GEO) platform and the database of Genotypes and Phenotypes (dbGAP). We excluded datasets with 

< 3 samples, missing information on age (i.e. no age information on the GEO and corresponding author 

unresponsive), and datasets from primary cell culture experiments. Overall, we identified 8 datasets on the GEO 

and one dataset on dbGAP (Additional file 1), with sample sizes ranging from n = 3 to n = 282. Eight datasets 
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were paired designs (e.g. monozygotic twins discordant for disease or pre/post interventions) and four cross-

sectional. We described each dataset in details in the Supporting Information. 

Pre-processing 
Whenever possible (i.e. when we had information on p-value detection for each probe, raw methylated and 

unmethylated signals or IDAT files, and batch/position information for each sample), we downloaded and pre-

processed the raw data. If we did not have enough information on a given dataset (e.g. missing batch 

information), we utilised the processed data available on the GEO. In datasets that we did not pre-process, 

missing data was imputed using the champ.impute function of the ChAMP package37, with default parameters. 

As quality control, we ensured all datasets had a mean inter-correlation > 0.97 and a maximum beta-value > 

0.99. For each individual dataset we pre-processed, we applied the following pre-processing steps using the R 

statistical software (www.r-project.org) together with the ChAMP analysis pipeline37 (for a full description of 

pre-processing steps on each dataset, see Additional file 1): 

Any sample with > 10% of probes with detection p-value > 0.01 was removed (default parameter of the 

champ.load function). All probes with missing β-values, with a detection p-value > 0.01, probes with a bead 

count < 3 in at least 5% of samples, non-CG probes and probes aligning to multiple locations were removed, 

and for datasets containing males and females, probes located on the sex chromosomes were removed. SNP-

related probes (“EUR” population probes in Zhou et al. 38) were also removed. β-values were obtained, and 

defined as 

β� value �
��������� �	 �
� ���
����� �����

��������� �	 �
� �����
����� ����� � ��������� �	 �
� ���
����� ����� � ���
  

Then, β-mixture quantile normalization (BMIQ) method was applied to adjust for the Type I and Type II probe 

designs for methylation profiles generated from the HM450 and HMEPIC arrays. To identify technical and 

biological sources of variation in each individual dataset, Singular Value Decomposition (SVD) was performed. 

In all pre-processed datasets, both the plate and the position on the plate were identified as significant technical 

effects. Thus, all β-values were converted to M-values and the ComBat function from the sva package used to 

adjust directly for these technical artefacts.  

Only 19,401 CpGs were identified to be in common between the 12 datasets after pre-processing, and all probes 

found on the HM27, HM450 and HMEPIC arrays (Additional file 6). To obtain DNA methylation profiles that 

were comparable between datasets, we adopted Horvath’s calibration method. We calibrated 11 or the 12 

datasets to a gold standard, using the adapted version of the BMIQ algorithm7. We used GSE50498 as the gold 

standard since it was a large dataset (n = 48 samples) with the broadest age range (18-89 years old).  

Muscle clock development 
We analysed 12 DNA methylation datasets from human skeletal muscle for which chronological age was 

available. We developed the muscle clock using an elastic net regression model identical to Horvath’s where a 

transformed version of chronological age was regressed on the 19,401 CpGs7. We first performed 10-fold cross-

validation to select the optimal regularization parameter λ, using the elastic-net mixing parameter α = 0.5.  

Given the limited number of datasets and the biased age distribution in each dataset, we adopted a leave-one-

dataset-out cross-validation procedure to obtain an unbiased estimate of the muscle clock accuracy. We then 
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calculated the prediction error as the age acceleration (AA), using two definitions that have been previously 

described7,39: the difference between predicted and actual age (AAdiff), and the residual from a linear regression 

of predicted age against actual age (AAresid) (Fig. 3). While AAdiff is a straightforward way of calculating the 

error in age prediction, it is sensitive to the mean age of the dataset 7 and to the pre-processing of the DNA 

methylation dataset39; AAdiff can be biased upwards or downwards depending on how the dataset was 

normalized, and depending on the mean age and age variance of the dataset. In contrast, AAresid is insensitive to 

the mean age of the dataset and is robust against different pre-processing methods39. Finally, we also calculated 

the Pearson correlation between predicted and actual age of the sample cohorts. 

Pan-tissue clock 
We used the online epigenetic age calculator (https://dnamage.genetics.ucla.edu/home) selecting the option 

“Normalized Data” to implement the original pan-tissue clock7.  

Statistics 
We used a paired t-test on the absolute AA (AAdiff or AAresid) to compare the accuracy of the muscle clock to 

that of the pan-tissue clock. As recently suggested to improve replicability in science40, a p-value < 0.005 was 

deemed significant . 

To identify age-associated methylation positions (DMPs), we used linear models and moderated Bayesian 

statistics as implemented in the limma package41. The DNA methylation levels at 19,401 CpGs from the n = 682 

muscle samples were regressed against age, sex, and dataset ID. We used the block design as implemented in 

lmFit to account for the paired designs of some datasets. DMPs associated with age at a false discovery rate 

(FDR) < 0.005 were deemed significant40,42. To identify differentially methylated regions (DMRs, i.e. clusters of 

DMPs with consistent DNA methylation change with age), we used the dmrcate package43. 

To identify age-associated GO terms, we conducted a Gene Set Enrichment Analysis (GSEA) as implemented in 

the gometh function of the missMethyl package44, using our own improved annotation of the epigenome and 

largely based on Zhou et al.’s annotation38. This function accounts for the biased distribution of CpGs in genes. 

All GO terms pathways at FDR < 0.005 were deemed significant40,42.  

To test whether the clock CpGs showed any enrichment inside or outside CpG islands, or enrichment for 

specific chromatin states, we compared the distribution of the clock CpGs with that of all other CpGs in 

different CpG island domains (open sea, CpG island, CpG island shore, CpG island shelf), or chromatin states in 

male skeletal muscle from the Roadmap Epigenomics Project with a Fisher’s exact test. As there are 4 different 

positions with respect to CpG islands and 15 different chromatin states, we only considered positions with 

respect to CpG islands and chromatin states significant if FDR < 0.005. 
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Additional files 
Additional file 1. Overview of the 12 datasets of DNA methylation in skeletal muscle. 

Additional file 2. Detailed description of the 12 datasets of DNA methylation in skeletal 

muscle. 

Additional file 3. Detailed information on the 200 CpGs automatically selected by the 

elastic net model. 

Coefficient = coefficient in the elastic net model. Each CpG was annotated to one or more genes using the 

annotation file from Zhou et al.38 to which we added annotation to long-range interaction promoters using 

chromatin states in male skeletal muscle from the Roadmap Epigenomics Project and GeneHancer information 

from the Genome Browser (hg38). 

Additional file 4. Leave-one dataset-out cross-validation (LOOCV) analysis of the 

muscle clock and comparison with the pan-tissue clock. 

Each row shows accuracy estimates for a given dataset. The three accuracy measures reported in this paper 

include the Pearson correlation coefficient between predicted and actual age, the difference between predicted 

age and actual age (AAdiff), and the residuals from a linear model of predicted age against actual age (AAresid). 

Note, the shaded cells indicate we did not calculate the Pearson correlation coefficient for datasets GSE36166 

and GSE40798 as they are invariant in age, nor for dataset GSE87655 as the sample size was too low (n = 3). 

Data are shown as mean ± SD. 

Additional file 5. Summary of differentially methylated positions and regions with age. 

Effect size = methylation change per year of age or between men and women. Each CpG was annotated to one 

or more genes using the annotation file from Zhou et al.38. 
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Additional file 6. Genomic location and annotated genes for the 19,401 CpGs in 

common between all 12 datasets of DNA methylation in skeletal muscle. 

Figure legends 
Fig. 1. Age distribution in the 12 datasets used to develop the muscle clock. 

a) Waffle chart of the 12 datasets, split by database. Each cell represents 1 percentage point summing up 

to the total number of samples (n = 682); dbGAP = database of Genotypes and Phenotypes; GEO = 

Gene Expression Omnibus. 

b) Age distribution in all 12 datasets pooled together (n = 682). 

c) Age distribution in each individual dataset. Datasets were color-coded as in the waffle chart (a). 

Fig. 2. The 200 muscle clock CpGs. 

a) Overlap between the 353 CpGs of the pan-tissue clock and the 200 CpGs of the muscle clock. The 16 

CpGs in common between the two clocks are displayed as table, with the annotated gene(s), and the 

direction of methylation with age in each of the two clocks. 

b) Enrichment of the 200 muscle clock CpGs in positions with respect to CpG islands (top), and in 

chromatin (bottom). Enrichment was tested with a Fisher’s exact test, adjusted for multiple testing. 

*FDR < 0.005. 

Fig. 3. Methodology for leave-one dataset-out cross-validation (LOOCV) and measures 

of age prediction accuracy. 

In the LOOCV, one dataset is left out (test set) and all other datasets (training sets) are used to develop the age 

predictor. The DNA methylation profiles of the training sets are input into an elastic net regression model 

(glmnet package in R) and this model is then used to estimate age in the test set. Predicted and actual age were 

correlated using Pearson’s correlation coefficient (unless all individuals had the same age or the dataset was too 

small). We also calculated the AAdiff as the difference between predicted and actual age. We then calculated the 

median of the absolute values of AAdiff to estimate how well calibrated the clock was to this particular test set, 

and the mean of AAdiff to see whether the test set as a whole was younger (or older) than expected. Finally, we 

calculated the residuals from a linear regression of predicted age against actual age (AAresid) to obtain accuracy 

measures insensitive to the mean age of the dataset and to pre-processing techniques. 

Fig. 4. Predicted vs actual age and errors in age prediction in the LOOCV procedure. 

Each point corresponds to one of the 682 samples, colored by datasets to which they belong. 

a) Predicted vs actual age. Note that to obtain truly unbiased estimates of age prediction accuracy, the age 

predicted by the muscle clock is from the leave-one-out cross-validation procedure. 

b) Error in age prediction, either as the difference between predicted and actual age (left panel), or as the 

residuals from a linear model of predicted against actual age (right panel). Note that both panels are on 

different scales. 
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Fig. 5. Age acceleration as a function of age in the muscle and the pan-tissue clocks. 

Here we show the bias in age prediction depending on the age of the individual. Using the difference between 

predicted and actual age (AAdiff), younger individuals show systematically epigenetic ages than their real age, 

while older individuals show systematically older epigenetic ages than their real age. However, this bias is less 

pronounced in the muscle clock, and inexistent when using AAresid. 

Fig. 6. Differential DNA methylation with age in skeletal muscle. 

a) Volcano plot of DNA methylation changes with age. Each point represents a tested CpG (19,401 in 

total) and those highlighted in red were the differentially methylated positions (DMPs) significant at a 

false discovery rate (FDR) < 0.005. The x axis represents effect size, expressed as differential 

methylation per year of age. The y axis represents statistical significance, expressed as –log10(p-value), 

so CpGs that are higher on the graph are more significant. 

b) DNA methylation level as a function of age, for the CpG in PIPOX that was in both the muscle and 

pan-tissue clocks and that showed one of the largest effect size. 

c) Enrichment of DMPs in positions with respect to CpG islands (left), and in chromatin states (right). 

Enrichment was tested with a Fisher’s exact test, adjusted for multiple testing. *FDR < 0.005. 
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