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Abstract   
Structural  variants  and  presence/absence  polymorphisms  are  common  in  plant  genomes,  yet  they  are                          

routinely  overlooked  in  genome-wide  association  studies  (GWAS).  Here,  we  expand  the  genetic  variants                          

detected  in  GWAS  to  include  major  deletions,  insertions,  and  rearrangements.  We  first  use  raw                            

sequencing  data  directly  to  derive  short  sequences, k -mers,  that  mark  a  broad  range  of  polymorphisms                              

independently  of  a  reference  genome.  We  then  link k -mers  associated  with  phenotypes  to  specific                            

genomic  regions.  Using  this  approach,  we  re-analyzed  2,000  traits  measured  in Arabidopsis  thaliana,                          

tomato , and maize  populations.  Associations  identified  with k -mers  recapitulate  those  found  with                        

single-nucleotide  polymorphisms  (SNPs),  however,  with  stronger  statistical  support.  Moreover,  we                    

identified  new  associations  with  structural  variants  and  with  regions  missing  from  reference  genomes.                          

Our  results  demonstrate  the  power  of  performing  GWAS  before  linking  sequence  reads  to  specific                            

genomic  regions,  which  allow  detection  of  a  wider  range  of  genetic  variants  responsible  for  phenotypic                              

variation.    
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Introduction  

Elucidating  the  link  between  genotype  and  phenotype  is  central  to  biological  research,  both  in  basic                              

research  as  well  as  in  translational  medicine  and  agriculture.  Correlating  genotypic  and  phenotypic                          

variability  in  genome-wide  association  studies  (GWAS)  has  become  the  tool  of  choice  for  systematic                            

identification  of  candidate  loci  in  the  genome  that  are  causal  for  phenotypic  differences.  In  plants,  many                                

species-centered  projects  are  genotyping  collections  of  individuals,  for  which  different  phenotypes  can                        

then  be  measured  and  analyzed.  These  include  hundreds  or  thousands  of  strains  from Arabidopsis                            
thaliana ,  rice,  maize,  tomato,  sunflower,  and  several  other  species (1001  Genomes  Consortium,  2016;                          

Bukowski   et   al.,   2018;   Hübner   et   al.,   2018;   Tieman   et   al.,   2017;   Wang   et   al.,   2018) .   

A  difficulty  of  working  with  plant  genomes  is  that  they  are  highly  repetitive  and  feature  excessive                                

structural  variation  between  members  of  the  same  species,  mostly  attributed  to  their  active  transposons                            

(Bennetzen,  2000) .  For  example,  in  the  well-studied  species Arabidopsis  thaliana ,  natural  accessions  are                          

missing  15%  of  the  reference  genome,  indicating  a  similar  fraction  would  be  absent  from  the  reference,                                

but  present  in  other  accessions (1001  Genomes  Consortium,  2016) .  Moreover,  although A.  thaliana  has                            

a  small  (140  Mb)  and  not  very  repetitive  genome  compared  to  many  other  plants,  SNPs  may  be  assigned                                    

to  incorrect  positions  due  to  sequence  similarity  shared  between  unlinked  loci (Long  et  al.,  2013) .  The                                

picture  is  even  more  complicated  in  other  plant  species,  such  as  maize.  The  maize  2.3  Gb  genome  is                                    

highly  repetitive,  with  transposons  often  inserted  into  other  transposons,  and  50%-60%  of  short  read                            

sequences  can  not  be  mapped  uniquely  to  it,  making  the  accurate  identification  of  variants  in  the                                

population  a  formidable  challenge (Bukowski  et  al.,  2018;  Schnable  et  al.,  2009) .  Furthermore,  about  30%                              

of  low-copy  genes  present  in  the  entire  population  are  not  found  in  the  reference (Gore  et  al.,  2009;                                    

Springer  et  al.,  2018;  Sun  et  al.,  2018) .  Presence  of  large  structural  variants  are  ubiquitous  all  over  the                                    

plant  kingdom,  and  there  are  many  examples  for  their  effects  on  phenotypes (Saxena  et  al.,  2014) .  The                                  

importance  of  structural  variants  in  driving  phenotypic  variation  has  been  appreciated  from  the  early                            

days  of  maize  genetics (McClintock,  1950) ,  though  searching  for  them  systematically  is  still  an  unsolved                              

problem.  

Correlating  phenotypic  and  genotypic  variation  in  GWAS  is  critically  dependent  on  the  ability  to                            

call  individual  genotypes.  While  short  sequencing  reads  aligned  to  a  reference  genome  can  identify                            

variants  smaller  than  read  length,  such  as  SNPs  and  short  indels,  this  approach  is  much  less  effective  for                                    

larger  structural  variants.  Moreover,  variants  such  as  SNPs  can  be  in  regions  missing  from  the  reference                                

genome,  which  is  frequently  the  case  in  plants.  Organellar  genomes  are  a  special  case,  being  left  out  of                                    

GWAS  systematically  although  their  genetic  variation  was  shown  to  have  strong  phenotypic  effects                          
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(Davila  et  al.,  2011;  Joseph  et  al.,  2013) .  Although  not  regularly  used,  short  read  sequencing  can  provide,                                  

in  principle,  information  for  many  more  variants  in  their  source  genomes  than  only  SNPs  and  short                                

indels    (Iqbal   et   al.,   2012) .   

While  variants  are  typically  discovered  with  short  reads  by  mapping  them  to  a  target  reference                              

genome,  one  can  also  directly  compare  common  subsequences  among  samples (Zielezinski  et  al.,  2019) .                            

Such  a  direct  approach  is  intuitively  most  powerful  when  the  reference  genome  assembly  is  poor,  or                                

even  non-existent.  Because  short  reads  result  from  random  shearing  of  genomic  DNA,  and  because  they                              

contain  sequencing  errors,  comparing  short  reads  between  two  samples  directly  is,  however,  not  very                            

effective.  Instead,  genetic  variants  in  a  population  can  be  discovered  by  focusing  on  sequences  of                              

constant  length k  that  are  even  shorter  than  typical  short  reads,  termed k -mers.  After k -mers  have  been                                  

extracted  from  all  short  reads,  sets  of k -mers  present  in  different  samples  can  be  compared.  Importantly,                                

k -mers  present  in  some  samples,  but  missing  from  others,  can  identify  a  broad  range  of  genetic  variants.                                  

For  example,  two  genomes  differing  in  a  SNP (Fig.  1A)  will  have  k k -mers  unique  to  each  genome;  this  is                                        

true  even  if  the  SNP  is  found  in  a  repeated  region  or  a  region  not  found  in  the  reference  genome.                                        

Structural  variants,  such  as  large  deletions,  inversions,  translocations,  transposable  element  (TE)                      

insertion,  etc.  will  also  leave  marks  in  the  presence  or  absence  of k -mers (Fig.  1A) .  Therefore,  instead  of                                    

defining  genetic  variants  in  a  population  relative  to  a  reference  genome,  a k -mer  presence/absence  in  raw                                

sequencing  data  can  be  directly  associated  with  phenotypes  to  enlarge  the  tagged  genetic  variants  in                              

GWAS    (Lees   et   al.,   2016) .  

Reference-free  GWAS  based  on k -mers  has  been  used  for  mapping  genetic  variants  in  bacteria,                            

where  each  strain  contains  only  a  fraction  of  the  genes  present  in  the  pan-genome (Lees  et  al.,  2016,                                    

2017;  Sheppard  et  al.,  2013) .  This  approach,  not  centered  around  one  specific  reference  genome,  can                              

identify  biochemical  pathways  associated  with,  for  example,  pathogenicity.  This  approach  has  also  been                          

applied  in  humans,  where  the  number  of  unique k -mers  is  much  higher  than  in  bacterial  strains,  due  to                                    

their  larger  genome (Rahman  et  al.,  2018) .  However,  this  was  restricted  to  case-control  situations,  and                              

due   to   high   computational   load,   population   structure   was   corrected   only   for   a   subset   of    k -mers.   

While k -mer  based  approaches  are  likely  to  be  especially  appropriate  for  plants,  the  large                            

genome  sizes,  highly  structured  populations,  and  excessive  genetic  variation (Gordon  et  al.,  2017;  Minio                            

et  al.,  2019;  Sun  et  al.,  2018)  limit  the  application  of  previous k -mer  methods  to  plants.  A  first  attempt  to                                        

nevertheless  use k -mer  based  methods  has  recently  been  made  in  plants,  but  was  limited  to  a  small                                  

subset  of  the  genome,  and  also  accounting  for  population  structure  only  for  a  small  subset  of  all k -mers                                    

(Arora   et   al.,   2019) .   
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Here,  we  present  an  efficient  method  for k -mer-based  GWAS  and  compare  it  directly  to  the                              

conventional  SNP-based  approach  on  more  than  2,000  phenotypes  from  three  plant  species  with                          

different  genome  and  population  characteristics  - A.  thaliana ,  maize  and  tomato.  Most  variants  identified                            

by  SNPs  can  be  detected  with k -mers  (and  vice  versa),  but k -mers  having  stronger  statistical  support.                                

For k -mer-only  hits,  we  demonstrate  how  different  strategies  can  be  used  to  infer  their  genomic                              

context,  including  large  structural  variants,  sequences  missing  from  the  reference  genome,  and                        

organeller  variants.  Lastly,  we  compute  population  structure  directly  from k -mers,  enabling  the  analysis                          

of  species  with  poor  quality  or  without  a  reference  genome.  In  summary,  we  have  inverted  the                                

conventional  approach  of  building  a  genome,  using  it  to  find  population  variants,  and  only  then                              

associating  variants  with  phenotypes.  In  contrast,  we  begin  by  associating  sequencing  reads  with                          

phenotypes,  and  only  then  infer  the  genomic  context  of  these  sequences.  We  posit  that  this  change  of                                  

order  is  especially  effective  in  plant  species,  for  which  defining  the  full  population-level  genetic  variation                              

based   on   reference   genomes   remains   highly   challenging.  

Results  

Proof   of   concept:   genetic   variants   for   flowering   of    A.   thaliana  

As  an  initial  proof  of  concept,  we  looked  at  the  well-studied  and  well-understood  trait  in  the  model                                  

plant A.  thaliana ,  flowering  time.  In A.  thaliana ,  GWAS  approaches  have  been  used  for  almost  15  years                                  

(Aranzana  et  al.,  2005) ,  and  1,135  individuals,  termed  accessions,  had  their  entire  genomes  resequenced                            

several  years  ago (1001  Genomes  Consortium,  2016) .  We  used  this  genomic  dataset  to  define  the                              

presence/absence  patterns  of  31  bp k -mers  in  these  accessions  (Fig.  S1A) .  In  order  to  minimize  the                                

effect  of  sequencing  errors,  for  each  DNA-Seq  dataset  we  only  considered k -mers  appearing  at  least                              

thrice.  Out  of  a  total  2.26  billion  unique k -mers  across  the  entire  population,  439  million  appeared  in  at                                    

least  five  accessions (Fig.  S2A) .  These k -mers  were  not  shared  by  all  accessions,  and  we  used  the                                  

presence  or  absence  of  a k -mer  as  two  alleles  per  variant  to  perform  GWA  with  a  linear  mixed  model                                      

(LMM)  to  account  for  population  structure (Fig.  S1B) (Zhou  and  Stephens,  2012) .  For  comparison                            

purposes,  GWA  was  performed  also  with  SNPs  and  short  indels.  In  both  cases  statistically  significant                              

associations   were   detected    (Fig.   1B) .  

To  define  a  set  of k -mers  most  likely  to  be  associated  with  flowering  time,  we  had  to  set  a                                      

p-value  threshold.  A  complication  in  defining  such  a  threshold  is  that k -mers  are  often  not  independent,                                

as  a  single  genetic  variant  is  typically  tagged  by  several k -mers (Fig.  1A) .  For  example,  180  million k -mers                                    

had  a  minor  allele  frequency  above  5%,  but  these  represented  only  110  million  unique  presence/absence                              

4  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/818096doi: bioRxiv preprint 

https://paperpile.com/c/EE35j0/ascZ
https://paperpile.com/c/EE35j0/TNDK
https://paperpile.com/c/EE35j0/vDyk
https://doi.org/10.1101/818096
http://creativecommons.org/licenses/by-nc-nd/4.0/


114

115

116

117

118

119

120

121

122
123
124
125
126
127
128
129
130
131

132

133

134

patterns  across  accessions.  Thus,  a  Bonferroni  correction  based  on  the  number  of  all  tests  would  be                                

inaccurate,  as  it  would  not  accurately  reflect  the  effective  number  of  independent  tests.  To  define  a                                

threshold  that  accounts  for  the  dependencies  between k -mers  we  therefore  used  permutation  of  the                            

phenotype (Abney,  2015) .  This  approach  presents  a  computational  challenge,  as  the  full  GWA  analysis                            

has  to  be  run  multiple  times.  To  this  end,  we  implemented  a  LMM-based  GWA  specifically  optimized  for                                  

the    k -mer   application    (Fig.   S1C)     (Loh   et   al.,   2015;   Svishcheva   et   al.,   2012) .   

 

Figure   1.   Flowering   time   associations   in    A.   thaliana  
(A)  Presence  and  absence  of k -mers  marks  a  range  of  different  genetic  variants.  Blue  and  red  lines  represent  two                                      
individuals  genomes,  and  short  bars  above/below  mark  in  color  the k -mers  unique  to  each  genome  due  to  genomic                                    
differences   or   in   grey   ones   shared   between   genomes.   
(B)  P-values  quantile-quantile  plot  of  SNPs  and k -mers  associations  with  flowering  time  measured  in  10°C.                              
Deviation   from   the   black   line   (y=x)   indicate   stronger   associations   than   expected   by   chance.   
(C) LD  (expressed  as  r 2 )  between  all  SNPs  and k -mers  passing  the  p-value  thresholds.  Four  highly  linked  families  of                                      
variants   were   identified   with   both   methods.   For   SNP-to-SNP   and    k -mer-to- k -mer   LD,   see   Fig.   S2B,C.   
(D) Manhattan  plot  showing  p-values  of  all  SNPs  (blue)  and  of  the  subset  of k -mers  passing  the  p-value  threshold                                      
(green)  as  a  function  of  their  genomic  position.  Dashed  lines  mark  the  p-value  thresholds  for  SNPs  (blue)  and                                    
k -mers   (green).  

We  calculated  the  p-value  thresholds  for  SNPs  and k -mers,  set  to  a  5%  chance  of  getting  one                                  

false-positive.  The  threshold  for k -mers  was  more  stringent  than  the  one  for  SNPs  (35-fold),  but  lower                                

than  the  increase  in  tests  number  (140-fold),  as  expected  due  to  the  higher  dependency  between                              
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k -mers.  Twenty-eight  SNPs  and  105 k -mers  passed  their  corresponding  thresholds.  Using  LD,  we  linked                            

SNPs  to k -mers  directly  without  locating  the k -mers  genomic  locations.  Four  distinct  families  of  linked                              

genetic  variants  were  identified  in  both  methods,  with  a  clear  one-to-one  relationship  between  the  four                              

sets  of  SNPs  and  the  four  sets  of k -mers (Fig.  1C,  Fig.  S2B,C) .  As  expected,  the k -mers  aligned  to  the                                        

same  genomic  loci  as  the  corresponding  SNPs (Fig.  1D) .  For  validation,  we  ran  the  analysis  again  with  a                                    

k -mer  length  of  25  bp,  obtaining  a  very  similar  result (Fig.  S2D) .  Therefore,  in  this  case, k -mer  based                                    

GWAS   identified   the   same   genotype-phenotype   associations   as   detected   by   SNPs.  

Comparison   of   SNP-   and    k -mer-based   GWAS   on   1,697    A.   thaliana    phenotypes  

Flowering  time  is  a  very  well  studied  trait,  and  it  is  unlikely  that  a  new  locus  affecting  it  will  be                                        

discovered  by  GWAS.  To  assess  the  potential  of k -mer-based  GWA  to  identify  new  associations,  we  set                                

out  to  systematically  compare  it  to  the  SNP-based  method  on  a  comprehensive  set  of  traits.  To  this  end,                                    

we  collected  1,697  phenotypes  from  104 A.  thaliana  studies (Table  S1) .  This  collection  spans  a                              

representative  sample  of  phenotypes  regularly  measured  in  plants (Fig.  2A) .  Eliminating  phenotypes  for                          

which  there  are  short  read  sequencing  data  from  fewer  than  40  accessions,  we  were  left  with  1,582                                  

traits  to  which  both  methods  could  be  applied.  All  parameters  affecting  GWA  analysis,  such  as  minor                                

allele  frequency  or  relatedness  between  individuals,  were  the  same,  to  obtain  the  most  meaningful                            

comparison.  Moreover,  as A.  thaliana  is  a  selfer,  SNPs  are  homozygous,  and  their  state  is  therefore                                

comparable   to   the   binary    k -mer   presence/absence.  

We  first  wanted  to  learn  whether  the  two  methods  identified  similar  associations.  Indeed,  there                            

was  substantial  overlap  between  the  traits  for  which  associations  were  found (Fig.  2B) .  Also,  the  number                                

of  identified k -mers  and  SNPs  per  phenotype  were  correlated  (r=0.89),  and  as  expected,  more                            

associated k -mers  than  SNPs  were  identified (Fig.  2C,  Fig.  S3A) .  For  137  phenotypes,  only  a  significant                                

SNP  could  be  identified,  due  to  the  more  stringent  thresholds  for k -mers,  as  the  most  significant  SNPs  in                                    

almost  all  of  these  phenotypes  did  not  pass  the k -mer  threshold (Fig.  2D) .  Moreover,  in  most  of  these                                    

phenotypes,  a k -mer  passing  the  SNPs  threshold  was  in  high  LD  with  the  top  SNP (Fig.  2E) .  Although  the                                      

k -mer  thresholds  were  more  stringent  than  the  SNPs  thresholds (Fig.  S3B) ,  for  129  phenotypes  only                              

k -mers  but  no  SNPs  associations  were  identified.  These  cases  were  the  best  candidates  for  associations                              

that   cannot   be   captured   with   SNPs.   

We  next  compared  p-values  of  top  SNPs  to  those  of  top k -mers;  the  two  were  correlated                                

(r=0.87,  Fig.  2F) .  Focusing  on  phenotypes  for  which  both  SNPs  and k -mers  were  identified,  the  great                                

majority,  86%,  had  stronger  p-values  for  the  top k -mer (Fig.  2G) ,  a  trend  that  had  already  been  observed                                    

for  flowering  time  ( Fig.  1D) .  Lastly,  we  wanted  to  know  how  well  top k -mers  were  tagged  by  significantly                                    

6  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/818096doi: bioRxiv preprint 

https://doi.org/10.1101/818096
http://creativecommons.org/licenses/by-nc-nd/4.0/


167

168

169

170

171

172

173
174
175
176
177
178
179
180
181
182
183
184
185
186

187

188

189

190

associated  SNPs  and  vice  versa.  We  quantified  this  with  the  LD (as  in  Fig.  1C)  between  the  top  SNP  and                                        

the  closest  associated k -mer  and  the  other  way  around.  While  SNPs  tagged  variants  similar  to  top                                

k -mers,  associated k -mers  were  on  average  closer  to  top  SNPs  than  associated  SNPs  to  top k -mers (Fig.                                  

2H) .   This   was   expected,   as    k -mers   can   represent   SNPs   but   also   capture   other   types   of   genetic   variants.  

 

Figure   2.   Comparison   of   SNP-   and    k -mer-based   GWAS   on   1,697    A.   thaliana    phenotypes  
(A)    Assignment   of   1,697   phenotypes   to   broad   categories.   
(B)    Overlap   between   phenotypes   with   SNP   and    k -mer   hits.   
(C)    Correlation   of   number   of   significantly   associated    k -mers   vs.   SNPs   for   all   phenotypes.   
(D)  Ratios  (in  log 10 )  of  top  SNP  p-value  vs.  the k -mers  threshold  for  137  phenotypes  with  only  significant  SNPs                                      
(top),   and   for   458   phenotypes   with   both   significant   SNPs   and    k -mers   (bottom).   
(E)  Fraction  of  phenotypes,  from  137  phenotypes  that  had  only  significant  SNP  hits,  for  which  a k -mer  passing  the                                      
SNP  threshold  could  be  found  within  different  LD  cutoffs.  For  a  minimum  of  LD=0.5  (dashed  lines),  61%  of                                    
phenotypes   had   a   linked    k -mer   that   passed   the   SNP   threshold.   
(F)  Correlation  of  p-values  of  top k -mers  and  SNPs  for  all  phenotypes  (r=0.87).  Red  circle  marks  the  strongest                                    
outlier   (see   Fig.   3A,   B   for   details   on   this   phenotype).   
(G)  Ratio  between  top  p-values  (expressed  as  -log 10 )  in  the  two  methods,  for  the  458  phenotypes  with  both k -mer                                      
and   SNP   hits.   
(H)  Fraction  of  all  phenotypes  for  which  a  significant  SNP  could  be  found  within  different  LD  cutoffs  of  top k -mer                                        
(blue)   and   vice   versa   (green).  

Specific   case   studies   of    k -mer   superiority  

For  some  phenotypes, k -mers  were  more  strongly  associated  with  a  phenotype  than  the  top  SNP,                              

although  they  represented  the  same  variant (Fig.  S4A).  The  goal  of  our  study  was,  however,  to  identify                                  

cases  where k -mers  provided  a  conceptual  improvement.  First,  we  looked  into  the  phenotype                          
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quantifying  the  fraction  of  dihydroxybenzoic  acid  (DHBA)  xylosides  among  total  DHBA  glycosides (Li  et                            

al.,  2014) (red  circle  in  Fig.  2F) .  In  this  case,  all  significant k -mers  mapped  uniquely  in  the  proximity  of                                      

AT5G03490,  encoding  a  UDP  glycosyltransferase  that  was  identified  in  the  original  study  as  causal (Fig.                              

3A,  Fig.  S4B) .  The  source  of  the  stronger k -mers  associations  could  be  traced  back  to  two                                

non-synonymous  SNPs,  4  bp  apart,  in  the  coding  region  of  AT5G03490.  Due  to  their  proximity,  one                                

k -mer  can  hold  the  state  of  both  SNPs,  and  their  combined  information  is  more  predictive  of  the                                  

phenotype  than  each  SNP  on  its  own (Fig.  3B) .  This  interaction  between  closely  linked  SNPs  was  not                                  

one   of   the   types   of   genetic   variants   we   had   anticipated   for    k -mers.  

Our  next  case  study  involves  inhibition  of  seedling  growth  in  the  presence  of  a  specific  flg22                                

variant (Vetter  et  al.,  2016) ,  a  phenotype  for  which  we  could  map  to  the  reference  genome  only  three  of                                      

the  10  significant k -mers;  the  three  mappable k -mers  were  all  located  in  the  proximity  of  significant  SNPs                                  

in  AT1G23050 (Fig.  3C,  Fig.  S4C) .  To  identify  the  genomic  source  of  the  remaining  seven k -mers,  we                                  

retrieved  the  short  reads  containing  the k -mers  from  all  relevant  accessions  and  assembled  them  into  a                                

single  962  bp  fragment.  This  fragment  mapped  to  two  genomic  regions  892  bp  apart,  close  to  the  three                                    

mapped k -mers (Fig.  3D) .  The  junction  sequence  connecting  the  two  regions  could  only  be  identified  in                                

accessions  with  the  seven  significant k -mers.  We  hypothesized  that  the  892  bp  intervening  fragment                            

corresponds  to  a  transposable  element  (TE),  and  a  search  of  the  Repbase  database  indeed  identified                              

similarity  to  helitron  TE (Bao  et  al.,  2015) .  Thus,  the k -mers  in  this  case  marked  an  association  with  a                                      

structural  variant,  the  presence  or  absence  of  a  ~900  bp  TE.  While  in  this  case  the k -mer  method  did                                      

not  identify  a  new  locus,  it  more  clearly  revealed  what  is  the  likely  genetic  cause  of  variation  in  flg22                                      

sensitivity.  

In  the  first  two  examples,  hits  with  both k -mers  and  SNPs  had  been  identified.  Next,  we  looked                                  

for  phenotypes  for  which  we  had  only  identified  significant k -mers.  One  of  these  was  germination  in                                

darkness  and  under  low  nutrient  supply (Morrison  and  Linder,  2014) .  In  this  case,  11 k -mers  but  no                                  

significant  SNPs  had  been  found (Fig.  3E,  Fig.  S4D-E) .  However,  neither  the  11 k -mers  nor  the  short                                  

reads  they  originated  from  could  be  mapped  to  the  reference  genome.  The  reads  assembled  into  a  458                                  

bp  fragment.  A  database  search  revealed  a  hit  on  chromosome  3  of  Ler-0,  a  non-reference  accession  of                                  

A.  thaliana  with  a  high-quality  genome  assembly (Zapata  et  al.,  2016) .  The  flanking  sequences  were                              

syntenic  with  region  on  chromosome  3  of  the A.  thaliana  reference  genome,  with  a  2  kb  structural                                  

variant  that  included  the  458  bp  fragment  we  had  assembled  based  on  our k -mer  hits (Fig.  3F) .  This                                    

variant  affected  the  3’  untranslated  region  (UTR)  of  the  bZIP67  transcription  factor  gene.  bZIP67  acts                              

downstream  of LEC1  and  upstream  of  DOG1,  two  master  regulators  of  seed  development (Bryant  et  al.,                                

2019) .  Accumulation  of  bZIP67  protein  but  not bZIP67  mRNA  is  affected  by  cold  and  thus  likely                                
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mediates  environmental  regulation  of  germination (Bryant  et  al.,  2019) .  Structural  variations  in  the  3’                            

UTR  is  consistent  with  translational  regulation  of  bZIP67  being  important.  The  bZIP67/germination  case                          

study  demonstrates  directly  the  ability  of  our k -mer  method  to  reveal  associations  with  structural                            

variants   that   are   not   tagged   by   SNPs.  
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Figure   3.   Specific   cases   in   which    k -mers   are   superior   to   SNPs  
(A)  Associations  with  xyloside  fraction  in  a  region  of  chromosome  5.  Grey  boxes  indicate  genes  with  AT5G03490                                  
marked   in   red.   
(B)  Xyloside  fraction  grouped  by  states  at  two  SNPs  (SNP1,  872,003  bp;  SNP  2,  872,007  bp).  One  of  the  four                                        
possible  states  (“CG”)  does  not  exist,  indicated  in  grey  in  left  most  plot,  which  shows  grouping  based  on  both                                      
sites,   as   is   possible   with    k -mers.   Middle   and   right   most   plot   show   groupings   based   on   only   one   of   the   two   sites.   
(C)  Associations  with  seedling  growth  inhibition  in  the  presence  of  flg22  near  8.17  Mb  of  chromosome  1.  Absence                                    
of  SNPs  in  the  central  1  kb  region  is  likely  due  to  the  presence  of  a  TE  to  which  short  reads  cannot  be                                              
unambiguously   mapped.   Gene   orientations   indicated   with   short   black   arrows.   
(D)  Assembly  of  reads  identified  with  the  seven  unmappable k -mers  resulted  in  a  962bp  fragment.  This  fragment                                  
lacks  the  central  892  bp  region  in  the  reference  genome  encoding  an  ATREP7  helitron  TE.  Small  circles  on  bottom                                      
represent   significant   flanking   SNPs,   and   short   black   bars   above   represent   the   three   mappable   significant    k -mers.   
(E)  P-values  quantile-quantile  plot  of  associations  with  germination  time  in  darkness  and  low  nutrients.  Only                              
k -mers   show   stronger-than-expected   associations.   
(F) Assembled  reads  (red  bar)  containing  significant k -mers  from  GWA  of  germination  time  match  a  region  on                                  
chromosome  3  of  Ler-0.  Regions  in  addition  to  the  red  fragment  that  cannot  be  aligned  to  the  Col-0  reference                                      
genome  are  indicated  in  black.  The  3’  UTR  of  the  gene  encoding  bZIP67  is  indicated  in  dark  blue.  The  extent  of  the                                            
bZIP67   3’   UTR   in   Ler-0   is   not   known.   Green   indicates   coding   sequences.   
(G)  Root  branching  zone  length  in  millimeters  in  accessions  that  have  the  significant k -mer  identified  for  this  trait                                    
and   accessions   that   do   not   have   this    k -mer.   

As  a  final  case,  we  focused  on  the  variation  in  the  length  of  the  root  branching  zone (Ristova  et                                      

al.,  2018) .  While  no  significant  SNPs  could  be  identified,  a  single k -mer  passed  the  significance  threshold                                

(Fig.  3G,  Fig.  S4F) .  The k -mer  and  the  reads  containing  it  mapped  to  the  chloroplast  genome.  When  we                                    

lowered  the  threshold  for  the  familywise  error-rate  from  5%  to  10%,  a  second k -mer  was  identified,                                

which  also  mapped  to  the  chloroplast  genome.  Genetic  variation  in  organelle  genomes  has  been  shown                              

to   affect   phenotypic   variation    (Joseph   et   al.,   2013) ,   but   they   are   often   left   out   from   GWA   studies.   

Comparison   of   SNP-   and    k -mer-based   GWAS   in   maize  

While  the  results  with A.  thaliana  were  encouraging,  its  genome  size  and  repeat  content  is  not                                

representative  of  many  other  flowering  plants.  We  therefore  wanted  to  evaluate  our  approach  on  larger,                              

more  complex  genomes.  This  criterion  is  met  by  maize,  with  a  reference  genome  of  2.3  Gb,  ~85%  of                                    

which  consists  of  TEs  and  other  repeats (Schnable  et  al.,  2009) .  Moreover,  individual  maize  genomes  are                                

highly  divergent,  with  ~10%  of  genes  being  non-syntenic  and  many  genes  found  in  different  accessions                              

are   missing   from   the   reference   genome    (Gore   et   al.,   2009;   Springer   et   al.,   2018;   Sun   et   al.,   2018) .   

We  set  out  to  apply  our k -mer-based  GWAS  approach  to  a  set  of  150  maize  inbred  lines  with                                    

short  read  sequence  coverage  of  at  least  6x (Bukowski  et  al.,  2018) .  There  were  7.3  billion  unique                                  

k -mers  in  the  population,  of  which  2.3  billion  were  present  in  at  least  five  accessions,  which  were  used                                    

for  GWAS (Fig.  S5A) .  As  in A.  thaliana ,  we  sought  to  compare  the k -mer-  and  SNP-based  approaches.  To                                    
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this  end,  we  applied  both  methods  to  252  field  measurements,  mostly  of  morphological  traits (Zhao  et                                

al.,  2006) .  For  89  traits,  significant  associations  were  identified  by  at  least  one  of  the  methods,  and  for  37                                      

by  both (Fig.  4A) .  As  in A.  thaliana ,  the  number  of  statistically  significant  variants  as  well  as  top                                    

associations  between  both  methods  were  well  correlated (Fig.  4B,C) .  Top k -mers  had  lower  p-values                            

than   the   top   SNPs    (Fig.   S5D),    and   the    k -mer   method   detected   associations   not   found   by   SNPs.  

To  discern  the  added  benefit  of  the k -mer-based  approach,  we  compared  SNPs  and k -mers  using                              

LD,  without  attempting  to  locate k -mers  in  the  genome.  We  used  this  comparison  approach  as  SNPs                                

were  originally  placed  on  the  genomic  map  using  external  information  in  addition  to  short  read  mapping,                                

due  to  the  large  proportion  of  short  reads  that  do  not  map  to  unique  places  in  the  reference  genome                                      

(Bukowski  et  al.,  2018) .  We  found  several  cases  where  a k -mer  marked  a  common  allele  in  the                                  

population  with  strong  effect  on  a  phenotype,  but  the  allele  could  not  be  identified  with  the  SNP  dataset.                                    

For  example,  for  days  to  tassel  there  was  one  clear  SNP  hit  that  was  also  tagged  by k -mers (Fig.  4D,E) ,                                        

but  a  second  genetic  variant  was  only  identified  with k -mers.  Another  example  is  ear  weight  for  which                                  

no  SNPs  passed  the  significance  threshold (Fig.  S5F) ,  but  several  unlinked  variants  were  identified  with                              

k -mers (Fig.  4F) .  Thus,  new  alleles  with  high  predictive  power  for  maize  traits  can  be  revealed  using                                  

k -mers.  
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Figure   4.   Comparison   of   SNP-   and    k -mer-based   GWAS   in   maize  
(A)    Overlap   between   phenotypes   with   SNP   and    k -mer   hits.   See   also   Fig.   S5B,C.   
(B)    Correlation   of   number   of   significantly   associated    k -mers   vs.   SNPs   for   all   phenotypes.   See   also   Fig.   S5E.   
(C)    Correlation   of   p-values   of   top    k -mers   and   SNPs   for   all   phenotypes.  
(D)    Manhattan   plot   of   SNP   associations   with   days   to   tassel   (environment   06FL1).   
(E) LD  between  23  significant  SNPs  and  18 k -mers  (top)  or k -mers  to  k -mers  (bottom)  for  days  to  tassel.  Order                                        
of    k -mers   is   the   same   in   both   heatmaps.  
(F)  LD  between  45 k -mers  associated  with  ear  weight  (environment  07A,  left),  and k -mer’s  presence/absence                              
patterns   in   different   accessions   ordered   by   their   ear   weight   (right).  

A  major  challenge  in  identifying  causal  variants  in  maize  is  the  high  fraction  of  short  reads  that                                  

do  not  map  uniquely  to  the  genome.  In  the  maize  HapMap  project,  additional  information  had  to  be  used                                    

to  find  the  genomic  position  of  SNPs,  including  population  LD  and  genetic  map  position (Bukowski  et  al.,                                  

2018) .  The  same  difficulty  of  unique  mappings  also  undermined  the  ability  to  identify  the  genomic  source                                

of k -mers  associated  with  specific  traits.  For  example,  we  tried  to  locate  the  genomic  position  of  the                                  

k -mer  corresponding  to  the  SNP  associated  with  days  to  tassel  in  chromosome  3 (Fig.  4D) .  The  vast                                  

majority  of  short  reads  from  which  the k -mer  originated,  99%,  could  not  be  mapped  uniquely  to  the                                  

reference  genome.  However,  when  we  assembled  all  these  reads  into  a  924  bp  contig,  this  fragment                                

could  now  be  uniquely  placed  in  the  genome,  to  the  same  place  as  the  identified  SNPs.  Thus,  as  we  were                                        
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only  interested  in  finding  the  genomic  position  after  we  already  had  an  association  in  hand,  we  could  use                                    

the  richness  of  combining  reads  from  many  accessions  to  more  precisely  locate  their  origin  without  the                                

use   of   additional   genetic   information,   as   had   to   be   used   for   the   SNPs.  

Comparison   of   SNP-   and    k -mer-based   GWAS   in   tomato  

Tomato  has  a  900  Mb  genome,  which  is  intermediate  between A.  thaliana  and  maize,  but  it  presents  its                                    

own  challenges,  as  modern  tomatoes  show  a  complex  history  of  recent  introgressions  from  wild                            

relatives (Lin  et  al.,  2014;  Tomato  Genome  Consortium,  2012) .  Of  3.2  billion  unique k -mers  in  all  246                                  

used  accessions,  981  million  were  found  in  at  least  five  accessions (Fig.  S6A) .  We  compared k -mer-  and                                  

SNP-based  GWAS  on  96  metabolites  measurements  from  two  previous  studies (Tieman  et  al.,  2017;                            

Zhu  et  al.,  2018) .  For  most  metabolites,  an  association  was  identified  by  at  least  one  method,  with  three                                    

metabolites  having  only  SNP  hits  and  13  only k -mer  hits (Fig.  5A) .  Similar  to A.  thaliana  and  maize,  the                                      

number  of  identified  variants  as  well  as  top  p-values  were  correlated  between  methods (Fig.  5B,C) .  Top                                

k -mers  associations  were  also  stronger  than  top  SNPs (Fig.  S5D) ,  but  even  more  so  than  in A.  thaliana                                    

or  maize,  with  an  average  difference  of  10 4.4 ,  suggesting  that  in  tomato  the  benefits  of k -mer-based                                

GWAS   are   also   larger.   

We  next  looked,  as  a  case-study,  at  measurements  of  guaiacol,  which  results  in  a  strong  off-flavor                                

and  is  therefore  not  desirable (Tieman  et  al.,  2017) .  SNPs  in  two  genomic  loci  were  associated  with  it                                    

(Fig.  5D) ,  one  in  chromosome  9  and  the  other  in  what  is  called  “chromosome  0”,  which  corresponds  to                                    

the  concatenation  of  all  sequence  scaffolds  that  could  not  be  assigned  to  one  of  the  12  nuclear                                  

chromosomes.  From  the  293  significant k -mers,  180  could  be  mapped  uniquely  to  the  genome,  all  close                                

to  significant  SNPs.  Among  the  remaining k -mers,  of  particular  interest  was  a  group  of  35 k -mers  in  very                                    

high  LD  that  had  the  lowest  p-values,  but  could  not  be  mapped  to  the  reference  genome (Fig.  5E) .                                    

Assembly  of  the  reads  containing  these k -mers  resulted  in  a  1,172  bp  fragment,  of  which  the  first  574  bp                                      

could  be  aligned  near  significant  SNPs  in  chromosome  0 (Fig.  5F) .  The  remainder  of  this  fragment  could                                  

not  be  placed  in  the  reference  genome,  but  there  was  a  database  match  to  the NON-SMOKY                                
GLYCOSYLTRANSFERASE  1  ( NSGT1 )  gene (Tikunov  et  al.,  2013) .  The  35  significant k -mers  covered                          

the  junction  between  these  two  mappable  regions.  Most  of  the NSGT1  coding  sequence  is  absent  from                                

the  reference  genome,  but  present  in  other  accessions. NSGT1  had  been  originally  isolated  as  the  causal                                

gene  for  natural  variation  in  guaiacol  levels (Tikunov  et  al.,  2013) .  Since NSGT1  can  be  anchored  to                                  

chromosome  9  near  the  identified  SNPs (Fig.  5F) ,  the  significant  SNPs  identified  in  chromosomes  0  and  9                                  

apparently  represent  the  same  region,  connected  by  the  fragment  we  assembled  from  our  set  of  35                                

13  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/818096doi: bioRxiv preprint 

https://paperpile.com/c/EE35j0/Idmh+mEVD
https://paperpile.com/c/EE35j0/1umn+7Fnm
https://paperpile.com/c/EE35j0/1umn+7Fnm
https://paperpile.com/c/EE35j0/1umn
https://paperpile.com/c/EE35j0/hQkk
https://paperpile.com/c/EE35j0/hQkk
https://doi.org/10.1101/818096
http://creativecommons.org/licenses/by-nc-nd/4.0/


332

333

334

335

336
337
338
339
340
341
342
343
344
345
346

347

348

349

significant k -mers.  Thus,  we  identified  an  association  outside  the  reference  genome,  and  linked  the  SNPs                              

in   chromosome   0   to   chromosome   9.  

 

Figure   5.   Comparison   of   SNP-   and    k -mer-based   GWAS   in   tomato  
(A)    Overlap   between   phenotypes   with   SNP   and    k -mer   hits.   See   also   Fig.   S5B,C.   
(B)    Correlation   of   number   of   significantly   associated    k -mers   vs.   SNPs   for   all   phenotypes.   See   also   Fig.   S5E.   
(C)    Correlation   of   p-values   of   top    k -mers   and   SNPs   for   all   phenotypes.   
(D)    Manhattan   plot   of   SNPs   and    k -mers   associations   with   guaiacol   concentration.   
(E) LD  among  293 k -mers  associated  with  guaiacol  concentration  (right),  and  the  p-value  of  each k -mer  (left).  Red                                    
square   on   bottom   left   indicates   the   35    k -mers   with   strongest   p-values   and   no   mappings   to   the   reference   genome.   
(F) The  first  part  of  a  fragment  assembled  from  the  35  unmapped k -mers  (E)  mapped  to  chromosome  0  and  the                                        
second  part  to  the  unanchored  complete NSGT1  gene.  Only  the  3’  end  of NSGT1  maps  to  the  reference  genome,                                      
to  chromosome  9.  The  green  and  black  arrows  marks  the  start  of  the NSGT1  ORF  in  the  R104  “smoky”  line  and                                          
“non-smoky”  lines,  respectively (Tikunov  et  al.,  2013) .  Two  SNPs  are  indicated,  which  are  the  significant  SNPs                                
closest   to   the   two   regions   of   the   reference   genome.  

Calculation   of   relatedness   between   individuals   based   on    k -mers  

We  have  shown  that  we  can  assemble  short  fragments  from k -mer-containing  short  reads  and  find  hits                                

not  only  in  the  reference  genome,  but  also  in  other  published  sequences.  This  opens  the  possibility  to                                  
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apply  our k -mer-based  GWAS  method  to  species  without  a  high-quality  reference  genome.  Draft                          

genomes  with  contigs  that  include  typically  multiple  genes  can  be  relatively  easily  and  cheaply  generated                              

using  short  read  technology (Sohn  and  Nam,  2018) .  The  major  question  with  such  an  approach  is  then                                  

how   one   would   correct   for   population   structure   in   the   GWAS   step.  

So  far,  we  had  relied  on  SNP  kinship  information.  If  one  were  to  extend  our  method  to  species                                    

without  high-quality  reference  genomes  one  would  ideally  be  able  to  learn  kinship  directly  from k -mers,                              

thus  obviating  the  need  to  map  reads  to  a  reference  genome  for  SNP  calling.  With  this  goal  in  mind,  we                                        

estimated  relatedness  using k -mers,  applying  the  same  method  as  with  SNPs,  with  presence/absence  as                            

the  two  alleles.  We  calculated  the  relatedness  matrices  for A.  thaliana ,  maize,  and  tomato  and  compared                                

them  to  the  SNP-based  relatedness.  In  all  three  species  there  was  agreement  between  the  two  methods,                                

although  initial  results  were  clearly  better  for A.  thaliana  and  maize  than  for  tomato (Fig.  6) .  The  inferior                                    

performance  in  tomato  was  due  to  21  accessions (Fig.  S7) ,  which  appeared  to  be  more  distantly  related                                  

to  the  other  accessions  based  on k -mer  than  what  had  been  estimated  with  SNPs.  This  is  likely  due  to                                      

these  accessions  containing  diverged  genomic  regions  that  do  poorly  in  SNP  mapping,  resulting  in                            

inaccurate  relatedness  estimates.  Removing  these  21  accessions  increased  the  correlation  between  SNP-                        

and k -mer-based  relatedness  estimates  from  0.60  to  0.83.  In  conclusion, k -mers  can  be  used  to  calculate                                

relatedness  between  individuals,  thus  paving  the  way  for  GWAS  in  organisms  without  high-quality                          

reference   genomes.   

 

Figure   6.   Kinship   matrix   estimates   with    k -mers  
Relatedness  between  accessions  was  independently  estimated  based  on  SNPs  and k -mers.  The  correlation  between                            
the  two  for  tomato  could  be  improved  by  removing  21  accessions  that  behaved  differently  between k -mers  and                                  
SNPs   (see   Fig.   S7).   
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Discussion  

The  complexity  of  plant  genomes  makes  identification  of  genotype-phenotype  associations  often                      

challenging.  To  cope  with  this  complexity,  we  followed  a  simple  idea:  most  genetic  variants  leave  a  mark                                  

in  the  form  of  presence  or  absence  of  specific k -mers  in  whole  genome  sequencing  data.  Therefore,                                

associating  these k -mer  marks  with  phenotypes  will  lead  back  to  the  genetic  variants  of  interest.  Our                                

approach  can  identify  associations  found  also  by  SNPs  and  short  indels,  but  it  excels  when  it  comes  to                                    

the  detection  of  structural  variants  and  variants  not  present  in  the  reference  genome.  The  expansion  of                                

variant  types  detected  by  our k -mer  method  complements  SNP-based  approaches,  and  greatly  increases                          

opportunities  for  finding  and  exploiting  complex  genetic  variants  driving  phenotypic  differences  in  plants,                          

including   improved   genomic   predictions.  

k -mers  mark  genetic  polymorphisms  in  the  population,  but  the  types  and  genomic  positions  of                            

these  polymorphisms  are  initially  not  known.  While  one  can  also  use k -mers  for  predictive  models                              

without  knowing  their  genomic  context,  in  many  cases  the  genomic  contexts  of k -mers  associated  with                              

certain  phenotypes  are  of  interest.  The  simplest  solution  is  to  align  the k -mers  or  the  short  reads  they                                    

originate  from  to  a  reference  genome,  an  approach  that  was  effective  for  some  phenotypes  we  have                                

studied,  as  it  has  been  in  bacteria (Pascoe  et  al.,  2015) .  However,  if k -mers  can  be  mapped  to  the                                      

reference  genome,  the  underlying  variants  are  likely  to  be  also  tagged  by  SNPs,  as  we  saw  for A.  thaliana                                      

flowering  time.  In  case k -mers  cannot  be  placed  on  the  reference  genome,  one  can  first  identify  the                                  

originating  short  reads  and  assemble  these  into  larger  fragments.  We  found  this  to  be  a  very  effective                                  

path  to  uncovering  the  genomic  context  of k -mers.  Particularly  the  combination  of  reads  from  multiple                              

accessions  can  provide  high  local  coverage  around  the k -mers  of  interest,  increasing  the  chances  that                              

sizeable  fragments  can  be  assembled  and  located  in  the  reference  genome  or  in  other  sequence                              

databases.  For  example,  in  the  GWA  of  days  to  tassel  in  maize,  reads  containing  the  associated k -mers                                  

could  not  be  assigned  to  a  specific  location  in  the  genome,  but  the  assembled  fragment  mapped  to  a                                    

unique  genomic  position.  This  approach,  manually  applied  in  this  study,  provides  a  framework  to                            

systematically   elucidate    k -mer’s   genomic   context.  

A  main  attraction  of  using k -mers  as  markers  is  that  in  principle  they  are  able  to  tag  many  types                                      

of  variants.  A  further  improvement  over  our  approach  will  be k -mers  that  tag  heterozygous  variants.  In                                

our  current  implementation,  which  relies  on  complete  presence  or  absence  of  specific k -mers,  only  one                              

of  the  homozygous  states  has  to  be  clearly  differentiated  not  only  from  the  alternative  homozygous                              

state,  but  also  from  the  heterozygous  state.  This  did  not  affect  comparisons  between  SNPs  and k -mers                                

in  this  study,  as  we  only  looked  at  inbred  populations,  where  only  homozygous,  binary  states  are                                
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expected.  Another  improvement  will  be  to  use k -mers  to  detect  causal  copy  number  variations.  So  far,                                

we  can  only  tag  copy  number  variants,  if  the  junctions  produce  unique k -mers,  but  it  would  be  desirable                                    

to  use  also k -mers  inside  copy  number  variants.  Therefore,  a  future  improvement  will  be  an                              

implementation  that  uses  normalized  counts  instead  of  presence/absence  of k -mers,  which  will  create  a                            

framework   that   can,   at   least   in   principle,   detect   almost   any   kind   of   genomic   variation.  

The  comparison  of  the k -mer-  and  SNP-  based  GWAS  provides  an  interesting  view  on  tradeoffs                              

in  the  characterization  of  genetic  variability.  The  stronger  top  p-values  obtained  with k -mers  in  cases                              

where  a  SNP  is  the  actual  underlying  genetic-variant  points  to  incomplete  use  of  existing  information  in                                

SNP  calling.  On  the  other  hand  by  minimizing  filtering  of k -mers,  we  included  in  our  analysis  some                                  

k -mers  that  represent  only  sequencing  errors.  Another  potential  source  of  noise  comes  from k -mers                            

that  are  missed  due  to  low  coverage,  which  will  be  treated  as  absent.  We  reasoned  that  including  these                                    

erroneous k -mers  primarily  has  mostly  computational  costs,  with  some  decrease  in  statistical  power,                          

since  the  chance  of  such k -mers  generating  an  association  signal  is  vanishingly  small.  Moreover,  the  high                                

similarity  of  relatedness  estimates  using  either  SNPs  (which  are  in  essence  largely  filtered  for  sequencing                              

errors)  or  all k -mers  confirms  that  erroneous k -mers  produce  little  signal.  On  the  other  hand,  the                                

higher  effective  number  of k -mers  compared  to  SNPs  requires  a  more  stringent  threshold  that  takes  the                                

increased  number  of  statistical  tests  into  account  and  thereby  decreases  statistical  power.  This  increase                            

in  test  load  is  similar  to  the  one  that  occurred  when  the  genomics  field  moved  from  using  microarray  to                                      

next-generation  sequencing  in  defining  SNPs (1001  Genomes  Consortium,  2016;  The  1000  Genomes                        

Project  Consortium,  2010;  Weigel  and  Mott,  2009) .  Thus,  the  higher  threshold  is  an  inevitable  result                              

from   increasing   our   search   space   to   catch   more   genetic   variants.   

k -mer  associations  inverts  how  GWAS  is  usually  done.  Instead  of  locating  sequence  variations  in                            

the  genome  and  then  associating  them  with  a  phenotype,  we  identify  sequence-phenotype  associations                          

and  only  then  find  the  genomic  context  of  the  sequence  variations. Genome  assemblies  and  genetic                              

variant  calling  are  procedures  in  which  many  logical  decisions  have  to  be  made (Bradnam  et  al.,  2013;                                  

Olson  et  al.,  2015) .  These  include  high  level  decisions  such  as  what  information  and  software  to  use,  as                                    

well  as  the  many  pragmatic  thresholds  chosen  at  each  step  of  the  way.  Every  community  optimize  these                                  

steps  a  bit  differently,  not  least  based  on  differences  in  the  biology  of  the  organisms  they  study,  and                                    

surely  these  decisions  affect  downstream  analyses (1001  Genomes  Consortium,  2016;  Bukowski  et  al.,                          

2018;  Tieman  et  al.,  2017) .  Here,  we  took  a  complementary  path  in  which  initially  neither  a  genome                                  

reference  nor  variant  calling  is  needed,  trying  to  reduce  arbitrary  decisions  to  a  bare  minimum.                              

Technological  improvement  in  short-  and  long-read  sequences  as  well  as  methods  to  integrate  them  into                              

a  population-level  genetic  variation  data-structure  will  expand  the  covered  genetic  variants (Paten  et  al.,                            
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2017;  Schneeberger  et  al.,  2009) .  While  traditional  GWAS  methods  will  benefit  from  these  technological                            

improvements,  so  will k -mer  based  approaches,  which  will  be  able  to  use  tags  spanning  larger  genomic                                

distances.  Therefore,  we  posit  that  for  GWAS  purposes, k -mer  based  approaches  are  ideal  because  they                              

minimize  arbitrary  choices  when  classifying  alleles  and  because  they  capture  more,  almost  optimal,                          

information   from   raw   sequencing   data.   
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Methods  

Curation   of   an    A.   thaliana    phenotype   compendium  

Studies  containing  phenotypic  data  on A.  thaliana  accessions  were  located  by  searching  NCBI  PubMed  using                              
a  set  of  general  terms.  For  most  studies,  relevant  data  was  obtained  from  the  supplementary  information  or                                  
an  online  repository.  Requests  were  sent  to  the  corresponding  authors  of  studies  for  which  data  could  not                                  
be  found  in  the  public  domain.  Data  already  uploaded  to  the  AraPheno  dataset (Seren  et  al.,  2017)                                  
downloaded  from  there.  Phenotypic  data  in  PDF  format  was  extracted  using  Tabula  software.  Different  sets                              
of  naming  for  accessions  were  converted  to  accession  indices.  In  case  an  index  for  an  accession  could  not                                    
be  located,  we  omitted  the  corresponding  data  point.  In  case  an  accession  could  potentially  be  assigned  to                                  
different  indices,  we  first  checked  if  it  was  part  of  the  1001  Genomes  project;  if  so,  we  used  the  1001                                        
Genomes  index.  In  case  the  accession  was  not  part  of  it,  one  of  the  possible  indices  was  assigned  at                                      
random.  Phenotypes  of  metabolite  measurements  from  two  studies, (Fordyce  et  al.,  2018)  and (Chan  et  al.,                                
2010) ,  were  filtered  to  a  reduced  set  by  the  following  procedure:  take  the  first  phenotype,  sequentially                                
retain  phenotypes  if  correlation  with  all  previously  taken  phenotypes  is  lower  than  0.7.  Data  from  the                                
second  study (Chan  et  al.,  2010) ,  were  further  filtered  for  phenotypes  with  a  title.  Assignment  of  categories                                  
for  each  phenotype  was  done  manually  (Table  S1).  All  processed  phenotypic  data  can  be  found  in  Dataset                                  
S1.  

Whole   genome   sequencing   data   and   variant   calls   of    A.   thaliana   

Whole  genome  short  reads  for  1,135 A.  thaliana  accessions  were  downloaded  from  NCBI  SRA  (accession                              
SRP056687).  Accessions  with  fewer  than  10 8 unique k -mers,  a  proxy  for  low  effective  coverage,  were                              
removed,  resulting  in  a  set  of  1,008  accessions.  The  1001  Genomes  project  VCF  file  with  SNPs  and  short                                    
indels  was  downloaded  from  http://1001genomes.org/data/GMI-MPI/releases/v3.1  and  was  condensed  into                  
these  1,008  accessions,  using  vcftools  v0.1.15 (Danecek  et  al.,  2011) .  We  required  a  minimum  minor  allele                                
count  (MAC)  of  5  individuals,  resulting  in  5,649,128  genetic  variants.  The  VCF  file  was  then  converted  to  a                                    
PLINK  binary  file  using  PLINK  v1.9 (Purcell  et  al.,  2007) .  In  case  more  than  two  alleles  were  possible  in  a                                        
specific  location,  PLINK  keeps  the  reference  allele  and  the  most  common  alternative  allele.  The  TAIR10                              
reference  genome  was  used  for  short  read  and k -mer  alignments.  Coordinates  for  genes  in  figures  were                                
taken   from   Araport11    (Cheng   et   al.,   2017) .  

Whole   genome   sequencing   data   and   variant   calls   of   maize  

Whole  genome  short  reads  of  maize  accessions  corresponded  to  the  “282  set”  part  of  the  maize                                
HapMap3.2.1  project (Bukowski  et  al.,  2018) .  Sequencing  libraries  “x2”  and  “x4”  were  downloaded  from                            
NCBI  SRA  (accession  PRJNA389800)  and  combined.  Coverage  per  accession  was  calculated  as  number  of                            
reads  multiplied  by  read  length  and  divided  by  the  genome  size,  only  data  for  150  accessions  with  coverage                                    
>6x  was  used.  Phenotypic  data  for  252  traits  measured  for  these  accessions  were  downloaded  from  Panzea                                
( https://www.panzea.org )    (Zhao   et   al.,   2006) .   

Two  of  theses  phenotypes  were  constant  over  more  than  90%  of  the  150  accessions,  these  two  were                                  
removed  from  further  analysis  (“NumberofTilleringPlants_env_07A”,          
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“TilleringIndex-BorderPlant_env_07A”).  The  HapMap3.2.1  VCF  files  (c*_282_corrected_onHmp321.vcf.gz)            
of  SNPs  and  indels  were  downloaded  from  Cyverse.  Variant  files  were  filtered  using  vcftools  v0.1.15  to  the                                  
relevant  150  accessions.  Variants  were  further  filtered  for  MAC  of  ≥5,  resulting  in  a  final  set  of  35,522,659                                    
variants.  The  B73  reference  genome,  version  AGPv3 (Portwood  et  al.,  2019) ,  that  was  used  to  create  the                                  
VCF  file  was  downloaded  from  MaizeGDB  and  used  for  short  read  and k -mer  alignments (Portwood  et  al.,                                
2019) .   

 

Whole   genome   sequencing   data   and   variant   calls   of   tomato  

Whole  genome  short  reads  were  downloaded  for  246  accessions  with  coverage  >6x,  from  NCBI  SRA  and                                
EBI  ENA  (accession  numbers  SRP045767,  PRJEB5235  and  PRJNA353161).  A  table  with  coverage  per                          
accession  was  shared  by  the  authors (Tieman  et  al.,  2017) .  Metabolite  measurements  were  taken  from                              
(Tieman  et  al.,  2017)  (only  adjusted  values)  and  a  subset  of  metabolites  from (Zhu  et  al.,  2018) .  These  were                                      
filtered  to  a  reduced  set  by  the  following  procedure:  take  the  first  phenotype,  sequentially  retain                              
phenotypes  if  correlation  with  all  previously  taken  phenotypes  is  lower  than  0.7.  Metabolites  were  ordered                              
as  reported  originally (Zhu  et  al.,  2018) .  Only  one  repeat,  the  one  with  more  data  points  and  requiring  at                                      
least  40  data  points  was  retained.  The  VCF  file  with  SNPs  and  short  indels (Tieman  et  al.,  2017)  was                                      
obtained  from  the  authors  and  filtered  for  the  relevant  246  accessions.  Variants  were  further  filtered  for                                
MAC  of  ≥5,  resulting  in  a  final  set  of  2,076,690  variants.  Reference  genome  SL2.5 (Tomato  Genome                                
Consortium,  2012)  ( https://www.ncbi.nlm.nih.gov/assembly/GCF_000188115.3/ )  used  to  create  the  VCF  file                  
was   used   for   short   read   and    k -mer   alignments.  

k -mer   counting   and   initial   processing  

For  each  accession  from  each  of  the  three  species  all  sequencing  data  from  different  runs  were  combined.                                  
The  number  of  times  each k -mer  (k=25bp/31bp)  appeared  in  the  raw  sequencing  reads  were  counted  using                                
KMC  v3 (Kokot  et  al.,  2017) . k -mers  were  counted  twice,  first  counting  canonical k -mers  representation,                              
which  is  the  lower  lexicographically  for  a k -mer  and  its  reverse-complement.  This  list  contains  only k -mer                                
appearing  at  least  twice  (maize  and  tomato)  or  thrice  ( A.  thaliana )  in  the  sequence  reads.  The  second  count                                    
includes  all k -mers  and  without  canonization.  The  KMC  binary  outputs  of k -mers  counts  in  the  two  lists                                  
were  read  using  KMC  C++  API,  to  keep  all  calculations  in  binary  representation.  For  each k -mer  in  the  first                                      
list,  the  information  of  which  form  (canonized,  not-canonized,  or  both)  it  appeared  in  was  extracted  from                                
the  second  list.  This  form  information  was  coded  in  two  bits,  were  the  first/second  bit  indicates  if  the k -mer                                      
was  observed  in  its  canonized/non-canonized  form,  respectively.  These  two  bits  were  inserted  in  the  2                              
most-significant-bits  of  the k -mer  bit  representation,  as k -mers  are  of  maximal  length  of  31bp,  all                              
information  could  be  coded  in  a  64-bit  word.  The  64-bit k -mers  representation  were  sorted  according  to                                
the    k -mer   lexicographic   order   and   saved   to   a   file   in   binary   representation.  

For  each  species,  the  latter k -mers  lists  from  all  accessions  were  combined  into  one  list  according  to  the                                    
following  criteria:  only k -mers  appearing  in  at  least  5  accessions,  and  for  a k -mer  appearing  in  N  accession                                    
it  had  to  be  observed  in  both  canonized  and  non-canonized  form  in  at  least  0.2*N  of  the  accessions.  There                                      
were  2.26*10 9 ,  2.21*10 9 ,  3.23*10 9 ,  and  7.28*10 9  unique k -mers  in  all  accessions  in  the  first  type  of  counting,                                  
i.e.  before  filtering,  and  439*10 6 ,  393*10 6 ,  981*10 6 ,  and  2.33*10 9  passed  the  second  criteria  for A.  thaliana                                
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(31-mers), A.  thaliana  (25-mers),  tomato  (31-mers),  and  maize  (31-mers),  respectively.  The  final  filtered                          
k -mers  were  outputted  in  binary  format  to  a  file,  the  histogram  of  number  of k -mers  appearances  was                                  
calculated   and   saved   during   this   process   as   well   (e.g.   Fig.   S2A).  

Combining    k -mers   from   different   accessions   to   a    k -mers   presence/absence   table  

Tables  containing  the  presence/absence  per k -mer  per  accession  in  binary  format  were  created,  for  each                              
specie  and k -mer  size.  The  tables  were  organized  as  follows: k -mers  information  was  written  in  serialized                                
blocks  of  N+1  64-bit  words.  In  each  block,  the  first  word  codes  the k -mer  (k<32bp),  the  next  N  64-bit                                      
blocks  codes  for  the  presence/absence  of  the k -mer  in  the  different  accessions:  1  in  position  i  denoting  the                                    
k -mer  was  found  in  accession  i  and  0  otherwise.  N  is  the  number  of  accessions  divided  by  64,  rounded  up.                                        
The  last  remaining  padding  bits  not  used  were  set  to  0.  Calculation  of  tables  was  done  as  follows: k -mers                                      
lists  for  all  accession  were  opened  together,  in  each  step  all  the k -mers  up  to  a  threshold  were  read. k -mers                                        
were  then  combined  in  a  sub-table  to  create  the  presence/absence  patterns  and  then  outputted  in  the                                
described  format  with  lexicographically  ordered k -mers.  This  process  was  designed  to  minimize  the                          
memory   load,   and   could   be   achieved   due   to   the   sorted    k -mers   in   all   separate   lists.   

Counting   and   filtering   unique   presence   absence   patterns   of    k -mers  

To  check  if  a  specific  presence/absence  pattern  was  already  observed,  the  following  method  was  used.  This                                
was  done  in  order  to  count  or  filter  the  patterns.  Each  pattern,  represented  by  a  vector  of  N  64-bit  words                                        
was  inputted  in  a  hash  function  which  outputs  a  single  64-bit  word.  The  hashed  value  was  then  stored  in  a                                        
set  structure  built  on  a  hash-table.  The  size  of  the  set  was  an  indication  of  the  number  of  unique  patterns.                                        
Moreover,  it  was  used  continuously  to  filter  patterns,  by  checking  if  a  pattern  (its  hashed  value)  was  already                                    
observed.  The  probability  that  two  different  patterns  had  the  same  hash  value  is  very  low:  if  we  have                                     n  
patterns,   the   space   is   of   size   ,   the   probability   that   at   least   one   collision   occurs   randomly   is: S = 264  

  2 )((2 ) 2 )...((2 ) 2 )≈1 e e ...e  p = 1 ­ (264/ 64 64 ­ 1 / 64 64 ­ n + 1 / 64 ­ e0 ­1 2/ 64
­2 2/ 64

­(n­1) 2/ 64
= 1 ­ e­(n­1)n 2/

65
 

If     then   ,   so   there   is   ~97%   chance   that   not   even   one , 00, 00, 00n = 230 > 1 0 0 0  ≈ 1 .031  p ­ e­2 260/ 65
< 0  

collision   occurred   for   1   billion   distinct    k -mers.   

Calculate   and   comparison   of   kinship   matrices  

Kinship  matrix  of  relatedness  between  accessions  was  calculated  as  in  EMMA (Kang  et  al.,  2008) ,  with                                
default  parameters.  The  algorithm  was  re-coded  in  C++  to  read  directly  PLINK  binary  files  for  improved                                
efficiency.  For k -mers  based  relatedness  the  same  algorithm  was  used,  coding  presence/absence  as  two                            
alleles.  For  comparison  of k -mers-  to  SNPs-based  relatedness  we  correlated  (pearson)  the  values  for  all                               ( )2

n  
pairs,  for  accessions.  For  tomato,  3492  pairs  had  a  relatedness  more  than  0.15  lower  for k -mer  than  for     n                                  
SNPs.  3,298  (94.4%)  of  these  pairs  were  between  a  set  of  21  accessions  and  all  other  225  accessions.  We                                      
calculated   the   correlation   twice:   for   all   pairs,   and   only   between   pairs   of   these   225   accessions.   
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GWA   on   SNPs   and   short   indels   or   on   full    k -mers   table  

Genome-wide  association  on  the  full  set  of  SNPs  and  short  indels  was  conducted  using  linear  mixed  models                                  
with  the  kinship  matrix,  using  GEMMA  version  0.96 (Zhou  and  Stephens,  2012) .  Minor  allele  frequency                              
(MAF)  was  set  to  5%  and  MAC  was  set  to  5,  with  a  maximum  of  50%  missing  values  (-miss  0.5).  Kinship                                          
matrix  was  used  to  account  for  population  structure.  To  run  GWA  on  the  full  set  of k -mers  (e.g.  in  Fig.  1B),                                          
k -mers  were  first  filtered  for k -mers  having  only  unique  patterns  on  the  relevant  set  of  accessions,  MAF  of                                    
at  least  5%,  and  MAC  of  at  least  5.  Presence/absence  patterns  were  then  condensed  to  only  the  relevant                                    
accessions  and  output  as  a  PLINK  binary  file  directly.  GEMMA  was  then  run  using  the  same  parameters  as                                    
for   the   SNPs   GWA   described   above.   

Phenotype   covariance   matrix   estimation   and   phenotypes   permutation  

EMMA  (emma.REMLE  function)  was  used  to  calculate  the  variance  components  which  were  used  to                            
calculate  the  phenotypic  covariance  matrix (Kang  et  al.,  2008) .  We  then  calculated  100  permutations  of  the                                
phenotype  using  the  mvnpermute  R  package (Abney,  2015) .  The  n%  (e.g.  n=5  gives  5%)  family-wise  error                                
rate  threshold  was  defined  by  taking  the  n-th  top  p-value  from  the  100  top  p-value  of  running  GWA  on                                      
each  permutation.  In  all  cases,  unless  indicated  otherwise,  where  a  threshold  is  referred  to,  it  is  the  5%                                    
threshold.   

Scoring   p-values   from   GWA   for   similarity   to   uniform   distribution   and   filtering   phenotypes  

Each  SNP-based  GWA  run  was  scored  for  a  general  bias  in  p-value  distribution,  similar  to  Atwell  et  al.                                    
(Atwell  et  al.,  2010) .  All  SNPs  p-values  were  collected,  the  99%  higher  p-values  were  tested  against  the                                  
uniform  distribution  using  a  kolmogorov-smirnov  test,  and  the  test  statistic  was  used  to  filter  phenotypes                              
for  which  distribution  deviated  significantly  from  the  uniform  distribution.  A  threshold  of  0.05  was  used,                              
filtering   89,   0,   and   295   phenotypes   for    A.   thaliana ,   maize   and   tomato,   respectively.  

K -mers   genome-wide   associations  

Association  of k -mers  was  done  in  two  steps,  with  the  aim  of  getting  the  most  significant k -mers  p-values.                                    
The  first  step  was  based  on  the  approach  used  in  Bolt-lmm-inf  and  GRAMMAR-Gamma (Loh  et  al.,  2015;                                  
Svishcheva   et   al.,   2012) .   For   phenotypes   ,   genotypes   ,   and   a   covariance   matrix   ,   the    k -mer   score   is: y g Ω  

T 2
score = 1

γ g g˜T ˜

g Ω y( ˜T ­1 ˜)2  

Where  and .  The  first  step  was  used  only  to  filter  a  fixed  number  of  top    g̃ = g ­ E (g)      ỹ = y ­ E (y)                            

k -mers,  thus  we  could  use  any  score  monotonous  with ,  and  specifically  which  is                   T 2
score      

g g˜T ˜

g Ω y( ˜T ­1 ˜)2      

independent  of  (see  supplementary  note  on  calculation  optimization).  To  keep  used  memory  low,  only     γ                          
best k -mers  were  stored  in  a  priority  queue  data  structure  of  constant  size.  The k -mers-table  was  uploaded                                  
to  the  memory  in  small  chunks  and  associations  were  done  with  the  phenotype  and  it’s  permuted                                
phenotypes  for  all k -mers  in  each  chunk.  The  association  step  was  implemented  with  the  use  of  threads.                                  
After  all k -mers  were  scored  for  associations  with  the  phenotype  and  all  its  permutations,  the k -mers-table                                
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was  loaded  again  in  chunks.  The  top k -mers  with  their  genotype  patterns  were  outputted  in  binary  PLINK                                  
format,  for  the  phenotype  and  each  permutation  separately.  In  the  second  step,  the  best k -mers  were  run                                  
using   GEMMA   to   calculate   the   likelihood   ratio   test   p-values    (Zhou   and   Stephens,   2012) .   

The  number  of k -mers  filter  in  the  first  step  was  set  to  10,000  for A.  thaliana  and  100,000  for  maize  and                                          
tomato.  Both  steps  associate k -mers  while  accounting  for  population  structure,  while  the  first  step  uses  an                                
approximation,  the  second  use  an  exact  model.  Therefore,  real  top k -mers  might  be  lost  as  they  would  not                                    
pass  the  first  filtering  step.  To  control  for  this,  we  first  defined  the  5%  family-wise  error-rate  threshold                                  
based  on  the  phenotype  permutations,  and  then  identified  all  the k -mers  which  passed  the  threshold.  Next,                                
we  used  the  following  criteria  to  minimize  the  chance  of  losing k -mers:  we  checked  if  all  identified k -mers                                    
were  in  the  top  N/2 k -mers  from  the  ordering  of  the  first  step  (N=10,000  or  100,000  dependent  on                                    
species).  For  example,  in  maize  all k -mers  passing  the  threshold  in  the  second  step  should  be  in  the  top                                      
50,000 k -mers  from  the  first  step.  The  probability  that  this  will  happen  randomly  is ,  where  is                              2­m     m    
number  of  identified k -mers,  in  most  phenotypes  this  is  very  unlikely.  In  8.5%  of  phenotypes  from A.  thaliana                                    
the  criteria  was  not  fulfilled,  for  these  phenotypes  we  re-run  the  two-steps  with  100x  more k -mers  filtered                                  
in  the  first  step,  that  is  1,000,000 k -mers.  For  6  phenotypes  the  criteria  still  did  not  hold,  these  phenotypes                                      
were  not  used  in  further  analysis.  In  tomato,  33%  of  phenotypes  did  not  fulfill  these  criteria,  in  these  cases                                      
we  re-run  the  first  step  with  100x  more k -mers  filtered  (10,000,000),  17  phenotypes  still  did  not  pass  the                                    
threshold  and  were  omitted  from  further  analysis.  The  permutations  were  not  re-run,  and  the  threshold                              
defined  using  100,000 k -mers  was  used,  as  the  top k -mer  used  to  define  the  threshold  tended  to  be  high  in                                        
the   list.   For   maize   all   phenotypes   passed   the   criteria   and   no   re-running   was   needed.  

Optimizing    of   initial    k -mers   scoring  

For:  –  number  of  individuals,  –  covariance  matrix,  –  phenotype,  –  genotype  (for k -mers  taking   N           Ω         y       g            
the  values  0  for  absence  and  1  for  presence),  and  -  GRAMMAR-Gamma  factor  which  depends  on  the                     γ                
phenotype   and   relatedness   between   individuals,   but   not   on   specific      (Svishcheva   et   al.,   2012) . g  

  and   (y)  ỹ = y ­ E (g)  g̃ = g ­ E  

  the   transformed   phenotype Ω y  r =   ­1 ˜  

The   GRAMMAR-Gamma   score   of   association     is   distributed   according   to     with   1   d.f.   and   satisfies: T 2
score χ2  

=  ( ) T 2
score  =

1
γ g g˜T ˜

g Ω y˜T ­1 ˜ = 1
γ g g˜T ˜

g r( ˜T )2 = 1
γ Σ(g ­ )i N

Σgi 2

(Σ(g ­ )r )i N
Σgi

i

2
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A    k -mer   can   only   be   present   or   absent   but   not   missing   or   heterozygous,   thus     and   we   get: gi = gi
2  
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As  we  used  the  GRAMMAR-Gamma  score  only  to  filter  the  top k -mers,  we  did  not  need  to  calculate  the                                      
p-value   of     and   could   calculate   a   score   that   is   monotonous   with   ,   that   is: T 2

score T 2
score  

Kscore =
N ­∑

 

 
gi (∑ 

 
gi)

2

N r ­( ∑
 

 
gi i (∑ 

 
gi)(∑ 

 
ri))

2

 

The  summation  can  be  calculated  once  per  phenotype.  Moreover,  as  we  use  permutation  of     ∑
 

 
ri                          

phenotypes   we   can   further   optimize   the   scoring   by   calculating     only   once   per    k -mer. ∑
 

 
gi   

For  calculating  the  score  of  a  specific k -mer,  once  and  were  calculated,  we  were  left  with                   , ,∑
 

 
ri ∑

 

 
gi       r∑

 

 
gi i              

8  basic  mathematical  operations  to  obtain .  Therefore,  most  of  the  computational  load  will  be  spent             Kscore                    

in   the   calculation   of   ,   which   requires     basic   operations. r∑
 

 
gi i N2  

To  computationally  optimize  the  calculation  of ,  we  used  the  Streaming  SIMD  Extensions  4  (SSE4)             r∑
 

 
gi i                  

CPU  instruction  set.  This  implementation  can  be  further  optimized  on  a  CPU  that  has  AVX2,  likely  getting                                  
another  2-fold  increase  in  efficiency  with  only  small  modifications  to  the  code,  however,  we  have  not  tested                                  
this   option.  

 

To  optimize  the  GRAMMAR-Gamma  filtering  of  SNPs  we  cannot  benefit  from  the  same  optimizations  as  for                                
k -mers.  This  is  due  to  missing  and  heterozygous  values  a  SNP  can  take.  Therefore,  in  this  case .  For                                   =  gi / gi2    
SNPs   our   score   will   take   the   same   form   as   : T 2

score   

Sscore = 1
γN
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g
i
2 (∑ 
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In  this  case  is  different  for  different  SNPs,  and  so  as .  This  later  summation  can  be  written  as ,       N                  ∑
 

 
ri                ∑

 

 
v ri i  

by   defining   for     and     for   .  vi = 0 i issingg = m v  i  = 1 = issing  gi / m  
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Thus,  is  specific  for  each  SNP’s  score  and  as  can  also  get  the  value  0.5,  we  separated  to   ∑
 

 
v ri i                   gi                   r∑

 

 
gi i    

two   separate   dot-products   in   our   implementation,   as   genotypes   are   coded   by   bit   vectors.   

SNPs-based   GWAS   on   phenotype   permutations  

To  calculate  thresholds  for  SNPs-based  GWAS  we  used  the  two  step  approach  used  for k -mers.  The                                
permuted  phenotypes  were  run  in  two  steps  as  we  were  only  interested  in  the  top  p-value  to  define                                    
thresholds.  We  filtered  10,000  variants  in  the  first  step  which  were  then  run  using  GEMMA  to  get  exact                                    
scores (Zhou  and  Stephens,  2012) .  The  non-permuted  phenotype  were  run  using  GEMMA  on  all  the                              
variants.  

Calculation   of   linkage-disequilibrium   (LD)   

For  two  variants,  and ,  each  can  be  a k -mer  or  a  SNP,  LD  measure  was  calculated  using  the  r 2  measure       x     y                                  
(Devlin  and  Risch,  1995) .  For  a k -mer,  variants  were  coded  as  0/1,  if  absent  or  present,  respectively.  For                                    
SNPs  one  variant  was  coded  as  0  and  the  other  as  1.  If  one  of  the  variants  had  a  missing  or  heterozygous                                            
value   in   a   position,   this   position   was   not   used   in   the   analysis.   The   LD   value   was   calculated   using   the   formula:  

r2 = p(x=1) p(y=1) p(x=0) p(y=0)* * *

(p(x=1 & y=1) ­ p(x=1) p(y=1))*
2

 

LD   cumulative   graph   (Fig   2E,H)  

For  a  set  of  phenotypes  and  for  every  we  calculated  the  percentage  of  phenotypes  for                 , .05, .,l = 0 0 . 1                
which  exists  a k -mer  or  a  SNP  in  the  pre-defined  group  which  is  in  with  top  SNP  or  top k -mer,                             D≥lL              
respectively.  The  pre-defined  groups  are:  (1)  all  the k -mers  which  passed  the  SNPs  defined  threshold  in                                
Figure  2E  or  (2)  all  the  SNPs  or k -mers  which  passed  their  own  defined  thresholds  in  Figure  2H.  The                                      
percentage   is   then   plotted   as   a   function   of   . l  

Retrieving   source   reads   of   a   specific    k -mer   and   assembling   them  

For  a k -mer  identified  as  being  associated  with  a  phenotype  we  first  looked  in  the k -mers-table  and                                  
identified  all  accessions  taking  part  in  the  association  analysis  and  having  this k -mer  present.  For  each  of                                  
these  accessions  we  went  over  all  sequencing  reads  and  filtered  out  all  paired-end  reads  which  contained                                
the k -mer  or  its  reverse-complement.  To  assemble  paired-reads,  SPAdes  v3.11.1  was  used  with                          
“--careful”   parameter    (Bankevich   et   al.,   2012) .  

Alignment   of   reads   or    k -mers   to   the   genome  

Paired-end  reads  were  aligned  to  the  genome  using  bowtie2  v2.2.3,  with  the  “--very-sensitive-local”                          
parameter. k -mers  were  aligned  to  the  genome  using  bowtie  v1.2.2  with  “--best  --all  --strata”  parameters                              
(Langmead   and   Salzberg,   2012) .  
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Analysis   of   flowering   time   in   10C   (Figure   1,   Figure   S2)  

To  find  the  location  in  the  genome  of  the  105  identified k -mers, k -mers  were  first  mapped  to  the A.  thaliana                                        
genome.  84  of  the k -mers  had  a  unique  mapping,  one k -mer  was  mapped  to  multiple  locations  and  20  could                                      
not  be  mapped.  For  the  21 k -mers  with  no  unique  mapping  we  located  the  sequencing  reads  they  originated                                    
from,  and  mapped  the  reads  to  the A.  thaliana  genome.  For  each  of  the k -mers  we  looked  only  on  the  reads                                          
with  the  top  mapping  scores.  For  the  one k -mer  which  had  multiple  possible  alignment  also  the  originating                                  
reads  did  not  have  a  consensus  mapping  location  in  the  genome.  For  every k -mer  from  the  20  non-mapped                                    
k -mers,  all  top  reads  per k -mer,  in  some  cases  except  one,  mapped  to  a  specific  region  spanning  a  few                                      
hundred  base  pairs.  The  middle  of  this  region  was  defined  as  the k -mer  position  for  the  Manhattan  plot  in                                      
Figure   1D.   

To  find  the  location  of  the  93  associated k -mers  of  length  25bp,  presented  in  supplementary  Figure  S2D,  we                                    
followed  the  same  procedure.  87  of  the k -mers  had  a  unique  mapping,  one  was  mapped  multiple  times  and                                    
5  could  not  be  mapped.  For  the  5 k -mers  with  no  mapping  and  the k -mer  with  non  unique  mapping,  we                                        
located  the  originated  short  reads  and  aligned  them  to  the  genome.  For  each  of  the  5 k -mers  with  no                                      
mapping,  all  reads  with  top  mapping  score  mapped  to  a  specific  region  of  a  few  hundred  base  pairs,  we  took                                        
the  middle  of  the  region  as  the k -mer  location  in  the  Manhattan  plot.  For  the  k -mer  with  multiple  mappings,                                      
15  out  of  the  17  reads  mapped  to  the  same  region  and  we  used  this  location.  All k -mers  mapped  to  the  4                                            
location  in  the  genome  for  which  SNPs  were  identified  except  one  -  AAGCTACTTGGTTGATAATACTAAT.                          
The  reads  from  which  this k -mer  originated  mapped  to  the  same  region  in  chromosome  5  position                                
3191745-3192193   and   we   used   the   middle   of   this   region   as   the    k -mer   location.  

Analysis   of   xylosides   percentage   (Figure   3A,B)  

All k -mers  passing  the  threshold,  were  mapped  uniquely  to  chromosome  5  in  the  region  871,976  –                                
886,983.  Of  the  123  identified  k -mers,  27  had  the  same  minimal  p-value  ( ).                         og10 4.7  ­ l (p alue)­ v   = 4  
These k -mers  mapped  to  chromosome  5  in  positions  871,976  to  872,002,  all  covering  the  region                              
872,002-872,007.  For  the  60  accessions  used  in  this  analysis,  all  reads  from  the  1001G  were  mapped  to                                  
the  reference  genome.  The  mapping  in  region  872,002-872,007  of  chromosome  5  were  examined                          
manually  by  IGV  in  all  accessions (Robinson  et  al.,  2011) ,  and  the  2  SNPs  872,003  and   872,007  were                                    
called   manually   without   knowledge   of   the   phenotype   value.   

Analysis   of   growth   inhibition   in   presence   of   flg22   (Figure   3C,D)  

The  phenotype  in  the  original  study  was  labeled  “flgPsHRp” (Vetter  et  al.,  2016) .  For  each  of  the  7 k -mers                                      
which  could  not  be  mapped  uniquely  to  the  genome,  the  originated  reads  from  all  accessions  were                                
retrieved  and  assembled.  All  the  seven  cases  resulted  in  the  same  assembled  fragment  (SEQ1,  table  S2).                                
Using  NCBI  BLAST  we  mapped  this  fragment  to  chromosome  1:  position  40-265  were  mapped  to                              
8169229-8169455  and  position  262-604  were  mapped  to  8170348-8170687.  For  every  accession  from  the                          
106  that  were  used  in  the  GWAS  analysis  we  tried  to  locally  assemble  this  region,  to  see  if  the  junction                                        
between  chromosome  1  8169455  to  8170348  could  be  identified.  We  used  all  the  31bp k -mers  from  the                                  
above  assembled  fragment  as  bait,  and  located  all  the  reads  for  each  accession  separately.  For  11  out  of  the                                      
13  accessions  that  had  all  10  identified k -mers  we  got  a  fragment  from  the  assembly  process.  In  all  11  cases                                        
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the  exact  same  junction  was  identified.  For  1  of  the  4  accessions  that  had  only  part  of  the  10  identified                                        
k -mer  we  got  a  fragment  from  the  assembler,  which  had  the  same  junction.  For  43  of  the  89  accessions  that                                        
had  none  of  the  identified k -mers  the  assembly  process  resulted  in  a  fragment,  in  none  of  these  cases  the                                      
above   junction   could   be   identified.  

Analysis   of   germination   in   darkness   and   low   nutrients   (Figure   3E,   F)  

The  phenotype  in  the  original  study  was  labeled  “k_light_0_nutrient_0” (Morrison  and  Linder,  2014) .                          
The  11  identified k -mers  had  two  possible  presence/absence  patterns,  separating  them  into  two  groups                            
of  4  and  7 k -mers.  The  short-read  sequences  containing  the  4  or  7 k -mers  were  collected  separately  and                                    
assembled,  resulting  in  the  same  458bp  fragment  (SEQ2,  table  S2).  This  fragment  was  used  as  a  query  in                                    
NCBI  BLAST  search,  resulting  in  alignment  to  Ler-0  chromosome  3  (LR215054.1)  positions  15969670  to                            
15970128.  The  LR215054.1  sequence  was  downloaded  and  the  region  between  (15969670-3000)  to                        
(15970128+3000)  was  retrieved  and  used  as  query  to  a  NCBI  BLAST  search.  The  BLAST  search  resulted                                
in  a  mapping  to  Col-0  reference  genome  chromosome  3  (CP002686.1).  Region  1-604  mapped  to                            
16075369-16075968,  region  930-1445  mapped  to  16076025-16076532,  region  3446-3946  mapped  to                    
16079744-16080244,   and   region   3958-6459   mapped   to   16080301-16082781.  

Analysis   of   root   branching   zone   (Figure   3G)  

The  phenotype  in  the  original  study  was  labeled  “Mean(R)_C”,  that  is  Branching  zone  in  no  treatment                                
(Ristova  et  al.,  2018) .  No  SNPs  and  1 k -mer  (AGCTACTTTGCCACCCACTGCTACTAACTCG)  passed                      
their  corresponding  5%  thresholds.  The k -mer  mapped  the  chloroplast  genome  in  position  40297,  with  1                              
mismatch.  No  SNPs  and  another k -mer  (CCGGCGATTACTAGAGATTCCGGCTTCATGC)  passed  the                  
10%  family-wise  error-rate  threshold.  This k -mer  mapped  non-uniquely  to  two  place  in  the  chloroplast                            
genome:   102285   and   136332.   

Analysis   of   Lesion   by    Botrytis   cinerea    UKRazz   (Figure   S3A)  

The  Lesion  by Botrytis  cinerea  UKRazz  phenotype  was  labeled  as  “Lesion_redgrn_m_theta_UKRazz”.  In                        
the  GWAS  analysis  19 k -mers  and  no  SNPs  were  identified.  All k -mers  had  the  same  presence/absence                                
pattern.  The  short-read  sequences  from  which  the k -mers  originated  were  mapped  to  chromosome  3                            
around  position  72,000bp,  and  contained  a  1-bp  deletion  of  a  T  nucleotide  in  position  72,017.  Whole                                
genome  sequencing  reads  were  mapped  to  the  genome  for  the  61  accessions  with  phenotypes  used  in  these                                  
analyses.  We  manually  observed  the  alignment  around  position  72,017  of  chromosome  3,  without  the  prior                              
knowledge  if  the  accession  had  the  identified k -mers.  For  20  accessions,  we  observed  the  1-bp  deletion  in                                  
position   72,017,   all   19   accessions   containing   the    k -mers   were   part   of   these   20.  

Analysis   of   days   to   tassel   and   ear   weight   in   maize   (Figure   4)  

Ear  weight  phenotype  was  labeled  “EarWeight_env_07A”  in  original  dataset (Zhao  et  al.,  2006) .  Days  to                              
tassel  was  measured  in  growing  degree  days  (GDD)  and  was  labeled  as  “GDDDaystoTassel_env_06FL1”  in                            
original  dataset.  In  comparison  of  LD  between k -mers  and  SNPs  in  days  to  tassel  (Fig.  4E,  upper  panel),  two                                      
SNPs  were  filtered  out  as  having  more  than  10%  heterozygosity  and  one  as  having,  exactly,  50%  missing                                  
values.  In  days  to  tassel  the k -mer  which  was  similar  to  identified  SNPs  was                            
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AGAAGATATCTTATGAACTCCTCACCAGTAA.  The  171  paired-end  reads  from  which  this k -mer                  
originated  mapped  to  the  genome  as  follows  -  2  (1.17%)  aligned  concordantly  0  times,  2  (1.17%)  aligned                                  
concordantly  exactly  1  time,  and  167  (97.66%)  aligned  concordantly  >1  times.  The  assembly  of  these  reads                                
produce  two  fragments,  the  first  of  length  273bp  with  coverage  of  1.23  and  the  second  of  length  924bp  and                                      
with  coverage  of  27.41  (SEQ3,  table  S2).  We  aligned  this  fragment  to  the  genome  using  Minimap2,  with  the                                    
default  parameters (Li,  2018) .  Minimap2  reported  only  1  hit  to  chromosome  3  (NC_024461.1)  in  positions                              
159141222-159142137.  

Analysis   of   guaiacol   concentration   in   tomato   (Figure   5)  

Guaiacol  concentration  was  labeled  “log3_guaiacol”  in  the  original  study.  From  the  293 k -mers  passing  the                              
threshold,  184  could  be  mapped  uniquely  to  the  genome:  135  to  chromosome  0  between  position                              
12573795-12576534,  and  45  to  chromosome  9  between  position  69301436-69305717,  3  to  chromosome  6                          
between  position  8476136-8476138,  and  1  to  chromosome  4  at  position  53222324.  The  4 k -mers  mapped                              
to  chromosome  4  and  6  were  checked  manually  by  locating  the  reads  containing  them  and  aligning  the  reads                                    
to  the  genome,  in  all  cases  no  reads  were  able  to  be  aligned  to  the  genome  (>99.5%  of  reads).  For  the  35                                            
k -mers  not  mapping  to  genome  and  in  high  LD,  visualized  in  Figure  5E,  all  reads  containing  at  least  one  of                                        
the k -mers  were  retrieved  and  assembled  (SEQ4,  table  S2).  NCBI  Blast  search  of  this  fragment  resulted  in:                                  
positions  1-574  mapped  to  positions:  12578806-12579379  in  chromosome  0  of  the  tomato  genome                          
(CP023756.1)  and  positions  580-1169  mapped  to  positions  289-878  in  NSGT1  (KC696865.1).  The  R104                          
“smoky”  accession  NSGT1  ORF  starts  at  position  307,  as  reported  previously (Tikunov  et  al.,  2013) .  NCBI                                
BLAST  of  NSGT1  (KC696865.1),  identified  mapping  to  chromosome  9  of  the  tomato  genome                          
(CP023765.1),   from   positions   975-1353   to   positions   69310153-69309775.  

 

Code   availability  

Code   is   available   in    https://github.com/voichek/kmersGWAS .    
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Supplementary   materials  

Figure   S1:   Scheme   of   pipeline   for    k -mer-based   GWAS  

 

(A) Creating  the k -mer  presence/absence  table:  Each  accession’s  genomic  DNA  sequencing  reads  are  cut  into                              
k -mers  of  constant  length  using  KMC (Kokot  et  al.,  2017) .  Only k -mers  appearing  at  least  twice/thrice  in  a                                    
sequencing  library  are  used. k -mers  are  further  filtered  to  retain  only  those  present  in  at  least  5  accessions,  and                                      
ones  that  are  also  found  in  their  reverse-complement  form  in  at  least  20%  of  accessions  they  appear  in. k -mer  lists                                        
from  all  accessions  are  then  combined  into  a k -mer  presence/absence  table.  This  table  is  encoded  in  a  binary                                    
format,   with   each   cell   represented   as   a   single   bit.  
(B) Genome-wide  associations  on  the  full k -mer  table  using  SNP-based  software  the: k -mer  table  can  be  converted                                  
into  PLINK  binary  format,  which  can  be  used  directly  as  input  for  association  mapping  in  various  software  for                                    
SNP-based   GWA    (Purcell   et   al.,   2007;   Zhou   and   Stephens,   2012) .   
(C) GWA  optimized  for  the k -mers  presence/absence  table: k -mers  presence/absence  patterns  are  first  associated                            
with  the  phenotype  and  its  permutations  using  a  linear-mixed  model  to  account  for  population  structure (Loh  et                                  
al.,  2015;  Svishcheva  et  al.,  2012) .  This  first  step  is  done  by  calculating  a  score  monotonic  to  an  approximation  of                                        
the  exact  model.  This  scoring  system  is  ultra-fast  and  is  built  for  the  high  computational  load  coming  from  the  large                                        
number  of k -mers  and  many  permutations  of  phenotypes.  Best k -mers  from  this  first  step  (e.g.  100,000 k -mers)                                  
are  used  in  the  second  step.  In  the  second  step  an  exact p -value  is  calculated (Zhou  and  Stephens,  2012)  for  all                                          
k -mers  for  both  the  phenotype  and  its  permutations.  A  permutation-based  threshold  is  calculated  and  all k -mers                                
passing  this  threshold  are  checked  for  their  rank  in  the  scoring  from  the  first  step.  If  not  all k -mers  hits  are  in  the                                              
top  50%  of  the  initial  scoring,  then  the  entire  process  is  rerun  from  the  beginning,  passing  more k -mers  from  the                                        
first  to  the  second  step.  This  last  test  is  built  to  confirm  that  the  approximation  of  the  first  step  will  not  remove                                            
true   associated    k -mers.  
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Figure   S2:   Flowering   time   genetic   associations   in    A.   thaliana    identified   with    k -mers  

 

(A)  Histogram  of k -mer  allele  counts:  For  every  N=1..1008,  plotted  how  many k -mers  appeared  in  exactly  N                                  
accessions.   
(B) LD  between  SNPs  associated  with  flowering  time.  Dashed  lines  represent  the  four  variant  types,  as  in  Figure                                    
1C.   
(C)  LD  between k -mers  associated  with  flowering  time,  Dashed  lines  represent  the  four  variant  types,  as  in  Figure                                    
1C.   
(D)  Manhattan  plot  of  SNPs  and k -mer  associations  with  flowering  time  in  10°C  as  in  Figure  1D  for k -mers  of                                        
length   25bp.    
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Figure   S3:   Comparison   of   SNP-   and    k -mer-GWAS   on   phenotypes   from   104   studies   on    A.   thaliana  
accessions  

 

(A)  Histogram  of  the  number  of  identified k -mers  vs.  identified  SNPs  (in  log 2 )  for A.  thaliana  phenotypes.  Only                                    
the   458   phenotypes   with   both   variant   types   identified   were   used.   
(B)  Histogram  of  thresholds  difference  of k -mers  vs.  SNPs  of  all A.  thaliana  phenotypes.  Thresholds  were                                
-log 10    transformed.     
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Figure   S4:   Specific   case   studies   in   which    k -mers   are   superior   to   SNPs  

 

(A)  Results  from  GWAS  on  measurements  of  lesion  by Botrytis  cinerea  UKRazz  strain (Fordyce  et  al.,                                
2018) ,  an  example  of k -mers  having  better  hold  on  genetic-variants  present  in  the  SNPs/indels  table.  We                                
identified  19 k -mers  and  no  SNPs  as  being  associated  with  this  phenotype.  All  the k -mers  had  the  same                                    
presence/absence  pattern  (top  row).  The  short  sequence  reads  containing  the k -mers  mapped  to                          
chromosome  3  in  proximity  to  position  72,000.  The  reads  contained  a  single  T  nucleotide  deletion  in                                
position  72,017,  relative  to  the  reference  genome.  The  T  nucleotide  was  part  of  an  8  T’s  strach,  the                                    
reference  and  mutated  sequence  around  the  deletion  are  indicated  to  the  right  of  the  manual  calling  for  all                                    
accessions  (middle  row)  and  to  the  calls  from  the  1001G  project  (bottom).  In  the  1001G  only  4                                  
accessions  were  called  out  of  the  61  accessions  part  of  the  analysis,  for  the  other  accessions,  the  tabled                                    
contained   missing   values.   
(B) Manhattan  plot,  for  xyloside  percentage.  A  focused  view  on  region  with  identified  associations  is                              
presented   in   Figure   3A.   
(C)  Manhattan  plot,  for  seedling  growth  inhibition  by  flg22.  A  focused  view  on  region  with  identified                                
associations   is   presented   in   Figure   3C.   
(D) Manhattan  plot,  for  germination  in  darkness  in  low  nutrient  conditions.  All  identified k -mers  could                              
not   be   mapped   to   the   genome.   
(E)  The  germination  phenotype  is  plotted  for  accessions  which  have  the  top  associated k -mer  and  those                                
that   do   not.   
(F)  Manhattan  plot,  for  root’s  branching  zone  length.  Identified k -mer  mapped  the  chloroplast  genome,                            
and   thus   not   present   in   the   graph.  
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Figure   S5:   Comparison   of   SNP-   and    k -mer-   based   GWAS   in   maize  

 

(A)    Histogram   of    k -mer   allele   counts   for   maize   accessions.  
(B)    Histogram   of   difference   between   threshold   values   of   SNPs   and    k -mers   for   maize   phenotypes.   
(C) Histogram  of  the  top  SNP  p-value  divided  by  the k -mers  defined  threshold,  in  (-log10),  for  maize                                  
phenotypes.  Plotted  for  phenotypes  with  only  identified  SNPs  (upper  panel)  or  for  phenotypes  with  both                              
SNPs   and    k -mers   identified   (lower   panel).   
(D) Histogram  of  the  difference  between  top  (-log10)  p-values  in  the  two  methods  for  maize  phenotypes                                
identified   by   both   methods.   Plottes   as   in   Figure   2G.   
(E)    Histogram   of   the   number   of   identified    k -mers   vs.   identified   SNPs   for   maize   phenotypes.   
(F) Manhattan  plot  of  association  with  ear  weight  (environment  07A).  Associated k -mers  genomic                          
location   were   not   located,   and   are   thus   not   presented.  

   

37  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/818096doi: bioRxiv preprint 

https://doi.org/10.1101/818096
http://creativecommons.org/licenses/by-nc-nd/4.0/


1010

1011

1012
1013
1014
1015
1016
1017
1018

Figure   S6:   Comparison   of   SNP-   and    k -mer-   based   GWAS   in   tomato  

 

(A)    Histogram   of    k -mers   allele   counts   for   tomato   accessions.   
(B)    Histogram   of   difference   between   threshold   values   of   SNPs   and    k -mers   for   tomato   phenotypes.   
(C)  Histogram  of  the  top  SNP  p-value  divided  by  the k -mers  defined  threshold,  in  (-log10),  for  tomato                                  
phenotypes.  Plotted  for  phenotypes  with  only  identified  SNPs  (upper  panel)  or  for  phenotypes  with  both  SNPs                                
and    k -mers   identified   (lower   panel).   
(D)    Histogram   of   the   difference   between   top   (-log10)   p-values   in   the   two   methods   for   tomato   phenotypes.   
(E)    Histogram   of   the   number   of   identified    k -mers   vs.   identified   SNPs   for   tomato   phenotypes.    
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Figure   S7:   Kinship   matrix   calculation   based   on    k -mers  

 

Identification  of  pairs  of  tomato  accessions  for  which  relatedness  as  measured  with k -mers  is  much  lower                                
than  relatedness  as  measured  with  SNPs.  For  every  pair  among  the  246  accessions,  a  black  square  is                                  
plotted  if  the  difference  in  relatedness  between  SNPs  and k -mers  is  larger  than  0.15.  Accessions  are                                
ordered  by  the  number  of  black  square  in  their  row/column.  Red  lines  mark  the  21  accessions  with  most                                    
black  squares,  that  is,  those  for  which  the k -mer/SNP  difference  in  relatedness  is  larger  than  0.15  for  the                                    
most   pairs.    
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Table   S2:   Assembled   fragments   from   retrieved   reads  
Sequence  
identifier  

sequence  

SEQ1   ACTGTAGCAGAAAAAATTGTTGATTGAATTAGGAGAGGCTAAGAACATTATTCG 
AAGTATTTCTTGTATTATTTAGATATTTACTCATTATATTGATACGGTAAGACAC 
AAATATGCAATTTAAAAGTTACATCACATAATTATTTGTCGCGATCCATGAATTA 
GGATAAGCACGAGCAACATCAATAACGTCACTTTTCGTGGGTGAGTTCATAGA 
TAGTGGACAACAGTATGGAGGTTACGAATGGACAAAAGGATTAATAATAATTAA 
TAATAGACTCTTTTATCATGTGGAAACTCATGCAAGCAGAAAATGAAAGTATAT 
GGAGGCCGCCTCGAATCAAATTAGTTGAAAATCAGAATTAAAATTTAACGTTGT 
ATGGAAAAACAGAGGGTTTTTATTTTTGGGTTTTGCACAAAAAATCTTAGTCTT 
GAGTTATTTTGTTTCAAAATAAGTGTCCTTTCAAGTTTCTAATATAAATTTTCAA 
AATTCAAACCAGCTTTATAATTTACCCCTTACCAAAAGCTAATAAAACTTGTTTT 
TTTTTTTTTATAGTATATTTATACAGTTAATTTTTTTTTTAATATTTTGAAATGTGT 
AATA  

 

SEQ2   CTTCTTGATTTTCATATAGAGTTCGTATACAATAATAGTTACCAAAAAAGTACTG 
ATACATAGTCTTACGAAGTATTGTATGGACGAGCATGTCAGACGCCCTTGTATT 
GGACATCGGTGGACGAACAAATGCTATTTGGTTCAGAAATTGTGGACGAAACA 
AATAAAAAGATGAAATTCCTTTAAAGTTAAGTTAAAAGAGGTCTAAGACCGACA 
AAAACGTTATGCATATAGACATCGGAAGAAGCTAAAATTAAAAGTGGGAGATTT 
AGTGTACCTAAAGGCGGTGACTTACAAGGAGAGCAGACGTTTTTCCAAGAGGA 
AAAAGCTAATTACAAATACATGGTGCCATACAAACTGCACGAACGAATTGGAG 
CCGTGGCTTACAAGCTTGATTTACCCTCAAAGTTGGACGCGTTTCATAAAGTTT 
TTCATGTATCGCAATTTAGGAAATGCCT  

SEQ3   CATAAGAACATAATGATGACTGACAGGCCACTCGAACTACTCCGCATGGACCT 
ATTCGGCCCAATCGCTTATATAAGCATCGGCGGGAGTAAGTACTGTCTTATTAT 
TGTGGATGATTATTCTCGCTTCACTTAGGTATTCTTCTTGCAGGAAAAATCTCA 
AACCCAAGAAACTTTAAAGAGATTCTTGAGACGAGCTCAAAATGAGTTCAGATT 
GAGAATCAAAAAGATTAGAAGCGATAATGGGACGGAGTTCAAGAATTCACAAA 
TTAAAGGATTTCTTGAGGAGGAGGGCATCAAGCATGAGTTCTCTTCTCCCTAC 
ACACCTCAACAAAATGGTGTAGTGGAGAGGAAGAATGGAACTCTATTGGACAT 
GGCAAGAACCATGCTTGATGAGTACAAGACACCAGACCTGTTTTGGGCGGAG 
GCGATTAACACCGCCTGCTACTCCATCAACCGGTTATATCTTCACCGAATCCT 
CAAGAAGATATCTTATGAACTCCTCACCAGTAAAAAGCCCAATGTTTTATATTT 
AGAGTCTTTGGTAGCAAATGCTTTATTCTTGTTAAAAGAGGTAGAAGTTCTAAA 
TTTGCTCCTAAGGCTGTTGAAGGCTTTTTACTTGGTTATGACTCAAACACAAGG 
GCATATAGAGTCTTCAACAGGTCCACTGGACTAGTTGAAGTTTCTTGTGACATT 
GTGTTTGATGAGACTAGTGGCTCCCAAGTGGAGCAAGTTGATCTTGATGAATTA 
GATGATGAAGAGGCTCCGTGCATCGCGCTAAGGAACATGTCCATTGGGGATGT 
GTATCCTAAGGAATCCGAAGAGCCCAATAATGCACAAGATCAACCATCATCTT 
CCATGCAAGCATCTCCACCAACCCAAGATGAGGATCAAGCTCAAG  

 

40  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/818096doi: bioRxiv preprint 

https://doi.org/10.1101/818096
http://creativecommons.org/licenses/by-nc-nd/4.0/


1028

SEQ4   GCGTAATTCTTCTCTCTACAACCGATTTTTAAGAGCGTGAGTTAGATTCAAAAT 
ATTGATTTAACATGATATTAGATCTTTTTAATGATAGTTTAACTATTTAATAGTAT 
GAAAATAGGGAAAAGGGTTCGAAATATTACCTAACTTTGACCGAAATTGCTGTA 
ACAATCTCAAATTCTGATCATGACTTATTATCCGTCTGCACTATTTAATAGTGTA 
TTTTAAAGGAATATATATGCTCACATGGACACTTTACTATTTATAATGATGTAAT 
ATCTATGATGTCCACGTGTTCACATATATACCTTTAAAATACACTATTAAATAAT 
ACATGAAGTAACAAATTCTTTCCAAAGTTCAGATTTGTTATAACAATTTCAATTA 
AATTAAAGTTTTGAATATATTTCAAAAAAAAGTTGCAAAAAATATAATAGGGATC 
TATGTCAAACCCTATGTCACCACAAGGTGGATCAAAAAAAATAGTAAGAATAAA 
GTAATTATTGATAATGTCATTAAATTTGAAAGAGAAAGAAAAAGGTTTATAATTT 
TGGAGGTAGTTGTTAAAGATGGTACCTAAACCTTATTCAAGCCTTTCAAATGGC 
TTCTTCCAAATTTCCAAGCATAATTGAAACCCTAAAACCTAACTTGATTATATAT 
GATGGGTTCCAACCATGGGTAGCAACTATGGCTTCATCATACAGTATTCATGCT 
ATTATGTTTTATGTTTCTTCAACTTCTGGTCTTGCCTACATTTACCACCAATTTC 
TTCATGGGAGTTCAAGCCTTACATCTTTTCCATTTTCTTCCATATACCTTCATGA 
CCATGAGATCAAGAAATTAGGCATACAACCAATAAAACCACGCGATGAGAAAG 
CTTTTGCATACATAATCCTTGAGTCTTTTGAACAATCTCACAACATTGTTTTGTT 
GAACACTTGTAGGGAGACTGAGGGGAAGTATATAGATTATGTTTCTACAATAG 
GAAAGAAAGAGTTGATACCAATTGGACCATTAATTCGCGAGGCGATGATAGAT 
GAGGAGGAGGATTGGGGGACAATTCAATCTTGGCTAGACAAGAAGGATCAATT 
ATCATGTGTTTATGTATCATTTGGAAGTGAAAGCTTCTTGTCAAAGCAAGAAAT 
TGAAGAGATAGCAAAAGGGCTTGAGCTCAG  
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