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Abstract 
Single-cell RNA sequencing (scRNA-seq) is a versatile tool for discovering and 
annotating cell types and states, but the determination and annotation of cell 
subtypes is often subjective and arbitrary. Often, it is not even clear whether a 
given cluster is uniform. Here we present an entropy-based statistic, ROGUE, to 
accurately quantify the purity of identified cell clusters. We demonstrated that our 
ROGUE metric is generalizable across datasets, and enables accurate, sensitive 
and robust assessment of cluster purity on a wide range of simulated and real 
datasets. Applying this metric to fibroblast and B cell datasets, we identified 
additional subtypes and demonstrated the application of ROGUE-guided analyses 
to detect true signals in specific subpopulations. ROGUE can be applied to all 
tested scRNA-seq datasets, and has important implications for evaluating the 
quality of putative clusters, discovering pure cell subtypes and constructing 
comprehensive, detailed and standardized single cell atlas. 
 
Introduction 
Tissues are complex milieus comprising various cell types and states with 
specialized roles1. Characterizing the property and function of each pure cell type 
is a long-standing challenge in biological and medical disciplines. The recent 
advances in scRNA-seq have transformative potential to discover and annotate 
cell types, providing insights into organ composition2, tumor microenvironment3, 
cell lineage4 and fundamental cell properties5. However, the identification of cell 
clusters is often determined by manually checking specific signature genes, which 
are arbitrary and inherently imprecise. In addition, different methods and even 
parameters used for normalization, feature selection, batch correction and 
clustering can also confound the final identified clusters6, thus motivating the need 
to accurately assess the purity or quality of identified clusters (Fig. 1a). 
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A pure cluster here is defined as a population where all cells have identical function 
and state without variable genes. The importance of purity assessment is 
particularly relevant for analyses that aim to discover novel pure subtypes and 
further detect the true biological signals. For example, signature genes specific to 
a pure subpopulation may be mistakenly considered as the common signals of a 
mixture due to less guided clustering and annotation. The purity evaluation could 
therefore eliminate such misleading conclusions, potentially aiding our 
understanding of cellular function, state and behavior. While pioneering 
approaches such as silhouette7, DendroSplit8, and distance ratio9 have been 
devoted to determining the optimal number of identified clusters by calculating the 
ratio of within-cluster to inter-cluster dissimilarity, they are not comparable among 
datasets and have poor interpretability of cluster purity. For example, an average 
silhouette value of 0.7 indicates a fairly strong consistency for a given cluster, but 
it is still unknown whether this cluster is a pure population or a mixture of similar 
subpopulations especially when frequent dropout events occur. 
 
The challenges presented by purity evaluation can be broadly addressed by 
investigating the number of “infiltrating” non-self cells and variable genes, which 
are suited to the intended areas of unsupervised variable gene detection. Given 
its importance, diverse methods10 have been proposed for the quantification and 
selection of highly variable genes. In particular, scran11 aims to identify variable 
genes by comparing variance to a local regression trend. However, the over-
dispersion, coupled with the high frequency of dropout events, would often result 
in “swamping” of useful information, causing the deterioration of the results of such 
variance-based approaches12. Alternatively, Gini coefficient13 could be used to 
quantify the variation in gene expression, but the limited performance restricts its 
scalability. New probabilistic approaches for variable gene selection using dropout 
rates have also been recently adapted14, with the advantage of supporting both 
pseudotime analysis and discrete clustering, but their usage of dropout metric 
hinder the capturing of the global distribution of gene expression. Although highly 
informative genes can also be determined by inspecting their weights during 
multiple iterations of dimensionality reduction15, such ad hoc approaches are 
computationally intensive and do not provide independent metrics for gene 
expression variability. 
 
Here, we present an entropy-based model to measure the randomness of gene 
expression in single cells, and demonstrate that this model is scalable across 
different datasets, capable of identifying variable genes with high sensitivity and 
precision. Based on this model, we propose the ROGUE statistic to quantify the 
purity or homogeneity of a given single cell population while accounting for other 
technical factors. We demonstrate that the ROGUE metric enables accurate and 
unbiased assessment of cluster purity, and thus provides a universal measure to 
evaluate the quality of both published and newly generated cell clusters. Applying 
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ROGUE to B cell and fibroblast analyses, we identified additional pure subtypes 
and demonstrate the application of ROGUE-guided analysis in detecting the real 
biological signals. Our approach is broadly applicable for any scRNA-seq data, and 
is implemented in an open-source R package ROGUE 
(https://github.com/PaulingLiu/ROGUE), which is freely available. 
 
Results 
 
Expression entropy model enables sensitive and accurate identification of 
variable genes 
As scRNA-seq data can be approximated by negative binomial (NB) or zero-
inflated NB (ZINB) distribution16,17, we considered the use of the statistic, 𝑆𝑆 
(expression entropy — differential entropy of expression distribution, as defined in 
Methods), to capture the degree of disorder or randomness of gene expression. 
Notably, we observed a strong relationship between 𝑆𝑆 and the mean expression 
level (𝐸𝐸) of genes, thus forming the basis for our expression entropy model (𝑆𝑆-𝐸𝐸 
model, Fig. 1b-c). Moreover, 𝑆𝑆 is linearly related to 𝐸𝐸 for the Tabula Muris dataset2 
as expected (Fig. 1b), which is characteristic of current droplet experiments, hence 
demonstrating the NB nature of UMI-based datasets (Methods). For a 
heterogeneous cell population, certain genes would exhibit expression deviation 
in fractions of cells, leading to constrained randomness of its expression 
distribution and hence the reduction of 𝑆𝑆. Accordingly, informative genes can be 
obtained in an unsupervised fashion by selecting genes with maximal 𝑆𝑆-reduction 
(𝑑𝑑𝑑𝑑) against the null expectation (Methods). 
 
To illustrate the performance of 𝑆𝑆-𝐸𝐸 model, we benchmarked our method against 
HVG11, Gini13 and M3Drop14 on data simulated from both NB and zero-inflated NB 
(ZINB) distribution (Methods). For a fair comparison, we generated a total of 1600 
evaluation datasets and used AUC as a standard to test the performance of each 
method. As a tool to identify genes specific to rare cell types, Gini outperformed 
HVG and M3Drop when there were subpopulations accounting for less than 20% 
of the cells. In contrast, HVG was slightly better than Gini and M3Drop in the 
presence of cell subpopulations with a larger proportion. Notably, expression 
entropy model consistently achieved the highest AUC score and significantly 
outperformed other gene selection methods in all tested cases with varied 
subpopulation proportions or gene abundance levels (Fig. 1d and Supplementary 
Figs. 1 and 2). 
 
To validate our unsupervised feature selection method in real datasets, we 
performed cross-validation experiments using random forest classifier (RF)18, with 
70% cells from the original sample as reference and remaining 30% cells as query 
set (Methods). Intuitively, gene sets that enable higher classification accuracy are 
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more biological meaningful. Using 14 previously published datasets derived from 
both droplet-based and full-length protocols (Supplementary Table 1), we 
demonstrated that our method consistently identified genes with greater ability of 
classification when different number (30-5000) of genes were selected, followed 
by Gini, HVG and M3Drop (Fig. 1e,f and Supplementary Figs. 3 and 4). Specially, 
our 𝑆𝑆-𝐸𝐸 model showed notable superiority when fewer genes (30-100) were used, 
demonstrating its sensitivity. Taken together, these results suggest that genes 
identified by our model are more informative and biologically discriminating. 
 
Since datasets derived from the same biological system are expected to have 
reproducible informative genes14, we tested how our expression entropy model 
behave using technical replicates from different tissues (Supplementary Table 2). 
Notably, genes identified by our 𝑆𝑆-𝐸𝐸 model were more reproducible when top 500-
2000 genes were used (Fig. 1g). In addition, we also considered four pancreatic 
datasets (Supplementary Table 3) derived from different technologies and labs. 
These real datasets are more complex than technical replicates as they included 
systemic nuisance factors such as batch effects. Despite substantial systematic 
differences, our model consistently achieved the highest reproducibility score (Fig. 
1h), demonstrating that 𝑆𝑆 - 𝐸𝐸  model provides reliable, robust and accurate 
identification of informative genes, hence forming the foundation for the 
subsequent purity assessment of single cell clusters. 
 
The ROGUE index for quantifying the purity of cell population 
Unsupervised clustering is currently the standard method to identify new cell 
types19. However, the identification and annotation of a putative subtype is often 
arbitrary and lack a quantitative metric for robust purity evaluation. Here, we take 
advantage of the wide applicability of 𝑆𝑆-𝐸𝐸 model to scRNA-seq data and introduce 
the statistic ROGUE (Ratio of Global Unshifted Entropy) to measure the purity of 
single cell populations (Methods). Intuitively, a cell population with no significant 
𝑑𝑑𝑑𝑑 for all genes will receive a ROGUE value of 1, indicating it is a completely pure 
subtype or state. In contrast, a population with maximum summarization of 
significant ds will yield a purity score of ~0. 
 
We investigated the performance of ROGUE on 1860 cell populations simulated 
from both NB and ZINB distribution (2000 cells x 20000 genes each), with 0.1%-
50% genes varied in a second cell type (Methods). A cell population with both 
fewer “infiltrating” non-self cells and varied genes would yield a high purity score, 
while a population with converse situation is expected to yield a low purity score. 
It is evident that the ROGUE index decreased monotonically with the heterogeneity 
of cell populations (Fig. 2a,b and Supplementary Figs. 5 and 6). ROGUE 
performed well even when cell populations contained few varied genes (<1%) and 
“infiltrating” cells (<1%), indicating ROGUE index provides a sensitive and 
unbiased measure in response to the degree of cell population purity. To address 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 27, 2019. ; https://doi.org/10.1101/819581doi: bioRxiv preprint 

https://doi.org/10.1101/819581
http://creativecommons.org/licenses/by-nd/4.0/


5 
 

the potential concern that the number of cells may represent an intrinsic challenge 
for 𝑆𝑆 and ROGUE calculation, particularly if only few cells are collected from given 
samples, we performed down sampling analysis to test how 𝑆𝑆 was impacted by 
cell numbers. By calculating the Pearson correlations of 𝑆𝑆 between the randomly 
down-sampled datasets and the entire datasets, we found the similarity values 
of >0.99 and demonstrated that our 𝑆𝑆  and ROGUE calculation would not be 
unaffected by variation in cell number (Fig. 2c). 
 
Sequencing depth can vary significantly across cells, with variation potentially 
spanning orders of magnitude2, and hence contributes to a substantial technical 
confounder in scRNA-seq data. We sought to investigate whether ROUGE index 
can accurately assess the purity of single cell population while accounting for this 
technical effect. As test cases, we simulated increasing molecular counts 
(sequencing depth) in a second “mock” replicate, with the fold change of gene 
expression means ranging from 2 to 100 (Fig. 2d and Methods). Despite the 
substantial technical effect, the mixture of each two simulated replicates is 
expected to be a pure cell population. Here we used silhouette to measure the 
degree of replicate-to-replicate differences. The results revealed ROGUE values 
of ~0.99-1 for each population consisting of two replicates, with silhouette values 
ranging from 0.25 to 0.75 (Fig. 2e,f and Supplementary Fig. 7a). Thus, ROGUE 
not only offers a robust and sensitive way to estimate the purity of single cell 
population, but also accounts for the variation in sequencing depth. 
 
The ROGUE accurately assesses the purity of cell populations 
To illustrate the applicability of ROGUE index to real data, we first considered an 
ERCC (External RNA Controls Consortium) dataset20 with no biological variability, 
which is an ideal case of pure cell population. This ERCC dataset achieved 
ROGUE ~1 with only one significant gene. Further, we investigated the fresh 
peripheral blood mononuclear cells (PBMCs) enriched from a single healthy 
donor20. The authors provided multiple cell types purified by fluorescence-
activated cell sorting (FACS), and thus representing a suitable resource for purity 
assessment. These cell types in Fig. 2g, including CD4/CD8 naïve T cells and CD4 
memory T cells, have been shown to be highly homogeneous populations21, and 
were detected high ROGUE values (0.94-1) as expected. In contrast, both CD14 
monocytes and CD34+ cells are mixtures of diverse subtypes20 and received 
relatively low ROGUE values (~0.8; Fig. 2h), thus confirming their heterogeneity. 
 
In addition to highly controlled datasets, it is also instructive to investigate how 
ROGUE index performs on pure subtypes identified by unsupervised clustering. 
Here we first considered six well defined T cell subtypes from human colorectal 
cancer5, which were generated via the Smart-seq2 protocol. All these pure 
subtypes achieved high ROGUE values of >0.9 (Fig. 2i), versus 0.78 for complete 
data (Supplementary Fig. 7b). We next examined four dendritic cell (DC) subsets 
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collected from human lung cancers22 and sequenced with inDrop platform. 
Specially, tumor-infiltrating DC2 cells have been proven to be highly 
heterogeneous populations23,24 and deviated substantially from the other 
homogeneous cell types including DC1, LAMP3+ DC and pDC (Fig. 2j). Taken 
together, these results illustrate that our ROGUE represents an effective and direct 
quantification of cell population purity without being affected by technical 
characteristics. 
 
ROGUE-guided analysis enhances single cell clustering and cell type 
identification 
We next evaluated the potential for ROGUE to guide clustering analysis with 
silhouette, which investigates whether a certain clustering has maximized inter-
cluster dissimilarity and minimized within-cluster dissimilarity. As a test case, we 
simulated a scRNA-seq dataset consisting of three cell types A, B and C (see 
Methods for details), where cell type A and B were similar subtypes with 1% varied 
genes. We clustered this dataset into 2, 3, 4, and 5 subpopulations respectively by 
adjusting the resolution parameter in Seurat25 (Fig. 3a), then evaluated the results 
by inspecting corresponding silhouette and average ROGUE values. Proper 
clustering of this dataset should result in three subpopulations, one for each cell 
type. However, silhouette received the maximum value when cell type A co-
clustered with B (Fig. 3b), i.e., when only two clusters were identified, suggesting 
that such measure is poorly interpretable for cluster purity as opposed to ROGUE, 
which reached saturation when there were three clusters (Fig. 3c). Repeating the 
simulation with varied differences in cell type A, B and C yielded equivalent 
performance for these two methods (Supplementary Fig. 8a-f). Since ROGUE can 
provide direct purity quantification of a single cluster and is independent of 
methods used for normalization, dimensionality reduction and clustering, it could 
also be applied to guide the splitting (re-clustering) or merging of specific clusters 
in unsupervised clustering analyses. 
 
To test how ROGUE could help the clustering of real datasets, we examined a 
previously reported dataset of cancer-associated fibroblasts (CAFs)26, which were 
collected from lung tumors. CAFs have been reported to represent a highly 
heterogeneous population and may play a tumor-supportive role in the tumor 
microenvironment27. We found that the 7 identified fibroblast clusters received low 
ROGUE values (Fig. 3d,e and Supplementary Fig. 9a). We therefore performed 
re-clustering analysis with the goal of exploring the extent of heterogeneity and 
identified a total of 11 clusters with a higher average ROGUE value (Fig. 3d,e). In 
addition to the two classical subtypes of CAFs (myofibroblastic CAFs and 
inflammatory CAFs), we also found the presence of antigen-presenting CAFs 
(apCAFs) that was characterized by the high expression of CD74 and MHC class 
II genes (Supplementary Fig. 9b). The apCAFs were firstly discovered as a 
fibroblast subtype in mouse pancreatic ductal adenocarcinoma (PDAC), but barely 
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detectable in human PDAC without forming a separate cluster28. The considerable 
existence of apCAFs in lung cancer thus may indicate potential differences 
between different cancer types.  
 
Furthermore, we noted that the myCAFs (AF_C02_COL4A1, ROGUE=0.81) 
identified by original authors could be further segregated into three distinct 
subpopulations, including BF_C01_RGS5 (ROGUE=0.87), BF_C02_ACTA2 
(ROGUE=0.84) and BF_C03_GPX3 (ROGUE=0.94). Interestingly, the signature 
genes of AF_C02_COL4A1 described by original authors were actually specific to 
one of these three subpopulations, including MEF2C in BF_C01_RGS5 and 
MYH11 in BF_C02_ACTA2 (Fig. 3f). Pathway analysis also revealed that the 
NOTCH signaling was activated in BF_C01_RGS5 (Fig. 3g) rather than a common 
signal of AF_C02_COL4A126. Despite the considerable increase of overall 
ROGUE index, BF_C00_AOL10A1, BF_C04_COL1A2 and BF_C05_PLA2G2A 
still received relatively low ROGUE values, thus deserving further investigation. 
Overall, ROGUE-guided analysis not only discovered novel cell subtypes, but also 
enabled the detection of the true signals in specific pure subpopulations. 
 
ROGUE-guided analysis identified pure B cell subtypes in liver and lung 
cancer 
B cells are key components in tumor microenvironment but have unclear functions 
in antitumor humoral response29. Here we investigated previously reported liver 
and lung tumor infiltrating B cells26,30 and found that they received relatively low 
ROGUE values (Fig. 4a). Thus, we applied further clustering analysis coupled with 
ROGUE to these B cells in an attempt to discover pure subtypes. A total of 7 
clusters were identified, each with its specific marker genes (Fig. 4b-d). Cells from 
the first B cell subset, B_C0_JUNB, specifically expressed signature genes 
including JUNB and FOS, thus representing activated B cells31. The second subset, 
B_C1_TXNIP, showed high expression of glycolysis pathway genes 
(Supplementary Table 4), indicating its metabolic differences. ACTB, a gene 
involved in antigen presenting, was highly expressed in the third subset 
(B_C2_ACTB). Pathway activity analysis also revealed a strong antigen 
processing and presentation signal in this subset (Supplementary Table 4). The 
fourth cluster, B_C3_FCER2, characterized by high expression of HVCN1 and 
genes involved in B cell receptor signaling pathway (Supplementary Table 4), was 
largely composed of pre-activated B cells30. The fifth cluster, B_C4_MX1, 
predominantly composed of interferon induced B cells32, expressed high levels of 
MX1, IFI6 and IFI44L. The sixth cluster, B_C5_CD3D, expressed key markers of 
both T and B cell lineages (Fig. 4d), thus maybe the dual expressers (DEs)-like 
lymphocytes33 or doublets. The remaining B cells, falling into the seventh cluster, 
B_C6_LRMP, exhibited high expression of LRMP and RGS13, indicative of the 
identity of germinal center B cells34. 
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Both DEs/doublets-like and germinal center B cells exhibited low ROGUE values 
(Fig. 4e), but the limited cells did not permit further clustering. For germinal center 
B cells, we readily detected the high expression of proliferating marker genes, 
including MKI67 and STMN1 (Supplementary Fig. 10), in a fraction of these cells, 
thus explaining the heterogeneity to some extent. In contrast to these two clusters, 
we found ROGUE values of >0.92 for each of the remaining five clusters (Fig. 4e), 
demonstrating that they were all highly homogeneous B cell subtypes. By 
calculating the ratio of observed to expected cell numbers with chi-square test 
(RO/E), we noted that both B_C02_ACTB and B_C04_MX1 contained mainly cells 
from tumor, with RO/E values > 1 (Fig. 4f). Similar analyses stratified by patient 
further confirmed this trend (Fig. 4g). Based on the independent TCGA lung 
adenocarcinoma (LUAD) cohort dataset, patients with higher expression of the 
marker genes of B_C02_ACTB (normalized by MS4A1; Supplementary Table 5) 
showed significantly worse overall survival (Fig. 4h). Such survival difference was 
also observed in TCGA liver hepatocellular carcinoma (LIHC) cohort dataset (Fig. 
4i). Thus, the clinical implication deserves further study to investigate what specific 
roles B_C02_ACTB cells play in tumor microenvironment. In summary, identifying 
pure subtypes with ROGUE-guided analysis could enable a deeper biological 
understanding of cell state and behavior. 
 
Discussion 
Purity assessment of identified cell clusters is paramount to the interpretation of 
scRNA-seq data. This assessment is especially pertinent as increasingly rare and 
subtle cell subtypes are being uncovered. To address this computational challenge, 
we present the 𝑆𝑆-𝐸𝐸 model and demonstrate that this model is capable of identifying 
variable genes with high sensitivity and precision, and thus could be applied to 
both clustering and potentially pseudotime analyses. By taking advantage of the 
wide applicability of 𝑆𝑆-𝐸𝐸 model, we develop the statistic ROGUE to quantify the 
purity of single cell populations. Through a wide range of tests, we demonstrate 
that our entropy-based measure, ROGUE, is generalizable across datasets from 
different platforms, protocols and operators, and able to successfully quantify the 
purity of single cell populations regardless of uncontrollable cell-to-cell variation. 
 
When using ROGUE to assess the purity of four DC subtypes from human lung 
tumors, we found that DC2 was a heterogeneous population, which is consistent 
with previous findings24. Such heterogeneous populations like DC2 may have 
different properties and specialized roles in the cancer microenvironment, and 
could be assessed in a similar fashion with ROGUE. Accordingly, future studies 
could focus on these cell populations and hence may deepen our understanding 
of cellular origins of cancer. In addition, ROGUE addresses an important need in 
unsupervised single cell data analyses, i.e., to effectively assess the quality of 
published or newly generated clusters. Often, unsupervised clustering may lead to 
under- or over-clustering of cells due to the lack of universal stands for clustering 
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quality. By quantifying cluster purity with ROGUE before and after clustering or re-
clustering, we were able to detect low-purity clusters and perform further analysis 
to discover pure subtypes. Improving the purity and credibility of the ever-
increasing number of cell types is a mounting challenge with explosive efforts 
towards single cell sequencing, and ROGUE could become a potential universal 
standard for judging the quality of cell clusters. 
 
Our ROGUE-guided analysis on fibroblasts identified a novel subpopulation in lung 
cancer, apCAFs, which highly expressed CD74 as well as MHC class II genes and 
had a strong antigen-presenting signal. These cells have been speculated to 
deactivate CD4 T cells and decrease the CD8+ to Treg ratio in mouse PDAC28, 
but have unclear role in the lung cancer microenvironment, hence requiring further 
investigation. Moreover, when applying ROUGE to B cell analysis, we found an 
interesting pure cluster B_C02_ACTB that displayed high expression of genes 
involved in antigen processing and presentation. Cells from this cluster were 
preferentially enriched in tumors and were associated with poor prognostic 
outcomes in both lung and liver cancer. We therefore hypothesize that these cells 
may contribute to immune suppression in the cancer microenvironment and hence 
curtail anti-tumor immunity, although further studies are required to define the roles 
of these cells. Such approaches for discovering novel or additional pure subtypes 
can also be extended to other published or newly generated scRNA-seq datasets. 
 
When determining the purity of cell clusters, we recommend a ROGUE value of 
0.9 as a suitable threshold, at which the number of “infiltrating” cells and varied 
genes is well constrained. But for low-quality data or continuous data, the threshold 
could be determined by considering the global ROGUE values. Although ROGUE 
can be very efficient and effective, we anticipate that additional extensions could 
enable enhanced performance, for example, assessing the purity of integrated cell 
populations from different protocols and platforms. Overall, our ROGUE metric 
provides a robust, direct and universal measure for cluster purity in the presence 
of substantial technical confounders. We expect the ROGUE metric to be broadly 
applicable to any scRNA-seq datasets, and anticipate that our strategy will improve 
the rigor and quality of unsupervised single-cell data analysis. 
 
Methods 
Expression entropy model 
For droplet datasets, the observed UMI count can be modeled as a NB random 
variable, which also arises as a Poisson-gamma mixture35: 

X𝑖𝑖𝑖𝑖~Poisson�𝑠𝑠𝑗𝑗𝜆𝜆𝑖𝑖𝑖𝑖� 
𝜆𝜆𝑖𝑖𝑖𝑖~Gamma�𝛼𝛼𝑖𝑖𝑖𝑖 ,𝛽𝛽𝑖𝑖𝑖𝑖� 
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where 𝜆𝜆𝑖𝑖𝑖𝑖 represents the true expression value that underlies the observed UMI 
count X𝑖𝑖𝑖𝑖 of gene 𝑖𝑖 in cell 𝑗𝑗, and 𝑠𝑠𝑗𝑗 denotes the size normalization factor in cell 𝑗𝑗. 
The 𝛼𝛼𝑖𝑖𝑖𝑖 and 𝛽𝛽𝑖𝑖𝑖𝑖 are shape parameter and rate parameter respectively. Given the 
assumption that the shape parameter 𝛼𝛼 is a constant across cells and genes, and 
that the rate parameter 𝛽𝛽 is a constant of gene 𝑖𝑖 across cells35,36, 𝛼𝛼𝑖𝑖𝑖𝑖 and 𝛽𝛽𝑖𝑖𝑖𝑖  can 
be expressed as 𝛼𝛼 and 𝛽𝛽𝑖𝑖, respectively. Then the distributions can be recognized 
as: 𝜆𝜆𝑖𝑖~Gamma(𝛼𝛼,𝛽𝛽𝑖𝑖)  and X𝑖𝑖𝑖𝑖~Poisson�𝑠𝑠𝑗𝑗𝜆𝜆𝑖𝑖� . We denote X𝑖𝑖𝑖𝑖

′ = X𝑖𝑖𝑖𝑖
𝑠𝑠𝑗𝑗

 as the 

normalized expression and use 𝑋𝑋𝚤𝚤∙′��� (the mean X𝑖𝑖𝑖𝑖
′  across cells) as the moment 

estimation of 𝜆𝜆𝑖𝑖. For the Gamma distribution, the rate parameter could therefore 
be calculated based on the maximum likelihood estimation: 

𝛽𝛽𝑖𝑖 =
𝛼𝛼
𝜆𝜆𝑖𝑖

=
𝛼𝛼
𝑋𝑋𝚤𝚤∙′���

 

Here we sought to use differential entropy to capture the degree of disorder or 
randomness of gene expression as we adapted in our supervised gene selection 
method E-test37. For the gamma distributed random variable 𝜆𝜆𝑖𝑖 , its differential 
entropy can be computed as: 

𝑆𝑆𝑖𝑖 = 𝛼𝛼 − 𝑙𝑙𝑙𝑙𝛽𝛽𝑖𝑖 + 𝑙𝑙𝑙𝑙𝑙𝑙(𝛼𝛼) + (1 − 𝛼𝛼) ∙ 𝜑𝜑(𝛼𝛼) = 𝑙𝑙𝑙𝑙
𝛼𝛼
𝛽𝛽𝑖𝑖

+ a = 𝑙𝑙𝑙𝑙𝑋𝑋𝚤𝚤∙′��� + a 

where 𝜑𝜑  is the digamma function and a = α − ln𝛼𝛼 + lnΓ(α) + (1 − α) ∙ φ(α) is a 
constant. Although other pioneering methods such as Scnorm38, scran39 and 
BASiCS40 can be used to calculate size factors, we considered the library size 
normalization defined as35: 

𝑠𝑠𝑗𝑗 =
𝑋𝑋.j

𝑋𝑋.ȷ���
 

where 𝑋𝑋.j is the total UMI counts in cell 𝑗𝑗 and 𝑋𝑋.ȷ��� is the mean library size across 
cells. Accordingly, we can derive that the mean of 𝑠𝑠 across cells is 1. Given that 
the library size is a random variable independent of gene and cell36, we can derive 
that: 

X𝚤𝚤∙��� =
∑ �X𝑖𝑖𝑖𝑖

′ × 𝑠𝑠𝑗𝑗�𝑛𝑛
𝑗𝑗=1

𝑛𝑛
=
∑ �X𝑖𝑖𝑖𝑖

′ �𝑛𝑛
𝑗𝑗=1

𝑛𝑛
×
∑ �𝑠𝑠𝑗𝑗�𝑛𝑛
𝑗𝑗=1

𝑛𝑛
= 𝑋𝑋𝚤𝚤∙′��� 

where X𝚤𝚤∙��� is the observed mean expression of gene 𝑖𝑖, in correspondence to 𝐸𝐸𝑖𝑖 
described in the main text. For each cell type, the differential entropy of 𝜆𝜆𝑖𝑖 could 
be computed as: 

𝑆𝑆𝑖𝑖 = 𝑙𝑙𝑙𝑙X𝚤𝚤∙��� + a 
We formulate the null hypothesis that there is only one Poisson-gamma 
component for each gene in a given population (𝐻𝐻0) and thus the corresponding 
differential entropy can be calculated with 𝑙𝑙𝑙𝑙X𝚤𝚤∙��� + a. Then we assume that each cell 
represents its own “cluster” and use 𝑋𝑋𝑖𝑖𝑖𝑖  as a moment estimation of the mean 
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expression of such “cluster”. In this way, we define the entropy reduction of gene 
𝑖𝑖 across 𝑛𝑛 cells as: 

𝑑𝑑𝑑𝑑𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝐻𝐻0 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑙𝑙𝑙𝑙X𝚤𝚤∙��� −
∑ �𝑙𝑙𝑙𝑙𝑋𝑋𝑖𝑖𝑖𝑖�𝑛𝑛
𝑗𝑗=1

𝑛𝑛
 

which captures the degree of disorder or randomness of gene expression37. Given 
that genes under 𝐻𝐻0 (non-variable genes) account for the major proportion, we fit 
the relationship between X𝚤𝚤∙���  and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , and calculate 
corresponding residual as 𝑑𝑑𝑑𝑑𝑖𝑖  to improve the performance (Fig. 1b,c). The 
significance of 𝑑𝑑𝑑𝑑 is estimated based on a normal distribution approximation and 
is adjusted using Benjamini-Hochberg method. We also extended such procedure 
to full-length datasets and found that our approach consistently outperformed other 
gene selection methods (Fig. 1f,h and Supplementary Fig. 4). 
 
Data simulation 
We simulated droplet datasets with NB distribution. Mean gene abundance levels 
X were sampled from the log-normal distribution: 

𝑙𝑙𝑙𝑙(X)~N(μ,σ2) 

with parameters μ = 0 and σ = 2. The number of transcripts for each gene were 
drawn from: 

𝑁𝑁𝑖𝑖𝑖𝑖~NB(X𝚤𝚤∙���, r) 

For each simulated dataset, the dispersion parameter r (r = 𝛼𝛼)41 was set to a fixed 
value, ranging from 2 to 10 (Supplementary Fig. 1). In addition, we simulated full-
transcript datasets with ZINB distribution. The dropout rates for each gene was 
modeled with the sigmoid function42: 

𝑃𝑃𝑖𝑖~sigm(−(𝛾𝛾0 + 𝛾𝛾1X𝚤𝚤∙���)) 

with parameters 𝛾𝛾0 = −1.5 and 𝛾𝛾1 = 1/median(X𝚤𝚤∙���). Each simulated scRNA-seq 
dataset contained 20,000 genes and 2,000 cells (Supplementary Fig. 2). 
 
Differentially expressed genes were added in a fraction of cells (1%-50%, 
Supplementary Figs. 1 and 2), with fold changes sampled from the log-normal 
distribution (μ = 0 and σ = 2). 
 
HVG, Gini and M3Drop 
The HVG method11 identifies variable genes by comparing the coefficient of 
variation squared (CV2) to a local regression trend, and was implemented with the 
‘BrenneckeGetVariableGenes’ function in the M3Drop14 package. In the Gini index 
model proposed in GiniClust13, a gene is considered as informative if its Gini is 
higher than expected from the maximum observed expression. In addition, M3Drop 
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uses dropout rates for variable gene selection and was implemented with the 
‘M3DropFeatureSelection’ function in the M3Drop package. 
 
Cross-validation experiments and gene reproducibility 
To illustrate the performance of 𝑆𝑆-𝐸𝐸 model in real datasets (Supplementary Table 
1), we performed cross-validation experiments using RF18 (with 200 trees) from 
the python module sklearn29, with 70% of the cells randomly selected from the 
original sample as reference and the remaining 30% as query set. The 
classification accuracy was measured as the percentage of query cells that were 
assigned the correct label. We calculated the reproducibility by intersecting the 
corresponding sets of variable genes as: 

Reproducibility =
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−1𝑖𝑖−𝑛𝑛 ∩ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−2𝑖𝑖−𝑛𝑛

𝑛𝑛
 

where 𝑖𝑖 denotes the gene selection method adapted and 𝑛𝑛 is the number of top 
ranked variable genes. 
 
ROGUE calculation 
By taking advantage of the wide applicability of 𝑆𝑆-𝐸𝐸 model to scRNA-seq data, we 
introduce the statistic ROGUE to measure the purity of a cell population as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1 −
∑ 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠

∑ 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐾𝐾
 

where 𝐾𝐾 is an important parameter that constrains the ROGUE value between 0 
and 1. A cell population with no significant ds for all genes will receive a ROGUE 
value of 1, while a population with maximum summarization of significant ds is 
supposed to yield a purity score of ~0. We reasoned that Tabula Muris2 can be 
considered as such a plausible reference dataset with maximum ∑ 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠  because 
it comprises cells from 20 organs, and thus represents a highly heterogeneous 
population. Motivated by the definition of Michaelis constant in Michaelis-Menten 
equation, the default value of 𝐾𝐾 is set to one-half summarized significant ds of 
Tabula Muris dataset. In this way, ROGUE will receive a value of 0.5 when 
summarized ds is equivalent to one-half of the maximum, and hence provides a 
universal metric for assessing the purity of given cell clusters. The default value of 
𝐾𝐾  is set to 45 and 500 for droplet-based and full-length based datasets, 
respectively. The 𝐾𝐾 value can also be determined in a similar way by specifying a 
different reference dataset in particular scRNA-seq data analyses. 
 
Silhouette coefficient 
To assess the differences of simulated replicates and the separation of different 
cell clusters, we calculated the silhouette width7, which is the ratio of within-cluster 
to inter-cluster dissimilarity. Let 𝑎𝑎(𝑖𝑖) denote the average dissimilarity of cell 𝑖𝑖 to all 
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other cells of its cluster A, and let 𝑏𝑏(𝑖𝑖) denote the average dissimilarity of cell 𝑖𝑖 to 
all data points assigned to the neighboring cluster, whose dissimilarity with cluster 
A is minimal. The silhouette width for a given cell 𝑖𝑖 is defined as: 

𝑠𝑠(𝑖𝑖) =
𝑏𝑏(𝑖𝑖) − 𝑎𝑎(𝑖𝑖)

max (𝑎𝑎(𝑖𝑖), 𝑏𝑏(𝑖𝑖))
 

A high 𝑠𝑠(𝑖𝑖) value suggests that the cell 𝑖𝑖 is well assigned to its own cluster but 
poorly assigned to neighboring clusters. 
 
Sequencing depth simulation 
Sequencing depth can vary significantly across cells and thus contributes to a 
substantial technical confounder in scRNA-seq data analysis. To illustrate that 
ROGUE is robust to sequencing depth, we generated simulated populations, each 
consisting of two replicates with only differences in sequencing depth (Fig. 4d and 
Supplementary Fig. 7a). In each simulation, we varied the sequencing depth of the 
two replicates as: 

𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−2,𝑖𝑖 = 𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−1,𝑖𝑖 ∙ 𝛿𝛿, 𝑖𝑖 ∈ {1, … ,𝑛𝑛} 

where n is the number of genes, 𝜇𝜇  is the mean expression level and 𝛿𝛿 ∈
{2, 5, 10, 20, 50, 70, 100}. 
 
Generation of simulated cell types 
To demonstrate the potential for ROGUE to guide single cell clustering, we used 
NB model as aforementioned to simulate different scRNA-seq datasets, each 
consisting of three cell types A, B and C (1,000 cells x 10,000 genes each), where 
A and B were similar subtypes. For the three scenarios shown in Fig. 3a and 
Supplementary Fig. 8a,d, we introduced 500, 1000 and 800 varied genes between 
cell type A and cell type B/C respectively, with fold changes drawn from the log-
normal distribution (μ=0 and σ=2). In addition, we simulated 100, 100 and 120 
highly variable genes between cell type B and C respectively, with fold changes 
sampled from a log-normal distribution with μ=0 and σ=1. The results were 
visualized using t-distributed Stochastic Neighbor Embedding (t-SNE)43. 
 
Processing and analysis of the fibroblast and B cell datasets 
We filtered out low-quality cells with either less than 600 expressed genes, over 
25,000 or below 600 UMIs. After filtration, a total of 4,291 B cells and 1,465 
fibroblasts were remained. We further normalized the gene expression matrices 
using regularized negative binomial regression44 with the SCTransform function in 
Seurat25. The top 3000 genes with maximal Pearson residual were used for PCA 
analysis. To remove batch effects between donors, we performed batch correction 
using BBKNN45 with the first 50 PCs. Using the leiden clustering approach 
implemented in scanpy46, each cell cluster was identified by its principle 
components. This yielded 11 fibroblast subtypes and 7 B cell subtypes as shown 
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in Fig. 3d and Fig. 4b, which were visualized in 2D projection of UMAP47 with 
default parameters. 
 
Pathway and TCGA data analysis 
To characterize and detect the pathway signals in specific fibroblast subtypes, we 
performed pathway analyses using hallmark pathways from the molecular 
signature database48 with GSVA49. The TCGA LUAD and LIHC data were used to 
investigate the prognostic effect of 13 signature genes (Supplementary Table 5) 
derived from B_C2_ACTB. To eliminate the effects of different B cell proportions, 
we normalized the mean abundance level of these 13 marker genes by the 
expression of MS4A1 gene, and performed subsequent statistical analyses using 
GEPIA250 with default parameters. 
 
Data and Software Availability 
The datasets used in our study are listed in Supplementary Tables 1-3, along with 
download links or GEO accession numbers. Our approach is implemented in an 
open-source R toolkit ROGUE (https://github.com/PaulingLiu/ROGUE) and is 
freely available to users. 
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Figure legends 
Fig. 1. The expression entropy model. (a) Identifying pure cell subtypes in 
unsupervised single-cell data analysis. (b) The 𝑆𝑆 -𝐸𝐸  plot of the Tabula Muris 
(droplet) dataset. Each point represents one gene. The relationship between 𝑆𝑆 and 
𝐸𝐸 was fitted with LOESS regression for each gene. (c) The 𝑆𝑆-𝐸𝐸 plot of a T cell 
dataset21 obtained by Smart-seq2 protocol. (d) Accuracy in identifying differentially 
expressed genes on data simulated from both NB (left) and ZINB (right) distribution, 
with subpopulation containing 50% of the cells. The center line indicates the 
median AUC value of n=50 repeated runs. The lower and upper hinges represent 
the 25th and 75th percentiles respectively, and whiskers denote 1.5 times the 
interquartile range. (e,f) Discriminating power of genes selected by 𝑆𝑆-𝐸𝐸 model, Gini, 
M3Drop and HVG estimated by RF with 50 times cross-validation on both droplet-
based dataset (e) and full-length based dataset (f) listed in Supplementary Table 
1. The classification accuracy was measured as the percentage of query cells that 
were assigned the correct label. (g,h) Reproducibility of features across four 
groups of replicates (g) and four human pancreas datasets (h) listed in 
Supplementary Table 3. Each point in (h) denotes a pair of datasets, and horizontal 
lines represent the median values across all pairs. 
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Fig. 2. ROGUE use and performance. (a) The ROGUE index decreases 
monotonically with increasing varied genes in each simulated mixture consisting 
of two cell types (1:1). The center line indicates the median value of n=50 repeated 
ROGUE runs. The lower and upper hinges represent the 25th and 75th percentiles 
respectively, and whiskers denote 1.5 times the interquartile range. (b) The 
ROGUE values for the simulated mixtures with cell type sizes ranging from 1:100 
to 1:1. In each mixture, the number of varied genes was 1% of the total gene 
number (n = 20,000). (c) Pearson correlations of 𝑆𝑆 between the randomly down-
sampled datasets (n=50 runs for each) and the entire datasets (2,000 cells) 
simulated from both NB and ZINB distribution. (d) Sequencing depth distribution 
(total UMI counts/cell) for two simulated replicates. The replicate 2 has a 
sequencing depth 10 times that of replicate 1. (e) The 𝑆𝑆-𝐸𝐸 plot of the mixture of 
replicates 1 and 2 shown in (d). (f) ROGUE values of n=100 mixtures versus the 
silhouette values for every two replicates within individual mixtures. A high 
silhouette value indicates a substantial difference in sequencing depth between 
two replicates. (g,h) The 𝑆𝑆-𝐸𝐸 plots and corresponding ROGUE values of 10 cell 
populations from the PBMC dataset20. (i) Purity assessment of six human T cell 
populations. (j) Purity evaluation of lung cancer infiltrating DCs, with each point 
representing a patient. 
 
Fig. 3. ROGUE enhances single cell clustering and cell type identification. (a) 
t-SNE plots of a simulated dataset containing three cell types. (b,c) Corresponding 
silhouette values (b) and average ROGUE values (c) when there were 2, 3, 4 and 
5 putative clusters respectively. (d) UMAP plots of lung cancer associated 
fibroblasts, color-coded by clusters in original paper (left; Supplementary Fig. 9a) 
and re-clustered labels (right). (e) ROGUE values of different clusters before (left) 
and after (right) re-clustering. Each point represents a patient. (f) UMAP plot of 
expression levels of MYH11 and MEF2C. (g) Differences in hallmark pathway 
activities scored using GSVA. 
 
Fig. 4. ROGUE-guided analysis in the identification of pure B cell subtypes. 
(a) The 𝑆𝑆-𝐸𝐸 plots and ROGUE values of liver and lung tumor-infiltrating B cells, 
respectively. (b,c) UMAP plots of 4,291 B cells, color-coded by their associated 
clusters (b) and tissues (c). (d) ROGUE values of seven identified B cell subtypes. 
Each point represents a patient. (e) Gene expression heatmap of 7 B cell clusters. 
Rows denote marker genes and columns denote different clusters. (f) Tissue 
preference of each B cell subtype in liver cancer estimated by RO/E21, the ratio of 
observed to expected cell numbers calculated by chi-square test. (g) The fractions 
of B_C02_ACTB and B_C04_MX1 in each patient across tissues. *p<0.05, 
**p<0.005, Student’s t test. (h,i) The Kaplan–Meier curves of TCGA LUAD (h) and 
LIHC (i) patients grouped by the 13 markers (Supplementary Table 5) of 
B_C02_ACTB. 
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