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 21 

ABSTRACT 22 

Accumulating evidence suggests that humans should be considered as holobionts in 23 

which the gut microbiota plays essential functions. Initial metagenomic studies reported 24 

a pattern of shared genes in the gut microbiome of different individuals, leading to the 25 

definition of the minimal gut metagenome as the set of microbial genes necessary for 26 

homeostasis, and present in all healthy individuals. Despite its interest, this concept has 27 

received little attention following its initial description in terms of various ubiquitous 28 

pathways in Western cohorts. This study analyzes the minimal gut metagenome of the 29 

most comprehensive dataset available, including individuals from agriculturalist and 30 

industrialist societies, also embodying highly diverse ethnic and geographical 31 

backgrounds. The outcome, based on metagenomic predictions for community 32 

composition data, resulted in a minimal metagenome comprising 3,412 gene clusters,  33 

mapping to 1,856 reactions and 128 metabolic pathways predicted to occur across all 34 

individuals. These results were substantiated by the analysis of two additional datasets 35 

describing the microbial community compositions of larger Western cohorts, as well as 36 

a substantial shotgun metagenomics dataset. Subsequent analyses showed the plausible 37 

metabolic complementarity provided by the minimal gut metagenome to the human 38 

genome. 39 
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The study of the human gut microbiome has drawn from different disciplines (e.g. 45 

microbiology, ecology, genomics), and has substantiated the idea that humans should be 46 

considered as holobionts (1) in which the gut microbiota plays essential functions (2, 3). 47 

Knowledge of what constitutes a healthy gut microbiome is regarded as pivotal (4) for 48 

the development of predictive models for diagnosis and management of gut 49 

microbiome-related maladies. However, the strong inter-subject variability in 50 

community composition observed in cross-sectional studies (5) hindered an early 51 

definition of a set of bacterial species common to all healthy humans (6). While, recent 52 

efforts have been able to detect such a health-related set in terms of shared taxonomic 53 

assignments (4, 7), and more precisely in terms of shared 16S sequence clusters of 54 

varying phylogenetic depth (8), the idea that a healthy gut microbiome ‘core’ may exist 55 

only in terms of function (9) remains widespread. 56 

In this regard, early high-throughput shotgun metagenomic studies already reported a 57 

strong pattern of shared genes in the gut microbiome of different individuals (10, 11). 58 

These results led to the definition of a novel concept; the minimal gut metagenome (11), 59 

defined as the set of microbial genes necessary for the homeostasis of the whole gut  60 

ecosystem, and expected to be present in all healthy humans. The idea that the gut 61 

microbiome provides a specific set of functionalities shared by all individuals is 62 

intuitive. However, it is still unclear whether these functionalities could arise from a 63 

shared set of genes or from different combinations of genes. Moreover, if the host were 64 

to play a greatly diminished role as a selective force on its resident gut microbiome, 65 

when compared to external factors such as diet, then there would be no set of microbial 66 

functionalities shared by all humans.  67 

Nevertheless, despite its potential as a conceptual framework with which to study the 68 

gut ecosystem, the minimal gut metagenome concept has received little attention in the 69 
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literature following its initial definition and description in terms of various ubiquitous 70 

metabolic pathways (9-11) and recent description of prevalent pathways in a larger 71 

cohort (12). 72 

Hence, the aim of the present study is to recapitulate the minimal human gut 73 

metagenome conceptual framework, and provide a proof-of-concept of its utility. More 74 

specifically, we set out to identify the ‘core genes’ (defined as the set of genes detected 75 

in all individuals) , jointly comprising the minimal gut metagenome, as well as the ‘core 76 

reactions’ (defined as the set of metabolic reactions detected in all individuals). 77 

According to the minimal gut metagenome concept, the former should be related to gut 78 

homeostasis at large (i.e. not only metabolic homeostasis). On the other hand, 79 

knowledge on the latter should improve our understanding of the gut microbiome's 80 

ability to augment human metabolism. 81 

 82 

For knowledge of the minimal gut metagenome to be most useful, it should pertain 83 

more to Homo sapiens as a species, and hence should not be solely focused on Western 84 

cohorts. Unfortunately, most human gut shotgun metagenomic datasets are very 85 

restricted in terms of lifestyles and ethnicities, mostly arising from Western and(or) 86 

industrialist cohorts (9-13).  87 

In this study, 16S rRNA gene-based metagenomic predictions were employed in the 88 

assessment of the minimal human gut metagenome to be able to profit from the more 89 

comprehensive 16S datasets. These datasets greatly outclass available human gut 90 

shotgun metagenomic datasets in terms of cohort size, geographic distribution, ethnic 91 

and lifestyle diversity, and to a certain extent depth of sequencing. In a sense, one read 92 

in a shotgun metagenomics dataset represents one gene count, while one read in a 16S 93 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/818138doi: bioRxiv preprint 

https://doi.org/10.1101/818138


 

5 

 

amplicon survey represents, via metagenomic prediction, one genome count. However, 94 

the use of metagenomic predictions presents various limitations and possible biases, 95 

which have been explored previously (14), the most noteworthy being that it only infers 96 

the bacterial and archaeal component of the metagenome, is significantly affected by 97 

both the quality of available genome annotations and the fact that available genomes are 98 

not evenly distributed across the phylogeny, or the lack of perfect one-to-one mapping 99 

between genomes and even full-length 16S sequences. Nevertheless, the ability to count 100 

almost three orders of magnitude more genes in a metagenomic sample per sequence 101 

(with the number of bacterial genes per genome normally in the very few thousand), 102 

even as a prediction, is still useful. In this study, functional predictions based on 16S 103 

phylogenetic marker gene sequences were obtained using PICRUSt, a computational 104 

approach which has shown large and significant correlation in predicting metagenomic 105 

abundances from 16S measurements (Spearman r = 0.82, p < 0.001) and synthetic 106 

communities (Spearman r = 0.9, p < 0.001)(14). To date, PICRUSt has been used in a 107 

myriad of scientific works and different research scenarios, such as the analysis of 108 

environmental samples (15), medically-relevant communities (16), or in vitro 109 

assemblies (17).This study analyzes the minimal gut metagenome of the most 110 

comprehensive dataset available (dataset Global: 382 individuals from rural Malawi, 111 

metropolitan U.S.A., and Venezuelan Amerindians(18). See Table 1)), which, despite 112 

its comparatively smaller cohort size, is far more inclusive in terms of global 113 

distribution, lifestyle, and ethnicity, specifically including agriculturalist, and 114 

industrialist societies from three continents.  115 

We compare the Global dataset with two larger Western cohorts (dataset Flemish: 873 116 

individuals from Belgium (4); and dataset Twins: 2,727 individuals from U.K. (19)), as 117 

well as to a substantial shotgun metagenomics dataset (Dataset Shotgun:   KEGG 118 
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Orthology identifiers (KOs) (20) abundances from 123 individuals from U.S.A., 119 

Europe, and China. Obtained from Bradley and Pollard 2017  (21)), and compared with 120 

the human genome to assess the degree to which the minimal metagenome may 121 

complement and expand its host’s metabolic potential. 122 

 123 

RESULTS 124 

The authors of the PICRUSt paper state that there is a significant negative correlation 125 

(Spearman r = −0.4, P < 0.001) between NSTI values and Spearman correlation 126 

between empirical shotgun metagenome abundances and PICRUSt predictions based on 127 

16S sequences.(14). Here, NSTI values for the different sample sets of Global 128 

(0.135±0.021, 0.098±0.018, and 0.131±0.023 for Malawian, U.S.A., and Venezuelan 129 

samples, respectively; see Suppl. Fig 1) were lower (generally correlated with higher 130 

correlation between metagenomic measurements and 16S predictions) than those 131 

previously reported for soil samples (0.17±0.02) which showed a significant [P<0.001] 132 

correlation between predictions and matched shotgun metagenomics assignments (14). 133 

Also, the more extreme NSTI values reported for the Human Microbiome Project 134 

dataset, with NSTI values ranging 0.10-0.15, still presented high correlation coefficients 135 

between metagenomic measurements and 16S predictions (14). 136 

The results show that 5,865 KO groups were predicted as present in Global’s pan-137 

metagenome, while the minimal gut metagenome represented 3,412 KOs (i.e. core 138 

genes), which can in turn be mapped to 1,856 reactions (i.e. core reactions) and 128 139 

complete metabolic pathways (Additional file 1). 140 

As could be expected, lowering the prevalence threshold used to define core reactions 141 

(100%) increased the number of core reactions, but mainly in a gentle-slope linear 142 
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fashion (Suppl. Fig. 2).  The core metagenome was very similar among the three 143 

distinct sample sets comprising Global (Figure 1A), with U.S.A.’s set showing the 144 

smallest set of core reactions, and less overlap with Malawian and Venezuelan samples. 145 

On the other hand, Global’s core reaction set was comparatively similar to those 146 

obtained using Western-like datasets Twins and Flemish (Figure 1B).  147 

The presented core reactions were predicted from 16S profiles using an ancestral-state 148 

reconstruction algorithm (PICRUSt). However, the set of core reactions was 149 

substantiated by the use of Tax4fun (22), a taxonomy assignments-based approach 150 

(Figure 1C). PICRUSt’s predictions seem conservative (more appropriate for a 151 

minimum estimate, as intended) since they are a subset of Tax4fun predictions. More 152 

importantly, Global’s core reaction set presented a high overlap to that obtained from  153 

a substantial shotgun metagenomics dataset targeting the human gut microbiome (21), 154 

chosen among those publicly available based on the number of individuals and 155 

geographic and ethnic distribution (Figure 1D). The 463 reactions described as core in 156 

Shotgun but not in Global (Figure 1D) likely arise from the smaller size of the 157 

Shotgun’s cohort as well as its increased lifestyle, environmental and genetic 158 

homogeneity (Table 1). On the other hand, the great majority of core reactions in 159 

Global not described as core in Shotgun still presented a very high prevalence in the 160 

dataset (Suppl. Fig. 3); 1,735 out of 1,856 (93.5%) core reactions in Global are also 161 

core reactions (100% prevalence) in Shotgun. Only 37 (2%) core reactions in Global 162 

have a prevalence level  < 95% in Shotgun,  and 6 (0.32%) reactions have a prevalence 163 

level below 75%. No apparent shared functional or taxonomic origin affiliation was 164 

found for these six reactions.  Within the Global dataset, there was a positive correlation 165 

between prevalence and average abundance (Suppl. Fig. 4). Nevertheless, while all core 166 
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reactions featured relatively high average abundance values, many similarly abundant 167 

reactions presented lower prevalence values. 168 

In addition to providing an improved description of the human minimal gut 169 

metagenome, the present study aimed at assessing its complementarity to the human 170 

genome. In this regard, the metabolic complementarity judged by the Metabolic 171 

Complementarity Index (23) was >2 times larger when considering the human 172 

metabolism being complemented by Global’s minimal gut metagenome, when 173 

compared to the inverse (0.0807 and 0.0386, respectively).  174 

Considering two metabolites as linked if they represent the substrate and product of a 175 

core reaction, within the overall metabolic map (Figure 2, Suppl. Fig. 5) 199 microbial 176 

metabolites link with 89 Homo sapiens metabolites through 256 core reactions, 177 

representing the predicted extended metabolic capability of the human holobiont 178 

provided by its gut ecosystem. Additionally, the map pinpoints 55 core reactions and 84 179 

metabolites with no apparent connection to Homo sapiens metabolism, as well as 36 180 

core reactions able to link Homo sapiens metabolites by reactions different to those 181 

carried-out by enzymes encoded within the human genome.  182 

Not surprisingly, several core reactions are implicated in the production of short-chain 183 

fatty acids (SCFAs), such as butyrate and acetate, which are known to have an active 184 

role in normal human physiology (e.g. fuel for several cell types, regulation of gene 185 

expression, differentiation, and inflammation) (24, 25). Another hallmark of the 186 

predicted minimal gut metagenome relates to the presence of core reactions implicated 187 

in the production of several vitamins (B1, B2, B5, B6, B9, H, K1, K2, L1, coenzyme 188 

B12), several of which had previously been shown to be produced by common gut 189 

commensals (26).  190 
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 191 

 192 

DISCUSSION 193 

The NSTI values that we obtained for human gut microbiome samples fall within the 194 

range of NSTI values for samples in the PICRUSt validation that had high correlation 195 

between metagenomic abundance measurements and 16S predictions.(14). In this 196 

regard, an enhanced and updated report on the utility, correlation between predicted and 197 

experimental measurements, and accuracy of PICRUSt's predictions would be 198 

welcomed by the community, more so since this area of development seems to remain 199 

active (27, 28). The values obtained were not homogenous among the three distinct 200 

sample sets in Global, with values for both the Venezuelan and Malawian samples 201 

being roughly 35% higher than that of the U.S.A. samples. In this regard, the detected 202 

functional overlap could somewhat be inflated since the reference genome set employed 203 

is likely biased towards strains obtained from industrialist countries. 204 

Interestingly, the results indicate that the U.S.A. population restricted the number of 205 

detected core reactions, since Venezuela and Malawian samples presented an additional 206 

156   reactions with 100% prevalence in their joint dataset, compared to <20 exclusively 207 

shared with 100% prevalence between U.S.A. samples and any of the other groups. 208 

Moreover, these values may be conservative, since the reference genomes may be 209 

biased towards bacterial strains more frequent in industrialist countries. This reduction 210 

in functional overlap provides circumstantial support to the emerging concern that 211 

industrialist populations may have lost the microbial diversity needed to adequately 212 

sustain a healthy host (29). 213 
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The results presented herein are influenced by the fact that the metagenomic prediction 214 

approach employed is, to a certain extent, biased, as explained before. As such, the core 215 

genes and reactions reported should be taken cautiously. Thus, validation of each 216 

particular core reaction in the ecosystem, as well as the possibility of each core 217 

metabolite traversing the membrane, along with its potential significance to the host, is 218 

beyond the scope of this study. Nevertheless, returning to the three possible scenarios of 219 

shared functionality in the human gut pan-microbiome postulated above; i) no shared 220 

functionality, ii) shared functionality related to different combinations of genes, and iii) 221 

shared functionality related to a shared combination of genes, the results are strongly 222 

supportive of the latter. Thus, we believe that the minimal gut metagenome idea indeed 223 

represents a potentially useful conceptual framework with which to improve our 224 

knowledge of the role played by the human gut microbiome on maintaining host 225 

homeostasis. 226 

The results also indicate that the human gut minimal metagenome may extensively 227 

contribute to the human holobiont’s metabolic potential. The core reactions reported 228 

here represent a highly restrictive set, since reactions need to be present in all subjects to 229 

achieve the ‘core’ status. Most importantly, these core reactions were predicted as 230 

present in all subjects from a cohort including individuals from agriculturalist and 231 

industrialist societies, also embodying highly diverse genetic, ethnic, and geographical 232 

backgrounds. Furthermore, the results were validated using additional large-cohort 233 

datasets, as well as a substantial shotgun metagenomics dataset. Hence, the described 234 

minimal gut metagenome now pertains more to Homo sapiens as a species, rather than 235 

to industrialist societies of particular ethnic and geographical backgrounds. Finally, our 236 

results seem to indicate that the minimal metagenome has a greater role in 237 

complementing the human metabolism than the other way around.  238 
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 239 

MATERIALS AND METHODS 240 

Datasets. All datasets comprised 16S rRNA gene sequences obtained using primer pair 241 

F515-R806 targeting the V4 hypervariable region, with the exception of dataset Shotgun 242 

which included KOs abundances obtained through shotgun sequencing of metagenomic 243 

DNA (21). All sequence data was derived from stool samples from healthy subjects 244 

over 3 years old, with no history of recent antibiotic treatment prior to sampling (see  245 

Table 1).  246 

Metagenomic predictions. QIIME (30) scripts were employed during initial sequence 247 

processing (Additional file 2). Briefly, datasets were independently processed as 248 

follows; first subsampled to the minimum common depth. Then, chimeric sequences 249 

were identified with usearch61 (31) and removed. Finally, sequences were clustered 250 

into OTUs using Greengenes (32) 0.97 representative sequence dataset (May 2013) as 251 

reference using usearch61. Subsequently, PICRUSt scripts were employed to first 252 

normalize OTU abundances by 16S rRNA gene copy number, and then transform 253 

normalized OTU abundances into KO abundances. Correlation between predictions and 254 

measurements was evaluated using NSTI as a proxy for the Spearman coefficient, as 255 

they are strongly negatively and significantly correlated (14). Tax4Fun (22), an 256 

alternative metagenome prediction pipeline, was also employed with Global dataset 257 

following the suggested standard procedure.  258 

Since more than one KO group may carry out a particular reaction, KO abundances 259 

were mapped to KEGG reactions. In cases where a KO mapped to more than one 260 

reaction, all reactions linked to the KO were scored. KOs and reactions appearing in all 261 
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individuals in the datasets were defined as ‘core’. Finally, the MinPath algorithm (33) 262 

was used for biological pathway reconstruction from core KOs. 263 

Metabolic complementarity assessments. Host-microbiome cooperation was assessed 264 

with NetCooperate (23) using the Metabolic Complementarity Index. This index 265 

provides a quantification of the extent to which two species may support one another 266 

through biosynthetic complementarity. There is no threshold for ‘complementarity’ and 267 

‘no complementarity’, and hence the metrics have to be employed in a comparative 268 

manner (23). Here, the index was used to study both moieties of the human holobiont; 269 

the human genome and the minimal gut metagenome. Hence, the reciprocal analysis 270 

evaluates the relative strength of each moiety complementing the other. To do so, core 271 

reactions were transformed into linked KEGG compounds, and then analyzed with 272 

NetCooperate. To further assess such complementarity, both the core reactions and the 273 

reactions encoded by the human genome were imported into the interactive metabolic 274 

pathway explorer iPATH3.0  (34). 275 
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 417 

FIGURE LEGENDS 418 

 419 

Figure 1. Venn diagrams depicting the overlap in core reactions between different 420 

datasets and software. Panel A: Different sample sets within Global. Values refer to 421 

the analysis with the same number of individuals per population (50). Panel B: 422 

Different 16S datasets. Values refer to the analysis with the same number of sequences 423 

per sample (8,000). Panel C: Differences between metagenomic prediction software. 424 

Panel D: Differences between 16S (Global) and shotgun metagenomics (Shotgun) 425 

datasets. 426 

Figure 2. The minimal gut metagenome extends human metabolic potential. Nodes 427 

in the map correspond to chemical compounds and edges represent enzymatic reactions. 428 

The figure provides an iPath2.0 representation of KEGG metabolic pathways, where 429 

reactions catalyzed by enzymes encoded in the human genome appear in blue, while 430 

core reactions of the human gut pan-microbiome not encoded also by the human 431 

genome, appear in red. 432 

 433 

Supplementary Figure 1. Distribution of NSTI values among the three sample sets 434 

in Global. 435 

Supplementary Figure 2. The number of core reactions varies with prevalence 436 

threshold. [Linear regression; y=-8.57 + 2899, R2=0.92] 437 

Supplementary Figure 3. Prevalence of Global core reactions in Shotgun. Dots 438 

represent all reactions detected in Shotgun. Their prevalence in the dataset is recorded 439 

along the y-axis, and those reactions with 100% prevalence in Global (core) appear in a 440 

different color. 441 

Supplementary Figure 4. Prevalence Vs. average abundance values in Global. Dots 442 

represent all reactions predicted in the dataset, core reactions depicted in red. 443 

Supplementary Figure 5. The gut metagenome extends human metabolic potential. 444 

Nodes in the map correspond to chemical compounds and edges represent enzymatic 445 

reactions. The figure provides an iPath2.0 representation of KEGG metabolic pathways, 446 

where reactions catalyzed by enzymes encoded in the human genome appear in blue, 447 

while reactions of the human gut pan-microbiome not encoded also by the human 448 

genome appear in either red (100% prevalence), orange (50% prevalence), or yellow 449 

(1% prevalence). 450 

 451 

 452 

 453 
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 457 

 458 

 459 

Table 1. Datasets´ characteristics 

Name 

Geographic 

distribution 

Number of 

individuals 

Sequence 

depth
1
 

Read 

length
2
 

Sequencing 

technology
3
 

Global 

Malawi, USA, 

Venezuela 382 >300K 100 GAIIx 

Twins UK 2,727 >15K 2x250 MiSeq 

Flemish Belgium 873 >8K 2x250  MiSeq 

Shotgun 

USA, Europe, 

China 123 15M 

2x75, 

2x100  GAIIx, Hiseq 
1 Values represent final sequence depth per sample before analysis (i.e. after 

chimera removal and subsampling to common depth).
 2

in bp. 
3
Illumina 
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