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10 Abstract

11 NGS studies have uncovered an ever-growing catalog of human variation while leaving 

12 an enormous gap between observed variation and experimental characterization of variant 

13 function. High-throughput screens powered by NGS have greatly increased the rate of variant 

14 functionalization, but the development of comprehensive statistical methods to analyze screen 

15 data has lagged behind. In the massively parallel reporter assay (MPRA), short barcodes are 

16 counted by sequencing DNA libraries transfected into cells and output RNA in order to 

17 simultaneously measure the shifts in transcription induced by thousands of genetic variants. 

18 These counts present many statistical challenges, including over-dispersion, depth dependence, 

19 and uncertain DNA concentrations. So far, the statistical methods used have been rudimentary, 

20 employing transformations on count level data and disregarding experimental and technical 

21 structure while failing to quantify uncertainty in the statistical model.

22
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23 We have developed an extensive framework for the analysis of NGS functionalization 

24 screens available as an R package called malacoda (available from 

25 github.com/andrewGhazi/malacoda). Our software implements a probabilistic, fully Bayesian 

26 model of screen data. The model uses the negative binomial distribution with gamma priors to 

27 model sequencing counts while accounting for effects from input library preparation and 

28 sequencing depth. The method leverages the high-throughput nature of the assay to estimate the 

29 priors empirically. External annotations such as ENCODE data or DeepSea predictions can also 

30 be incorporated to obtain more informative priors – a transformative capability for data 

31 integration. The package also includes quality control and utility functions, including automated 

32 barcode counting and visualization methods.

33 To validate our method, we analyzed several datasets datasets using malacoda and 

34 alternative MPRA analysis methods. These data include experiments from the literature, 

35 simulated assays, and primary MPRA data. We also used luciferase assays to experimentally 

36 validate the strongest hits from our primary data, as well as variants for which the various 

37 methods disagree and variants detectable only with the aid of external annotations.

38 Author Summary

39 Genetic sequencing technology has progressed rapidly in the past two decades. Huge genomic 

40 characterization studies have resulted in a massive quantity of background information across the 

41 entire genome, including catalogs of observed human variation, gene regulation features, and 

42 computational predictions of genomic function. Meanwhile, new types of experiments use the 

43 same sequencing technology to simultaneously test the impact of thousands of mutations on gene 

44 regulation. While the design of experiments has become increasingly complex, the data analysis 

45 methods deployed have remained overly simplistic, often relying on summary measures that 
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46 discard information. Here we present a statistical framework called for the analysis of massively 

47 parallel genomic experiments designed to incorporate prior information in an unbiased way. We 

48 validate our method by comparing our method to alternatives on simulated and real datasets, by 

49 using different types of assays that provide a similar type of information, and by closely 

50 inspecting an example experimental result that only our method detected. We also present the 

51 method’s accompanying software package which provides and end-to-end pipeline that provides 

52 a simple interface for data preparation, analysis, and visualization.

53 Introduction

54 The advent of next generation sequencing (NGS) has generated an explosion of observed 

55 genetic variation in humans. Variants with unclear effects greatly outnumber those with obvious, 

56 severe impact; the 1000 Genomes Project [1] has estimated that a typical human genome has 

57 roughly 150 protein-truncating variants, 11,000 peptide-sequence altering variants, and 500,000 

58 variants falling into known regulatory regions. Simultaneously, genome-wide association studies 

59 (GWAS) have found strong statistical associations between thousands of noncoding variants and 

60 hundreds of human phenotypes [2,3]. Traditional methods of assessing the regulatory impact of 

61 variants are slow and low-throughput: luciferase reporter assays require multiple replications of 

62 cloning individual genomic regions, transfection into cells, and measurement of output intensity. 

63 Massively Parallel Reporter Assays (MPRA), overviewed in Figure 1, were developed to 

64 assess simultaneously the transcriptional impact of thousands of genetic variants [4]. The 

65 simplest form of MPRA uses a carefully designed set of barcoded oligonucleotides containing 

66 roughly 150 base pairs of genomic context surrounding variants of interest. There are typically 

67 thousands of variants selected by preliminary evidence from GWAS, and there are usually ten to 
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68 thirty replicates of each allele with different barcodes. The oligonucleotides are cloned into 

69 plasmids, making a complex library that is then transfected into cells. The cells use the library as 

70 genetic material and actively transcribe the inserts. Because the barcodes are preserved by 

71 transcription, counting the RNA products of each variant construct by re-identifying each 

72 barcode in the NGS product provides a direct measure of the transcriptional output of a given 

73 genetic variant. By designing the oligonucleotide library to contain multiple barcodes of both the 

74 reference and alternate alleles for each variant, one can statistically assess the transcription shift 

75 (TS) for each variant.

76 Fig1. Diagram of MPRA MPRA simultaneously assess the transcription shift of thousands of 

77 variants. The diagram shows six constructs with two variants, but in practice the size of the 

78 oligonucleotide library is only limited by cost. A typical MPRA has tens to hundreds of 

79 thousands of oligonucleotides to assay thousands of variants.

80 MPRA have successfully identified many transcriptionally functional variants [5, 6, 7], 

81 but the accompanying statistical analyses have been rudimentary. Initial studies focused on the 

82 computation of the “activity” for each barcode in each RNA sample. This involves averaging 

83 across depth-adjusted counts to compute a normalizing DNA factor for each barcode, then 

84 dividing RNA counts by the DNA factor and taking the log of this ratio. Then a t-test is used to 

85 compare the activity measurements for each allele, followed by assay-wide multiple-testing 

86 corrections. The key limitations include ignoring systematic variation due to unknown DNA 

87 concentrations, the application of heavy transformation and summarization to the data prior to 

88 modelling, and the failure to include the reservoir of prior data and biological knowledge 

89 concerning genes and genomic regions. The methods mpralm [8] and MPRAscore [9] are more 

90 recent methods, but they suffer from a number of limitations: failure to model variation in input 
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91 DNA concentrations, aggregation of data across barcodes and sequencing samples without 

92 modeling systematic sources of variation, and over-reliance on point estimates of dispersion that 

93 cause systematic errors in transcription shift estimates. 

94 Other areas of genomic analysis have generated a wealth of information on genomic 

95 structure and function, frequently specific to particular genomic contexts and variants. For 

96 example, the ENCODE project [10] provides genome-wide ChIP-seq data on transcription 

97 binding profiles, histone marks, and DNA accessibility. Computational methods such as 

98 DeepSea [11] use machine learning to provide variant-specific predictions on chromatin effects. 

99 Genome-wide databases like ENCODE and computational predictors like DeepSea contain real 

100 information about variant effects, but the method for incorporating this information into a 

101 statistical framework for experimental analysis of variants has been unclear. 

102 We hypothesized that a Bayesian approach to high throughput NGS screens such as 

103 MPRA would improve statistical sensitivity and specificity and yield more accurate estimates of 

104 variant function, particularly when incorporating prior information. The Bayesian approach 

105 offers a flexible modeling system that can flexibly fit hierarchical model structures of count data 

106 while also directly accounting for experimental sources of variation. The Bayesian approach also 

107 enables the integration of prior information and probabilistic modelling of dispersion parameters. 

108 These advantages offer significant improvements in statistical efficiency and provide advantages 

109 for formulating systems-level hypotheses -- for example, the impact of specific transcription 

110 factors -- that are absent from other approaches. Here we present malacoda, an end-to-end 

111 Bayesian statistical framework that addresses the gaps in the prior approaches while providing 

112 novel methods for incorporating prior information. The malacoda method centers on MPRA but 

113 also has potential extension to a broad array of NGS-based high-throughput screens. We 
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114 establish the superior performance of malacoda on MPRA compared to alternatives using 

115 simulation studies. Then, we apply the method to previously published findings to make new 

116 biological discoveries that we explore in the paper. We also apply malacoda to primary MPRA 

117 studies that we performed. The results demonstrate that using malacoda we can discover 

118 biologically important findings that were missed by prior approaches. We have made the 

119 software available as an open source R package on GitHub.

120 Methods

121 Overview

122 In malacoda we utilize a negative binomial model for NGS to consider barcode counts 

123 with empirically estimated gamma priors, and we explicitly model variation in the input DNA 

124 concentrations for each barcode. By default the method marginally estimates the priors from the 

125 maximum likelihood estimates of each variant in the assay; the method also supports informative 

126 prior estimation by using external genomic annotations for each variant as weights. This 

127 approach enables disparate knowledge sources to inform the results in a principled, systematic, 

128 and calculation. The probabilistic model underlying malacoda uses the NGS data directly 

129 without transformation, and it accounts for all known sources of experimental variation and 

130 uncertainty in model parameters. Finally, the method provides estimate shrinkage as a method 

131 for avoiding false positives. 

132 Description of the statistical model

133 MPRA data are the counts of the barcoded DNA input from sequencing the plasmid 

134 library and counts of the barcoded RNA outputs from sequencing the RNA content extracted 
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135 from passaged cells. The DNA counts vary according to the sequencing depth of the sample as 

136 well as due to the inherent noise in library preparation. The RNA measurements also vary 

137 according to sequencing depth, but they are also affected by the DNA input concentration and 

138 the inherent transcription rate of their associated region of genomic context. Figure 2A shows a 

139 subset of a typical MPRA dataset, with two barcodes of each allele for two variants and several 

140 columns of counts. We find that typically MPRA are performed with four to six RNA 

141 sequencing replicates and a smaller number of DNA replicate samples. Figure 2B shows a 

142 simplified Kruschke diagram of the model underlying malacoda, using the mean-dispersion 

143 parameterization of the negative binomial. More explicitly, 

144 𝐶𝑜𝑢𝑛𝑡𝑠𝐷𝑁𝐴 ~ 𝑁𝑒𝑔𝐵𝑖𝑛(𝑑𝑒𝑝𝑡ℎ𝑠 ∙  𝜇𝑏𝑐 ∙  𝜑𝐷𝑁𝐴)

145 𝐶𝑜𝑢𝑛𝑡𝑠𝑅𝑁𝐴 ~ 𝑁𝑒𝑔𝐵𝑖𝑛(𝑑𝑒𝑝𝑡ℎ𝑠 ∙  𝜇𝑏𝑐 ∙  𝜇𝑎𝑙𝑙𝑒𝑙𝑒 , 𝜑𝑅𝑁𝐴)

146 Where depths indicates the depth of a particular sequencing sample, μbc indicates the 

147 unknown concentration of a particular barcode in the plasmid library, and μallele indicates the 

148 effect of the genomic context of a given allele of a given variant. There are separate dispersions 

149 parameters φ for both DNA and RNA. The means μ and dispersions φ come from their own 

150 gamma priors. 

151 The negative binomial distribution is a natural choice for modelling NGS count data 

152 given its ability to accurately fit overdispersed observations frequently seen in sequencing data 

153 [12]. Briefly, the observed dispersion in NGS count data usually exceeds that expected from 

154 simpler binomial or Poisson models. We chose gamma distributions as priors for several reasons. 

155 They have the appropriate [0,∞) support, and for a non-negative random variable whose 

156 expectation and expected log exist, they are the maximum entropy distribution. Additionally, 
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157 they are characterized by two parameters, allowing the prior estimation process to accurately fit 

158 the observed population of negative binomial estimates. Probabilistic modelling of the dispersion 

159 parameters is key -- as demonstrated by simulation in S1 Appendix. This practice helps avoid 

160 pitfalls common to methods based on point estimates of dispersion parameters. The barcode-

161 level count data model is a central contribution of the malacoda method. 

162 Fig 2. MPRA data and malacoda priors A) The table shows a subset of our primary MPRA 

163 data. Highlighted cell containing 759 is influenced both by the sequencing depth of its sample 

164 (column) and the unknown input DNA concentration of its barcode (row). B) A simplified 

165 Kruschke diagram of the generative model underlying malacoda C) A conceptual diagram 

166 demonstrating three prior types available from malacoda. The marginal prior (left) weights all 

167 variants in the assay equally, while the grouped and conditional priors utilize informative 

168 annotations as weights in the prior estimation process. 

169 After computing the joint posterior on all model parameters, the posterior on transcription 

170 shift is computed as a generated quantity by taking the difference between log means of the 

171 alternate and reference alleles. 95% highest density interval on TS is used to make binary calls 

172 on whether a variant is functional or non-functional. If the interval excludes zero as a credible 

173 value, the variant is labelled as functional. An optional “region of practical equivalence” can be 

174 defined on a per-assay basis when there is particular interest in rejecting transcription shift values 

175 around zero [13].

176 Empirical priors

177 The gamma priors are fit empirically by maximum likelihood estimation. Specifically, 

178 each variant-level model is first fit by maximizing the likelihood component of the malacoda 
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179 model, then gamma distributions are fit to those estimates for the means and dispersions of the 

180 DNA, reference RNA, and alternate RNA. This approach offers several benefits. First, it 

181 leverages the high-throughput nature of the assay. The full dataset determines the prior; in 

182 situations with thousands of variants the individual contribution of each variant to the prior is 

183 negligible. Secondly, it constrains the prior to be reasonable in the context of a given assay. 

184 Specific circumstances regarding library preparation, sequencer properties, cell culture 

185 conditions, and other unknown factors will cause the underlying statistical properties of each 

186 MPRA to be unique. A less informed, general-purpose prior, such as gamma(α = .001, β = .001), 

187 would assign a considerable amount of probability density to unreasonable regions of parameter 

188 space. Empirical estimation ensures that the priors capture the reasonable range of values for 

189 each parameter while avoiding putting unwarranted density on extreme values [14]. Finally, by 

190 sharing information between variants, empirical priors provide estimate shrinkage. The prior 

191 effectively regularizes all parameter estimates, a behavior which is important in multi-parameter 

192 models with relatively little data per parameter. This in turn acts as a natural safeguard against 

193 false positives, thus removing the need for post hoc multiple testing correction.

194 In order to incorporate external knowledge, the malacoda method also allows users to 

195 provide arbitrary annotations to supplement the analysis. Figure 2C contrasts the marginal prior 

196 estimation (left) with two prior types that make use of external annotations. These priors make 

197 use of the information in the annotations by employing the principle that similarly annotated 

198 variants should perform similarly in the assay. When the annotations are simply a set of 

199 descriptive categories (for example predictions of likely benign, uncertain, or likely functional), 

200 the grouped prior (2C, center) simply fits a prior distribution within each subset. When the 

201 annotations are continuous values, the conditionally weighted (2C, right) prior employs a kernel 
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202 smoothing process to estimate the prior. To estimate the prior for a single variant, it initializes a 

203 t-distribution kernel centered at the annotation of the variant in question, then gradually widens 

204 this kernel until the n-th most highly weighted variant (where n is a configurable tuning 

205 parameter defaulting to 100) has a weight of at least one percent of that of the most influential 

206 variant. While the diagram in figure 2C shows this for only a single informative annotation on 

207 the horizontal axis, the code allows for an arbitrary number of continuous predictors to be used.

208 Simulation and Validation Studies

209 We took several approaches to validate and compare the malacoda method with 

210 alternatives. First, we simulated MPRA data using across a realistic grid of parameters governing 

211 the fraction of truly functional variants, the number of variants in the assay, and the number of 

212 barcodes per allele. These simulations also modelled distinct sequencing samples, varying 

213 sequencing depth, and barcode failure during library preparation. We then compared malacoda to 

214 alternative methods including the t-test, mpralm, and MPRAscore. Across these simulations we 

215 compared performance metrics such as area-under-curve (AUC) and estimate accuracy. 

216 Secondly, we applied malacoda and alternative methods to real MPRA data from the Ulirsch 

217 dataset [5], using inter-method consensus as a performance metric. We repeated this with our 

218 own primary MPRA data on variants related to platelet function. Finally, we tested a subset of 

219 variants where the various methods disagreed with luciferase reporter assays to assess 

220 consistency with MPRA estimates of variant function.

221 Software

222 Our method is available as an R package from github.com/andrewGhazi/malacoda. The 

223 package includes detailed installation instructions, extensive help documentation, an analysis 
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224 walkthrough vignette, and implementations of traditional activity-based analysis methods. The 

225 package also includes functionality to extract, quality-filter, and count barcodes from a set of 

226 FASTQ files through an application of the FASTX-Toolkit [15]. Through an interface with the 

227 FreeBarcodes package [16], the package can also decode sequencer errors in the barcodes of an 

228 assay that has been designed using our previous work, mpradesigntools [17]. In our experience 

229 this typically recaptures about 5% additional data with no additional cost beyond a line of code 

230 during the assay design. The package also contains plotting functionality to help visualize the 

231 results of analyses.

232 Experimental Methods

233 In order to collect experimental measurements of the transcriptional impact of variants 

234 through means other than MPRA, we performed luciferase reporter assays on sixteen variants. 

235 Four were among the strongest signals detected in our MPRA, six were variants from our MPRA 

236 where the statistical methods disagreed, and six were variants from the Ulirsch dataset [5] where 

237 the malacoda marginal and DeepSea-based [11] conditional prior model fits disagreed. 

238 150-200bp genomic DNA sequences flanking the variants were amplified by PCR using 

239 K562 lymphoblast (ATCC) genomic DNA as template, then cloned into PGL4.28 minimum 

240 promoter luciferase reporter vector (Promega) at NheI and HindIII sites. Counterpart SNP 

241 variants were generated by site-directed mutagenesis. All the constructs were validated by DNA 

242 sequencing. 3µg plasmid preparations were co-transfected with 0.5μg β-gal plasmid into 1x106 

243 of K562 cells with Lipofectamine 2000 based on manufacturer's instructions. Each assay was 

244 repeated with 3 independent plasmid preparations. 24 hours post transfection, luciferase and β-

245 gal were measured. Luciferase units were then normalized to β-gal values.
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246 Results

247 Simulation Studies

248 We evaluated our simulation results in three ways. First, we focused on the accuracy of 

249 transcription shift estimates. Figure 3A shows the results of analyzing one simulated dataset, 

250 with the true value of the simulation’s transcription shift plotted on the x-axis, with the model 

251 estimates on the y-axis. For each fit of each simulation using each analysis method, we analyzed 

252 performance using two metrics: standard deviation of estimates for truly non-functional variants 

253 at zero (center dots, lower is better) and correlation with the truth for truly functional variants 

254 with nonzero effects (off-center dots, higher is better).

255

256 Fig 3. Simulation results A) The figure compares TS values used to generate simulated data to 

257 malacoda TS estimates. Simulated MPRA assays use a varying fraction of variants that are truly 

258 non-functional (center). B) ROC curves assess the performance of each method on a randomly 

259 selected assay with 3000 variants, 5% truly functional variants, and 10 barcodes per allele. C) 

260 Performance metrics averaged across multiple simulations under the same conditions as B. D) A 

261 scatterplot demonstrates the relationship between luciferase-based estimates of TS against 

262 MPRA-based estimates.

263

264 Second, we also computed area under the curve (AUC) for each method. Bayesian 

265 methods such as malacoda explicitly do not consider a null hypothesis and therefore do not 

266 output p-values; in order to create an analogous output quantity to derive an ROC curve we 

267 instead computed one minus the minimum HDI width necessary to include zero as a credible 

268 transcription shift value to distinguish true and false positives. Figure 3B shows the ROC curves 
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269 by method for a randomly chosen simulation with ten barcodes per allele, 5% truly functional 

270 variants, and 3000 variants. Figure 3C shows that across all simulations with these 

271 characteristics, malacoda consistently showed the highest median AUC, highest correlation with 

272 the truth for functional variants, and the lowest spread among estimates of truly nonfunctional 

273 variants. Other simulation grid points are shown in S2 Appendix, and these display similar 

274 patterns.

275 In order to examine the performance of malacoda on real data, we applied the various 

276 methods to both the Ulirsch data [5] and to our own primary dataset. Unlike the case with 

277 simulations, the underlying true values are not known. However, inter-method consensus can 

278 serve as a performance metric -- alternative methods presumably fail in different ways, so if they 

279 tend to disagree with one another but agree with malacoda, that would imply that malacoda is 

280 working well across the cases where others fail. Indeed, Figure 4 shows that the other methods 

281 tend to correlate with malacoda better than the other alternatives. The one exception is when 

282 applied to our dataset, mpralm tends to agree best with the t-test method. Given that linear 

283 models underlie both mpralm and the t-test method, it seems plausible that they would 

284 sometimes show similar results.

285

286 Fig 4. Inter-method consensus A) A pairwise plot of TS estimates in our MPRA, showing that 

287 other methods generally agree with malacoda more than each other. Color indicates local density 

288 of points. B) A pairwise plot of TS estimates using both the marginal and DeepSea-based 

289 malacoda priors in the Ulirsch dataset, showing a similar outcome.

290 Biological results

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819466doi: bioRxiv preprint 

https://doi.org/10.1101/819466
http://creativecommons.org/licenses/by/4.0/


14

291 The number of luciferase reporter assays we performed was not enough to overcome the 

292 amount of noise inherent to light intensity-based measurements, thus we did not have enough 

293 data to clearly demonstrate that any of the MPRA analysis methods outperform the others in 

294 terms of correlation with luciferase results. However, the results show that the various methods 

295 are consistent with MPRA-based estimates Figure 3D, providing further evidence that MPRA 

296 results are biologically realistic.

297 We closely inspected a particular biological discovery to demonstrate malacoda’s ability 

298 to identify low-signal variants. One of the functional variants we identified with malacoda using 

299 the DeepSea-based conditional prior in the Ulirsch dataset [5] is rs11865131; this variant is 

300 identified by malacoda but not by any of the other methods. The variant rs11865131 is in an 

301 intron within the NPRL3 gene which encodes the Natriuretic Peptide Receptor Like 3 protein. 

302 NPRL3 is part of the GTP-ase activating protein activity toward Rags [18] (GATOR1) complex. 

303 The GATOR1 complex inhibits mammalian target of rapamycin (MTOR) by inhibiting RRAGA 

304 function (reviewed in [18] MTOR signaling has been implicated in platelet aggregation and 

305 spreading in addition to aging associated venous thrombosis [19, 20]. Analysis of the 

306 rs11865131 locus indicates that it colocalizes with ENCODE ChIP-Seq peaks for 36 

307 transcription factors in K562 erytholeukemia cells as well as containing enhancer histone 

308 epigenetic marks. Together, these data indicate that this is likely an important regulatory region. 

309 In addition to the heterologous K562 cell line, data from cultured megakaryocytes indicates that 

310 rs11865131 lies within RUNX1 and SCL ChIP-Seq peaks, two well-studied megakaryopoietic 

311 transcription factors [21]. This agrees with our data that platelet NPRL3 mRNA is positively 

312 associated with platelet count in healthy humans [22, 23]. These data indicate that malacoda has 
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313 identified a likely important regulatory region for megakaryocytes and platelets that was missed 

314 by other MPRA analysis methods.

315 Discussion

316 We developed a fully Bayesian framework for the analysis of NGS high throughput 

317 screens with specific application to MPRA studies. The method is an advance in statistical and 

318 computational science for these data - a fully Bayesian model that probabilistically incorporates 

319 all known sources of variation. The method does a better job of identifying true positives in 

320 simulated data and performs well in empirical studies. The method identified a previously missed 

321 functional variant in the NPRL3 gene that has confirmatory evidence from a variety of other 

322 studies. Particular advantages of the method are accurate estimation of variant effects, the 

323 treatment of the dispersion parameter in both estimation and inference, and the potential to 

324 incorporate informative prior information.

325 The functional discovery of the variant rs11865131 represents a demonstration of the 

326 power of the malacoda method to identify biologically important results missed by alternative 

327 methods. This variant lies in an intronic region of the gene NPRL3, and protein coding 

328 approaches to variant analysis would overlook this regulatory variant. Multiple lines of evidence 

329 point to the biological relevance of this variant, including epigenetic and transcription factor 

330 binding data as well as evidence of association with platelet count in healthy humans. 

331 There are downsides to our method. First, Bayesian methods that estimate a joint 

332 posterior on many parameters by MCMC are significantly slower than optimization approaches. 

333 To address this, we fit our models with Stan [24], which allows us to perform a first pass fit with 

334 Automatic Differentiation Variational Inference [25] and, if seemingly worthwhile, to perform a 

335 final fit with Stan’s state-of-the-art No-U-Turn Sampler. Despite this measure, our marginal prior 
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336 analysis of 8251 variants from the Ulirsch dataset with 50,000 MCMC samples using no 

337 variational first pass took over fifteen hours when parallelized across eighteen threads on two 

338 Intel Xeon X5675 3.07GHz processors. Nevertheless, an analysis that runs in hours is reasonable 

339 for an assay that takes weeks to perform. 

340 Secondly, the efficacy of our method does not account for uncertainty in our empirical 

341 prior estimation functionality [14]. The R package includes a fully hierarchical model that adds 

342 an additional layer of hyperparameters in order to probabilistically model the gamma priors and 

343 all other parameters for an entire MPRA dataset at once, but this approach falls outside the 

344 intended scope of the malacoda framework. This model, featuring hundreds of thousands of 

345 parameters, is presently too complex to fit in practice.

346 The statistical method and validation work presented in this article has focused primarily 

347 on the analysis of “typical” MPRA: two alleles per variant, in a single tissue type, with no other 

348 experimental perturbations. However, we have expanded the modelling capabilities of the 

349 package beyond these limitations. Models tailored to more exotic experimental structures, such 

350 as arbitrary numbers of alleles per variant, multiple tissue types, or cell-culture perturbations, are 

351 also included with the package. We also have expanded the model framework included in the 

352 package beyond MPRA into CRISPR screen modelling: the counts of gRNAs targeting specific 

353 genes in survival/dropout screens can make use of an analogous negative binomial structure with 

354 similar empirical gamma priors. This opens the path to incorporating gene-level annotations into 

355 Bayesian CRISPR screen analysis.

356 Sophisticated high-throughput assays are a central component to the future of genomics. 

357 Therefore, the statistical methods used for these data should be as efficient as possible, 

358 accounting for all sources of variation and quantifying the resulting uncertainty. Our software, 
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359 malacoda, provides an end-to-end framework for the probabilistic analysis of MPRA data. 

360 Through our well-documented, easy-to-use R package, users can perform sequencing error 

361 correction and data pre-processing before executing a fully Bayesian analysis in as little as two 

362 lines of code. When informative annotations on variant function are available, malacoda is 

363 capable of taking full advantage through a conditional prior estimation process. We hope that 

364 this work may act as a stepping stone towards further integrative, probabilistic analysis in the 

365 field of high-throughput genomics.

366

367 References

368

369 1. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, et al. A 

370 global reference for human genetic variation. Nature [Internet]. 2015;526(7571):68–74. 

371 doi: 10.1038/nature15393

372 2. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. 

373 Potential etiologic and functional implications of genome-wide association loci for 

374 human diseases and traits. Proc Natl Acad Sci USA. 2009;106(23):9362–7. doi: 

375 10.1073/pnas.0903103106

376 3. Nishizaki SS, Boyle AP. Mining the Unknown: Assigning Function to Noncoding Single 

377 Nucleotide Polymorphisms. Trends Genet [Internet]. 2017;33(1):34–45. doi: 

378 10.1016/j.tig.2016.10.008

379 4. Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L, Rogov P, et al. Systematic 

380 dissection and optimization of inducible enhancers in human cells using a massively 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819466doi: bioRxiv preprint 

https://doi.org/10.1101/819466
http://creativecommons.org/licenses/by/4.0/


18

381 parallel reporter assay. Nat Biotechnol [Internet]. 2012;30(3):271–7. doi: 

382 10.1038/nbt.2137

383 5. Ulirsch JC, Nandakumar SK, Wang L, Giani FC, Zhang X, Rogov P, et al. Systematic 

384 functional dissection of common genetic variation affecting red blood cell traits. Cell 

385 [Internet]. 2016;165(6):1530–45. doi: 10.1016/j.cell.2016.04.048

386 6. Tewhey R, Kotliar D, Park DS, Liu B, Winnicki S, Reilly SK, et al. Direct identification 

387 of hundreds of expression-modulating variants using a multiplexed reporter assay. Cell 

388 [Internet]. 2016;165(6):1519–29. doi: 10.1016/j.cell.2016.04.027

389 7. Shen SQ, Myers CA, Hughes AEO, Byrne LC, Flannery JG, Corbo JC. Massively 

390 parallel cis-regulatory analysis in the mammalian central nervous system. Genome Res. 

391 2016;26(2):238–55. doi: 10.1101/gr.193789.115

392 8. Myint L, Avramopoulos DG, Goff LA, Hansen KD. Linear models enable powerful 

393 differential activity analysis in massively parallel reporter assays. BMC Genomics. 

394 2019;20(1):1–19. doi: 10.1186/s12864-019-5556-x

395 9. Niroula A, Ajore R, Nilsson B. MPRAscore: robust and non-parametric analysis of 

396 massively parallel reporter assays. Bioinformatics. 2019;(July):1–3. doi: 

397 10.1093/bioinformatics/btz591

398 10. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. 

399 Nature. 2013;489(7414):57–74. doi: 10.1038/nature11247.An

400 11. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-

401 based sequence model. (DeepSea). Nat Methods [Internet]. 2015;12(10):931–4. doi: 

402 10.1038/nmeth.3547

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819466doi: bioRxiv preprint 

https://doi.org/10.1101/819466
http://creativecommons.org/licenses/by/4.0/


19

403 12. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for 

404 RNA-seq data with DESeq2. Genome Biol [Internet]. 2014;15(12):550. doi: 

405 10.1186/s13059-014-0550-8

406 13. Kruschke J. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan. 2nd ed. 

407 London: Academic Press; c2015. P.336-40.

408 14. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian Data 

409 Analysis. Third Edition. Boca Raton, FL: CRC Press; 2013. p. 51-6, p. 102-4.

410 15. Assaf G, Hannon GJ. FASTX-Toolkit [Internet]. 2010. Available from: 

411 http://hannonlab.cshl.edu/fastx_toolkit/index.html

412 16. Hawkins JA, Jones SK, Finkelstein IJ, Press WH. Indel-correcting DNA barcodes for 

413 high-throughput sequencing. Proc Natl Acad Sci [Internet]. 2018;115(27):E6217–26. doi: 

414 10.1073/pnas.1802640115

415 17. Ghazi AR, Chen ES, Henke DM, Madan N, Edelstein LC, Shaw CA. Design tools for 

416 MPRA experiments. Bioinformatics. 2018;34(15):2682–3. doi: 

417 10.1093/bioinformatics/bty150

418 18. Shaw RJ. GATORs take a bite out of mTOR. Science. 2013;340(6136):1056–7. doi: 

419 10.1126/science.1240315

420 19. Aslan JE, Tormoen GW, Loren CP, Pang J, McCarty OJT. S6K1 and mTOR regulate 

421 Rac1-driven platelet activation and aggregation. Blood. 2011;118(11):3129–36. doi: 

422 10.1182/blood-2011-02-331579

423 20. Yang J, Zhou X, Fan X, Xiao M, Yang D, Liang B, et al. MTORC1 promotes aging-

424 related venous thrombosis in mice via elevation of platelet volume and activation. Blood. 

425 2016;128(5):615–24. doi: 10.1182/blood-2015-10-672964

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819466doi: bioRxiv preprint 

https://doi.org/10.1101/819466
http://creativecommons.org/licenses/by/4.0/


20

426 21. Chacon D, Beck D, Perera D, Wong JWH, Pimanda JE. BloodChIP: A database of 

427 comparative genome-wide transcription factor binding profiles in human blood cells. 

428 Nucleic Acids Res. 2014;42(D1):172–7. doi: 10.1093/nar/gkt1036

429 22. Simon LM, Edelstein LC, Nagalla S, Woodley AB, Chen ES, Kong X, et al. Human 

430 platelet microRNA-mRNA networks associated with age and gender revealed by 

431 integrated plateletomics. Blood. 2014;123(16):37–45. doi: 10.1182/blood-2013-12-

432 544692

433 23. Edelstein LC, Simon LM, Montoya RT, Holinstat M, Chen ES, Bergeron A, et al. Racial 

434 differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. 

435 Nat Med [Internet]. 2013;19(12):1609–16. doi: 10.1038/nm.3385

436 24. Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, 

437 Guo J, Li P, Riddell A. Stan: A probabilistic programming language. J Stat Softw. 

438 2017;76(1). doi: 10.18637/jss.v076.i01

439 25. Kucukelbir A, Blei DM, Gelman A, Ranganath R, Tran D. Automatic Differentiation 

440 Variational Inference. J Mach Learn Res. 2017;18:1–45. Available from: 

441 https://arxiv.org/abs/1603.00788

442 Supporting Information

443 S1 Appendix. Negative Binomial variance estimation.

444 S2 Appendix. Simulation details and extended results.

445 S3 Dataset. RData file of luciferase and MPRA results. An RData file that loads two objects: 

446 luc_results, a table of the luciferase results, and mpra_results, giving the primary data on MPRA 

447 counts for the variants tested with luciferase

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819466doi: bioRxiv preprint 

https://doi.org/10.1101/819466
http://creativecommons.org/licenses/by/4.0/


21

448 S4 Dataset. RData file of estimate comparisons. The data necessary to produce Figure 4. An 

449 RData file that contains two data frames: ulirsch_comparisons and primary_comparisons. Each 

450 row corresponds to one variant, and each column corresponds to a given analysis method. The 

451 values in the table give the transcription shift estimates.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819466doi: bioRxiv preprint 

https://doi.org/10.1101/819466
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819466doi: bioRxiv preprint 

https://doi.org/10.1101/819466
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819466doi: bioRxiv preprint 

https://doi.org/10.1101/819466
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819466doi: bioRxiv preprint 

https://doi.org/10.1101/819466
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819466doi: bioRxiv preprint 

https://doi.org/10.1101/819466
http://creativecommons.org/licenses/by/4.0/

