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Abstract 10 

Improving catalytic ability of protein biocatalysts leads to reduction in the production 11 

cost of biocatalytic manufacturing process, but the search space of possible pro-12 

teins/mutants is too large to explore exhaustively through experiments. To some extent, 13 

highly soluble recombinant proteins tend to exhibit high activity. Here, we demonstrate 14 

that an optimization methodology based on machine learning prediction model can ef-15 

fectively predict which peptide tags can improve protein solubility quantitatively. 16 

Based on the protein sequence information, a support vector machine model we re-17 

cently developed was used to evaluate protein solubility after randomly mutated tags 18 

were added to a target protein. The optimization algorithm guided the tags to evolve 19 

towards variants that can result in higher solubility. Moreover, the optimization results 20 

were validated successfully by adding the tags designed by our optimization algorithm 21 

to a model protein, expressing it in vivo and experimentally quantifying its solubility 22 
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and activity. For example, solubility of a tyrosine ammonium lyase was more than dou-23 

bled by adding two tags to its N- and C-terminus. Its protein activity was also increased 24 

nearly 3.5 fold by adding the tags. Additional experiments also supported that the de-25 

signed tags were effective for improving activity of multiple proteins and are better than 26 

previously reported tags. The presented optimization methodology thus provides a val-27 

uable tool for understanding the correlation between amino acid sequence and protein 28 

solubility and for engineering protein biocatalysts. 29 

Contact: kang.zhou@nus.edu.sg, chewxia@nus.edu.sg 30 

 31 

Introduction 32 

The exploration of expressing recombinant proteins started in 1976, when human pep-33 

tide hormone Somatostatin was produced in Escherichia coli1. As the most commonly 34 

used expression host, E. coli was investigated intensively to improve the expression 35 

and activity of recombinant proteins2, 3, 4. Various experimental strategies, such as using 36 

protein fusion partners, co-expressing chaperones, choosing suitable promoters, opti-37 

mizing codon usage, changing culture conditions, or using directed evolution5, 6, 7, 8, 9, 38 

10, were used to improve protein expression. For example, the expression of human 39 

recombinant enzyme N-acetylgalactosamine-6-sulfatase (rhGALNS) in E. coli was un-40 

desirable due to protein aggregation. Several methods including the use of physiologi-41 

cally-regulated promoters, overexpression of native chaperones and applying osmotic 42 

shock were investigated to improve the production and activity of rhGALNS10. Protein 43 

activity, a phenotype representing the catalytic ability of a protein if it is an enzyme, is 44 

partly determined by its genotype (sequence of its coding gene). Directed evolution can 45 

effectively improve protein activity through changing the associated genotype, but this 46 
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approach is resources-intensive. In the process of improving protein activity via di-47 

rected evolution, mutagenesis is performed to change gene sequence and the mutated 48 

genes are inserted into plasmid used for transformation of a microbe, usually E. coli. 49 

Additional techniques are employed further to screen a large number of transformed 50 

cells for those that have higher protein activity. Since most of the protein directed evo-51 

lution studies were only interested in the mutants with the highest activity, they did not 52 

reveal the genotype of most proteins that had lower activity. This fact has caused the 53 

challenge that almost no suitable database of protein activity is available for training 54 

computational models that can predict protein activity from protein sequence. Such 55 

models would greatly assist protein engineering by evaluating protein sequences in sil-56 

ico. A suitable dataset for training the model should contain both protein activity data 57 

and the associated sequence data, and should be large enough (>1,000 entries).  58 

Protein activity data cannot be easily pooled together for model training if they are 59 

related to enzymes that catalyze different chemistries, which is another reason why it 60 

is difficult to generate the aforementioned datasets. The data of protein solubility from 61 

most types of proteins, however, can be compiled into one dataset, because protein sol-62 

ubility is a basic protein property. In this study and the relevant literature, protein solu-63 

bility is defined as the percentage of a protein's soluble fraction11. It is a metric that is 64 

often used to assess the folding quality of a protein, under the assumption that incor-65 

rectly folded proteins form aggregates and are insoluble. Protein activity is thus corre-66 

lated with protein solubility to some extent, because protein solubility may indicate the 67 

quality of protein folding which influences protein 3D structure and activity, i.e. pro-68 

teins with higher solubility likely exhibit higher activity12. Improving the solubility of 69 

some recombinant proteins can enhance their production effectively13. Thus, protein 70 

solubility may be used as a proxy for protein activity to develop predictive models that 71 
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use protein sequence as input. With such a model, it would be possible to optimize the 72 

protein sequence of a protein in silico for improving its solubility and activity. For ex-73 

ample, a Monte Carlo optimization method can be used as the procedures demonstrated 74 

in Figure 1: (1) a random change is introduced to the protein sequence, (2) the new 75 

protein sequence is evaluated by the model, and (3) if the predicted solubility is lower 76 

than that of the parental sequence, the change would be rejected, otherwise it would be 77 

accepted and used to initiate the subsequent iteration. This in silico optimization pro-78 

cess may identify promising protein sequences to improve the success rate of the time-79 

consuming and labor-intensive experiments. If the protein activity heavily depends on 80 

its solubility, the experiment would identify new protein that has higher solubility and 81 

activity.  82 

Machine learning has gained increasing attention recently in various fields, such as in-83 

ternet commerce, autonomous vehicles, and image recognition14, 15, 16, 17, 18, 19, 20, 21, 22. 84 

Until now, a large number of machine learning methods have been explored to predict 85 

protein solubility from amino acid sequence6, 11, 23, 24, 25. Among the previous studies, 86 

we developed regression models that can predict protein solubility in the continuous 87 

values26. Classification models which only label a protein as soluble or insoluble were 88 

developed in other studies but cannot be used in the in silico optimization, because it 89 

would mistakenly reject most changes that can result in a small but important increase 90 

in the protein solubility. So far, very few studies performed experimental validation of 91 

their solubility-prediction models and no study used such models to improve protein 92 

properties through the in silico optimization of protein sequence. 93 

In our present study, based on a regression model that can predict protein solubility 94 

from protein sequence26, we developed optimization algorithms to increase predicted 95 

solubility under constraints that have been set after considering experimental feasibility 96 
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and impact on protein function. The performance of the optimization process for im-97 

proving protein solubility was validated successfully by experimentally measuring sol-98 

ubility. We found that adding short peptide rich in negatively charged amino acids was 99 

effective in improving solubility of many proteins. More importantly, we also verified 100 

that activity of some proteins was indeed substantially improved when their solubility 101 

was increased. Our study provides a generally effective approach to enhance protein 102 

solubility and activity.   103 

 104 

Results 105 

Design the optimization methodology  106 

In order to improve protein solubility by in silico mutagenesis, we need to solve several 107 

questions regarding how to change the protein sequence. One can change a protein se-108 

quence by adding amino acids to the sequence (addition), replacing amino acids in the 109 

sequence (mutation) and/or removing amino acids from the sequence (deletion). The 110 

protein functions may be frequently abolished by mutation and deletion as the original 111 

protein structure and active sites may be changed. To avoid such detrimental change to 112 

the original function of the protein, addition was used in our study to change protein 113 

sequence for improving protein solubility. The subsequent decision to make is how 114 

many amino acids should be added. Adding too many amino acids would make exper-115 

imental validation to be more expensive and may also negatively affect the protein 116 

function. Adding too few amino acids may not be able to improve protein solubility 117 

substantially. We decided to evaluate adding 20 or 30 amino acids because adding more 118 

than 30 amino acids to a protein by using synthetic oligonucleotides was experimentally 119 

difficult.  120 
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To optimize the sequence of the amino acids to be added, we designed an algorithm 121 

based on the support-vector machine (SVM) prediction model we previously devel-122 

oped26. The independent variable in the optimization function is the amino acid com-123 

position of the short peptide to be added, expressed as number of each amino acid in a 124 

vector (Figure 1). The SVM model we developed only accepted amino acid composi-125 

tion of a protein as input, so we did not consider the full sequence information during 126 

the optimization. Then the amino acid composition of a model protein with the added 127 

amino acids was calculated and used as input for the SVM model. We used the genetic 128 

algorithm (GA) which is a widely used algorithm for solving constrained optimization 129 

problems. The objective function of GA outputs the predicted protein solubility by us-130 

ing the SVM model in the format of continuous values between 0-1. The sum of the 131 

number of amino acids added was set as 20 or 30 and the searching range for the number 132 

of each amino acid added was from 0 to 20 or 30.  133 

 134 

Optimize protein sequence in silico for improving protein solubility 135 

After designing this optimization algorithm, ten proteins with low solubility (0.1) in the 136 

eSol database (we had used the same database to train our machine learning model) 137 

were selected as model proteins to test the algorithm (information of these proteins is 138 

provided in Supplementary Table S2). The predicted solubility of all the ten proteins 139 

was improved after adding 30 amino acids as peptide tags (Supplementary Figure S2).  140 

One protein's solubility (name: agaW, N-acetylgalactosamine-specific enzyme IIC 141 

component of PTS) was improved to 0.9951 from 0.1 after adding the designed short 142 

peptide tags. When we allowed adding only 20 instead of 30 amino acids, the improve-143 

ment of predicted solubility slightly decreased (Supplementary Figure S2). Since it is 144 
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easier and cheaper to add 20 amino acids in experiments than 30, we adopted adding 145 

20 amino acids as the constraint in the rest of this study.  146 

To make this study more relevant to the imperative applications of recombinant en-147 

zymes, we selected six proteins which were important in engineering metabolic path-148 

way of E. coli to produce valuable metabolites (information of these proteins is pro-149 

vided in caption of Figure 2). These proteins' predicted solubility was lower than 0.6. 150 

Adding 20 amino acids also substantially improved the predicted solubility of all the 151 

six proteins (Figure 2). Three proteins (tal, dxs and valC) were chosen to experimentally 152 

validate the optimization results since their original predicted solubility was low and 153 

the predicted solubility was substantially improved through the optimization.  154 

We also included agaw in the test because of the large improvement we observed in the 155 

in silico optimization. The number of the amino acids to be added was allowed to be 156 

decimal during the optimization and was rounded for experimental validation. The pre-157 

dicted solubility after rounding the number of the amino acids added was very similar 158 

to that before rounding for all the tested proteins (Supplementary Table S6). To generate 159 

sequence of the two tags to be added to a protein from the number of amino acids we 160 

minimized the occurrence of amino acid repeats, which reduced the difficulty in syn-161 

thesizing the DNA. The sequence of the tags for those four proteins is listed in the 162 

Supplementary Table S7.     163 

 164 

Experimental validation of the optimized protein sequence 165 

We constructed expression vectors to express the four proteins with and without the 166 

optimized tags. Among them, protein agaw cannot be expressed (as determined by us-167 

ing SDS-PAGE) with and without the tags, which may be caused by the unstable protein 168 
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structure or unsuitable experimental conditions. Protein valC can be expressed only 169 

without the peptide tags which may have impaired the protein stability. Protein tal and 170 

dxs were expressed with and without the tags (Figure 3). Protein solubility of tal and 171 

dxs was increased by 118% and 16% respectively by adding the tags.  172 

By observing the amino acids added to dxs and tal (Figure 3b and Supplementary table 173 

5), it can be found that their peptide tags were dominated by aspartic acid (D) and glu-174 

tamic acid (E). Aspartic acid and glutamic acid are the two negatively charged amino 175 

acids among the 20 amino acids. Adding them may introduce repulsive electrostatic 176 

interactions between protein molecules to prevent aggregation and to provide sufficient 177 

time for correct folding of proteins27. The similarity of the peptide tags inspired us to 178 

test whether one tag designed for one protein can be used to improve solubility of an-179 

other protein. We found that the tags optimized for improving solubility of tal could 180 

also increase both predicted and measured solubility of dxs, and vice versa (Figure 4a). 181 

Another protein (name: ada, aldehyde dehydrogenase) used in a project of our labora-182 

tory was also tested with the tag designed for tal and its predicted and measured solu-183 

bility were also enhanced (Figure 4a). The results of switching tags suggested that the 184 

tags we designed may be generally effective in improving protein solubility. 185 

 186 

Protein activity also improved by the optimization 187 

The ultimate goal of this project was to improve activity of enzymes and their solubility 188 

was used as proxy because of the aforementioned reasons. Following the success of 189 

improving protein solubility, we measured activity of tal with and without the tags. 190 

Protein tal is tyrosine ammonia lyase which can deaminate tyrosine to produce couma-191 
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ric acid (Figure 4c). It is very useful in producing flavonoids by using engineered mi-192 

crobes28, 29. Tal activity was increased by 269% by adding the tags we designed for it 193 

(Figure 4d, based on 12 h reaction). The extent of the increase in activity was even 194 

larger than that in solubility, suggesting that adding the tags may also increase the ex-195 

pression level and/or specific activity of tal. This result proved that our optimization 196 

scheme for protein solubility was also effective for improving protein activity and using 197 

protein solubility as a proxy to increase protein activity was reasonable.  198 

 199 

Tags designed under more constrained conditions 200 

Among the four proteins selected for experimental validation, the protein valC (valen-201 

cene synthase) cannot be synthesized only after the tags were added. This may be 202 

caused by the fact that the stability of protein valC was damaged after adding the tags. 203 

Our prediction model and optimization algorithm only took the protein solubility into 204 

account. However, other properties of the protein may be changed during the addition 205 

of highly charged tags, such as the protein stability. Therefore, we explored whether the 206 

peptide tags including mainly aspartic acid and glutamic acid can be replaced by tags 207 

that contain less charged amino acids to improve protein solubility. 208 

The constrained condition that the number of aspartic acid and glutamic acid cannot be 209 

more than a threshold was therefore set in the optimization algorithm. The threshold 210 

was from 0 to 10 with step size of 1 for aspartic acid and glutamic acid respectively 211 

(Supplementary Table S8). When the limitation of addition number for aspartic acid 212 

and glutamic acid was reduced gradually from 10, the predicted solubility was decreas-213 

ing but the change was small. With the decrease in the number of aspartic acid and 214 

glutamic acid, the number of lysine (K) increased substantially. Other amino acids only 215 
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had a relatively small increase in the optimization solutions. When the constrained con-216 

dition was very strict, for example, no aspartic acid and glutamic acid were allowed, 217 

the amino acids introduced were mostly alanine (A).  218 

Another constrained condition was explored which limited the net charge of the peptide 219 

tags. In this case, the upper bound for the absolute value of the net charge of the tag 220 

was set as 5, 4, 3, 2, 1, and 0, respectively (Supplementary Table S9) and it could be 221 

observed that the number of alanine increased most substantially with the decrease of 222 

net charge, which was consistent with the results obtained under the other constraint 223 

and supported that introducing alanine may be beneficial for the dissolution of protein 224 

or the optimization failed to find a feasible solution under such stringent constraints.  225 

This hypothesis was tested by doing experiments. The tags with net charge 1, 3, and 5 226 

(Supplementary table S9) were used with protein valC. These new tags did not abolish 227 

protein expression, confirming the hypothesis that excessive amount of aspartic acid 228 

and/or glutamic acid may destabilize certain proteins. However, the solubility of protein 229 

valC was not improved by the tags (Supplementary Figure S3). Protein valC may have 230 

strong affinity to cellular membranes and thus cannot be solubilized by the designed 231 

tags. 232 

  233 

Comparison with previous studies 234 

To improve protein solubility, some trial-and-error procedures were developed by in-235 

troducing small polyionic tags30, 31, 32. Small peptide tags have been used as solubility-236 

enhancing tags for a long time because they are short and less likely to interfere with 237 

protein structure30. One study indicated non-polar surface and positively-charged 238 

patches contributed to the separation of the soluble and insoluble proteins31. It was 239 
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demonstrated that a concentration of positive charge may tend towards lower folded 240 

state stability through unfavourable charge interactions and result in insolubility. In ad-241 

dition, a negatively charged fusion tag, NT11, was also developed to enhance protein 242 

expression in E. coli32. However, these previous studies explored tags by trial and error 243 

and cannot provide a generally useful quantitative model which can forecast perfor-244 

mance of tags with proteins which have not been tested. Among the diverse solubility-245 

enhancing tags that have been tested, the ones that are rich in aspartic acid and glutamic 246 

acid were also studied before27. 247 

To find out if the tags we obtained from our optimization were more effective than these 248 

published ones, we compared them by using our predictive model and by conducting 249 

experiments. We used tal as the model protein here, because its solubility was experi-250 

mentally confirmed to be low and its measured solubility can be substantially improved 251 

by adding tags. The results were shown in Figure 4b and protein tal without tag was 252 

used as the control. All the three previously known polyionic tags increased solubility 253 

of tal when added to tal, based on experimental measurement. But none of them out-254 

performed the tags identified in our optimization, supporting the usefulness of the tags 255 

and the optimization procedure we reported here. In addition, there was a desirable 256 

correlation between the predicted protein solubility and measured protein solubility. 257 

The linear correlation between predicted solubility and measured solubility was quan-258 

tified by R2 with a value of 0.57. Although the previous study exploded tags including 259 

aspartic acid and glutamic acid by trial and error, our study provided better optimization 260 

performance and a generally effective quantitative model. 261 

 262 

Discussions 263 
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Using machine learning for optimizing protein properties 264 

Using machine learning to assist the selection of proteins with specific properties has 265 

been explored recently33, 34, 35. Heckmann et al. utilized machine learning to predict the 266 

turnover number of enzymes in E. coli to optimize the growth rate, proteome composi-267 

tion and physiology of organisms34. And the prediction results were further used to pa-268 

rameterize two mechanistic genome-scale models more accurately. The machine learn-269 

ing model was trained by using the information of protein structure, biochemistry prop-270 

erties and assay conditions34, whereas protein sequences were used to train our predic-271 

tion model. Therefore, their model cannot be used to optimize protein sequence for 272 

improving protein activity. Wu et al. incorporated machine learning into the directed 273 

evolution workflow to help them identify proteins with high fitness value33. Then it was 274 

applied to engineer an enzyme for stereodivergent carbon–silicon bond formation, a 275 

new-to-nature chemical transformation. However, their training data for machine learn-276 

ing only included variants mutated at four amino acid residues. A protein might include 277 

multiple positions for mutagenesis and information of four positions is not representa-278 

tive enough to train a machine learning model to handle other positions. The selection 279 

of mutagenesis positions need to be customized by prior knowledge on the structure of 280 

proteins. Yang et al. then reviewed the machine-learning-guided directed evolution fur-281 

ther35. The different representation methods of protein sequence, prediction models, 282 

optimization methods, and the training data of machine learning models were discussed 283 

for different applications. Compared with the study mentioned above33, 35, we do not 284 

need to train our optimization and prediction model again when we handle a new pro-285 

tein. In our study, we utilized the machine learning model to identify proteins with an-286 

other desired property, protein solubility. Our training dataset was obtained by using 287 
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various proteins of E. coli and the optimization methodology did not need any custom-288 

ization and knowledge in biochemistry for new target proteins. With only the sequence 289 

information, our optimization model can provide effective guide for improving protein 290 

solubility and activity. In addition, rather than using mutation to improve the protein 291 

properties, we added small peptide tags to improve protein solubility and activity to 292 

avoid destroying the function of the original proteins.  293 

 294 

The contribution of aspartic acid and glutamic acid 295 

In this study, we designed a novel methodology to apply a predictive model of protein 296 

solubility to improve protein solubility by adding short peptide tags. Aspartic acid and 297 

glutamic acid dominated the tags that were obtained by using our optimization strategy. 298 

This finding was consistent with the conclusion of an experiment we did to determine 299 

which amino acids were the most important in determining accuracy of our solubility-300 

predicting model. In the experiment, we removed the percentage information of two 301 

amino acids and evaluated the negative impact on the performance of the predictive 302 

model. The model's inputs were composition of 20 amino acids, among which the per-303 

centages of 19 amino acid were independent. As a result, removing information of only 304 

one amino acid would have no impact on model performance and we had to remove the 305 

percentages of two amino acids. We evaluated all the combinations of two amino acids. 306 

After removing aspartic acid or glutamic acid, the decrease of the prediction perfor-307 

mance represented by R2 was the most substantial (Figure 5), indicating they were the 308 

most important ones for the model to be accurate. The causal relationship of the obser-309 

vations from this experiment and the optimization experiment could be that these two 310 

negatively charged amino acids had large positive influence on protein solubility (as 311 
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seen in the optimization experiment), so they were important to the accuracy of the 312 

model prediction (as observed in the importance analysis experiment). In addition, ar-313 

ginine which also showed some influence on the prediction performance when it was 314 

removed, did not appear in the optimization results. This might be caused by that argi-315 

nine negatively affected the protein solubility and this hypothesis was tested (Supple-316 

mentary Figure S4). After adding 20 arginines to the six proteins from our laboratory, 317 

all the predicted solubility was decreased. The suspected effects of glutamic acid, as-318 

partic acid and arginine were also supported by their spearman correlation coefficients 319 

(Figure 5c), which were obtained by analyzing the large dataset we used to train our 320 

model. There were some amino acids that were identified to be important by spearman 321 

coefficient (Figure 5c) but were not found to be critical to model performance (Figure 322 

5a), such as tryptophan and phenylalanine. It may be due to that spearman coefficient 323 

alone is not sufficient to quantitatively describe the effects of amino acid on protein 324 

solubility because of its qualitative nature and it did not consider abundance of other 325 

amino acids (Figure 5b). In this study, we have shown that our machine learning model 326 

is able to quantitatively describe the relationship and guide optimization of protein se-327 

quence.    328 

When we trained the solubility-predicting model through machine learning, we did not 329 

use any biochemistry knowledge. The optimization of protein tag to maximize protein 330 

solubility was also purely mathematical without any dependence on prior knowledge. 331 

Yet, the identified most beneficial amino acids and their influence on protein solubility 332 

can be explained by using known biochemistry knowledge (electrostatic repulsion). As 333 

to why the best tags were dominated by negatively charged amino acids rather than 334 

positively charged ones, the reason might be that positively charged amino acids may 335 

also improve protein solubility but their influence is less than those of negatively 336 
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charged amino acids. When the number of the negatively charged amino acids was con-337 

strained, the optimization algorithm used positively charged amino acid (lysine) to im-338 

prove protein solubility, which led to less improvement in solubility than using the neg-339 

atively charged ones (Supplementary Table 8 and 9).  340 

 341 

Methods 342 

Protein database. All the information of protein solubility used in our study is from 343 

the eSol database11 which is a unique database containing continuous values of protein 344 

solubility. After removing items without sequence information according to the previ-345 

ous study26, 3,148 proteins in the eSol dataset were used for this study. In the study 346 

which generated the dataset, the values of protein solubility were measured by synthe-347 

sizing the recombinant proteins by cell-free protein expression technology and then 348 

being separated into soluble and insoluble fractions with centrifugation11. Solubility 349 

was defined as the ratio of supernatant protein to total protein which was quantified by 350 

SDS-PAGE.  351 

 352 

Training flowsheet. The whole process of rationally engineering proteins with higher 353 

solubility includes data pre-processing, training the SVM prediction model, construct-354 

ing an optimization methodology, and validating the methodology. As the first step, 355 

amino acid composition was extracted from protein sequences by using Amino Acid 356 

Composition Descriptor in protr package36 within R software, which converted charac-357 

ters of amino acids into numerical values indicating amino acid composition. For the 358 

second part, the SVM model was built in MATLAB and trained following the same 359 

procedure described in the previous study26.  Then SVM was trained with the whole 360 
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dataset to predict continuous values of protein solubility from amino acid composition. 361 

For the third step, we filtered out a total of 58 proteins with low solubility of value 0.1 362 

in the original dataset and 58 proteins were picked out. Proteins with long sequences 363 

are more challenging to synthesize in experiments, therefore the protein sequences were 364 

further filtered to have less than 333.3 amino acids (1kb), which excluded 27 proteins 365 

from the eSol database. Among the 27 proteins, the one with the minimum difference 366 

between the predicted value and the real value of protein solubility, named glcE, was 367 

selected as the sample protein to build a methodology for further optimizing protein 368 

solubility. Genetic algorithm (GA), an optimization method, was explored to search for 369 

maximum predicted solubility with constraints for the sample protein. The difference 370 

between protein solubility before and after mutagenesis was used to evaluate the opti-371 

mization effect on protein solubility. Moreover, besides the sample protein, 10 proteins 372 

with solubility of value 0.1 which have the least differences between predicted and 373 

original solubility among the 27 proteins mentioned above were selected for applying 374 

the optimization methodology. Six proteins commonly used in our laboratory were also 375 

investigated for the optimization of protein solubility. Finally, among the 16 proteins 376 

selected for optimization, 4 proteins that bear low solubility before adding the tags and 377 

high predicted solubility after adding the tags were chosen for experimental validation. 378 

The original and mutated protein sequences were synthesized to validate the change of 379 

protein solubility by measuring the protein solubility with SDS-PAGE.  380 

 381 

Machine learning models. The regression version of SVM used in this study could 382 

also be named support vector regression (SVR) 37. The aim of SVR is to solve38 383 

minimize 
1

2
||𝑤||2 384 
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subject to {
𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤ 𝜀,
〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤ 𝜀,

 385 

where 𝑥𝑖 is a training sample with target value 𝑦𝑖 and 𝑤 is the normal vector to the hy-386 

perplane. The inner product plus intercept 〈𝑤, 𝑥𝑖〉 + 𝑏 is the prediction value for that 387 

sample. The difference of predicted values and true values for targets have to be within 388 

an 𝜀 range, which is a parameter serving as a threshold.  389 

A regression machine learning model SVM in MATLAB was used for optimizing pro-390 

tein solubility for the all the proteins in our study and was validated by experiments 391 

(Supplementary Table S10). The improved SVM model was used to optimize all the 392 

proteins in silico and compared with the previous one in the Discussion.  393 

 394 

Optimization algorithms. Genetic algorithm (GA), one of the evolutionary algo-395 

rithms, is inspired by the process of natural selection observed in nature39. It is a fre-396 

quently utilized randomized optimization algorithm for searching optima with con-397 

strained conditions. GA essentially simulates the way in which life evolves to find so-398 

lutions to real world problems. In GA, the solutions to a problem are represented as a 399 

population of chromosomes evolving through successive generations. The offspring 400 

chromosomes are generated by merging two parent chromosomes by crossover or mod-401 

ifying a chromosome by mutation. The offspring chromosomes are evaluated according 402 

to the fitness or objective function in each generation. Chromosomes with higher fitness 403 

values have higher possibility to survive and the process will stop when the offspring 404 

chromosomes are almost identical or the terminal conditions set are reached. Strong 405 

individuals will dominate the generation through many iterations in the process with 406 

mutation, crossover and selection. The final chromosome represents an optimal or near-407 

optimal solution for the optimization problem. In our problem, the chromosomes are 408 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 24, 2019. ; https://doi.org/10.1101/817890doi: bioRxiv preprint 

https://doi.org/10.1101/817890


 

 18 

the sequence of peptide tags and the fitness function is the predicted solubility for pro-409 

teins after adding tags. Several hyperparameters can be tuned for the optimization al-410 

gorithm, such as the population size, the number of iterations for evolution and the 411 

number of individuals mutating in each generation. We used a MATLAB Toolbox to 412 

implement the optimization (iteration number = 1,000, other parameters are provided 413 

in Supplementary Table S1). The generic structure of GA in our study can be described 414 

as follows: 415 

begin: 416 

initiate a tag representing by a 20-dimensional vector with constrained condi-417 

tions (sum of the vector is 20 and the value of each dimension is within range 418 

0-20); 419 

evaluate the protein sequence after adding the tag; 420 

while (if termination conditions are not met): 421 

do crossover and mutate parent tag sequences to yield offspring se-422 

quences; 423 

evaluate the protein solubility for the proteins with offspring sequences; 424 

select and generate offspring sequence with higher solubility; 425 

end while; 426 

end. 427 

 428 

Data visualization: The heat map was plotted by using the cmap function of the mat-429 

plotlib package in Python with the values of R2 after removing the information of two 430 
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types of amino acids. The violin plot of the amino acid compositions was made by using 431 

the violinplot function of the seaborn package in Python. Violin plot featured a kernel 432 

density estimation of the underlying distribution. Spearman's rank correlation between 433 

amino acid composition and solubility was computed using the spearmanr function of 434 

the scipy.stats package in Python. The equation used was 435 

𝜌𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑖

√∑ (𝑥𝑖−�̅�)
2∑ (𝑦𝑖−�̅�)

2
𝑖𝑖

 , 436 

where the subscript i denoted the ranks, and x and y represented amino acid composition 437 

and solubility respectively.  438 

 439 

Chemicals in experimental validation: All chemicals were purchased from Sigma-440 

Aldrich unless otherwise stated. All reagents used were of analytical grade. The DNA 441 

oligomers used in this study were synthesized from Integrated DNA Technologies.  442 

 443 

Plasmid construction: All the plasmids used in this work were constructed by using 444 

GT DNA standard40 (Supplementary Table S7).  445 

 446 

Cell culture and SDS-PAGE analysis of protein solubility: Each of constructed plas-447 

mid was introduced into E. coli BL21 (DE3) (C2530H, New England Biolabs) for SDS-448 

PAGE analysis by using standard heat shock protocol. In order to test the resulting 449 

strains, single colony was inoculated into 1 mL of LB with 100 µg/mL of ampicillin, 450 

and was cultured overnight at 37 °C/250 rpm. Fifty microliters of the overnight grown 451 

cell suspension were inoculated into 5 mL of K3 medium40 with 100 µg/mL of ampi-452 

cillin. When cell was grown to 0.4-0.6 optical density (OD) at 600, isopropyl β-D-1-453 
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thiogalactopyranoside (IPTG) was added to a final concentration of 0.1 mM. After in-454 

cubated overnight at 30 °C/250 rpm, the cell culture broth was diluted to OD600 = 2.0, 455 

and centrifuged at 5000 g, 10 min. The obtained cell pellets were resuspended in 100 456 

µL B-PER II reagent (78248, Thermo Fisher Scientific). The mixtures were incubated 457 

for 15 min at room temperature with gentle rocking, and centrifuged at 16000 g for 20 458 

min. The obtained supernatant contained soluble cell lysates. The insoluble cell pellets 459 

were resuspended in 100 µL of 2 % w/v SDS. Both soluble and insoluble cell pellets 460 

were analyzed by using SDS-PAGE (Mini-PROTEAN® TGX™ Precast Protein Gels, 461 

4561083, Bio-Rad). The image of the gel was processed and quantified by Gel Doc EZ 462 

Gel Documentation System (Bio-Rad). 463 

 464 

Tal activity assay in vitro: One milliliter of obtained supernatant containing soluble 465 

cell lysates was added to 4 mL of PBS buffer (pH=9.0) with 1 g/L tyrosine (final con-466 

centration) in 50 mL falcon tube and incubated at 30 °C/250 rpm. Three hundred mi-467 

croliters of samples were taken at 0 h, 1 h, 3 h and 12 h after incubation, and mixed 468 

with 700 µL of acetonitrile to dissolve the produced p-courmaric acid (PCA). The mix-469 

ture was incubated at 30 °C/250 rpm for 1 h, and then centrifuged at 13,500 g for 5 min. 470 

Two microliters of the obtained supernatant was analyzed by using HPLC (Agilent 471 

1260 Infinity HPLC) based on a previously reported method40. 472 

 473 

Supplementary information  474 

Supplementary data are available online. 475 

 476 
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Codes availability 477 

We present the optimization workflow as a series of notebooks hosted on GitHub 478 

(https://github.com/xiaomizhou616/optimization_protein-solubility). The workflow 479 

can be used as a template for analysis of other expression and solubility datasets. 480 

 481 
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 631 

Figure 1 Machine learning model assisted optimization of protein solubility. (a) Illustration of the ob-632 

jective function when we aimed to improve protein solubility by adding short peptide tags. SVM: support 633 

vector machine. A SVM regression model we recently developed was used in this study26. (b) Illustration 634 

of the optimization algorithm. Genetic algorithm was used in this study. 635 
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 636 

Figure 2 The predicted solubility before and after adding 20 amino acids for six proteins commonly used 637 

by our laboratory. The six proteins were valC (valencene synthase), dxs (1-deoxy-D-xylulose-5-phos-638 

phate synthase), adh2 (alcohol dehydrogenase), chs (chalcone synthase), 4cl (4-coumarate-CoA ligase) 639 

and tal (tyrosine ammonia-lyase). Their sequences were listed in Supplementary Table S7. Before adding 640 

the tags, the protein solubility of them was predicted by SVM and recorded. Then GA was used to opti-641 

mize their solubility by adding 20 amino acids. The protein solubility after adding the tags was also 642 

recorded for comparison.  643 

 644 

Figure 3 (a) The SDS-PAGE analysis of protein tal and dxs expressed in E. coli with and without tags 645 

designed by our optimization algorithm. “+” and “-” represented expressed proteins with and without 646 

peptide tags respectively. “P” and “S” represented the pellet fraction (insoluble) and supernatant fraction 647 

(soluble), respectively. The oval shapes highlight the bands of dxs and tal proteins. Protein tal and dxs 648 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 24, 2019. ; https://doi.org/10.1101/817890doi: bioRxiv preprint 

https://doi.org/10.1101/817890


 

 27 

were expressed in K3 medium with 20 g/L glucose at 30 °C. (b) Quantitative presentation of the SDS-649 

PAGE images in a. The protein solubility was the ratio of soluble protein amount to the total protein 650 

amount. The protein amount was estimated by using band intensity on SDS-PAGE images. The se-651 

quences of the designed tags for N-terminal and C-terminal were shown. The amino acid S and G on the 652 

two ends of the tags were the linkers for GT DNA assembly standard, which was used to construct the 653 

plasmids in this study40. 654 

 655 

Figure 4 (a) The predicted and measured solubility of tal, dxs and ada after adding tags designed for 656 

other proteins. The purpose of switching tags for proteins was to test if the solubility-enhancing tags are 657 

generally effective in improving protein solubility. The same protein was labelled by using the same 658 

color to highlight the data before and after adding tags. In the data labels, the text before “-” indicates 659 

protein name and the text after “-” indicates the tags used if any. In the process of measuring the solubil-660 

ity, the protein expression condition was K3 medium with 20 g/L glucose at 30 °C. (b) The comparison 661 

of the tags designed in this study with tags used in previous studies. Protein tal was the only model 662 

protein used in this plot. No tag: solubility of tal without any tag. Tal tag: solubility of tal when we added 663 

the tags that were designed by our optimization algorithm for tal. 5xE tag -N/C: solubility of tal when 664 

5xE tag (EEEEE) was added to its N- or C-terminus. 5xD tag -N/C: solubility of tal when 5xD tag 665 

(DDDDD) was added to its N- or C-terminus. 3x(GDDD) -N/C: solubility of tal when 3x(GDDD) tag 666 

(GDDDGDDDGDDD) was added to its N- or C-terminus. 5xD, 5xE and 3x(GDDD) were three tags 667 

used in a previous study and used here for comparison27.  Since in previous study, only one tag was added 668 
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to one protein, either at N- or C-terminus, we tested both cases for each tag. The two tags we designed 669 

for tal were added to both ends of tal (Figure 1 and 3b). The sequences of all the tags are provided in 670 

Supplementary Table S7. In the process of measuring the solubility, the protein expression condition was 671 

K3 medium with 20 g/L glucose at 30 °C. (c) The reaction catalyzed by enzyme tal. (d) The protein 672 

activity of protein tal before and after introducing tal tag. The product of the reaction catalyzed by en-673 

zyme tal was p-coumaric acid (PCA) and its concentration was used to indicate the activity of protein 674 

tal. Cell lysate containing tal was used in the reaction. tal – tal tag: the strain containing tal with the tags 675 

designed in this study. Tal – no tag: the strain containing tal without any tag. No tal: the strain that did 676 

not express tal. The bars indicate the mean of six replicates. The error bars indicate standard error of six 677 

replicates. 678 
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 679 

  680 

Figure 5 (a) Importance of various amino acids in determining the accuracy of the SVM regression 681 

model. The R2 of the SVM model was shown by using a heat map after removing the information of two 682 

types of amino acids. Model training is described in Materials and Methods. Single letter amino acid 683 

abbreviations are used in this figure. All the combinations of removing two types of amino acids are 684 

tested and the performance of the resulting models is presented in the upper triangular matrix. Perfor-685 

mance of the models was gauged by using R2, which is presented here by using color (a color bar is 686 
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provided). The darker the color is, the more important the related amino acids are to the model perfor-687 

mance. (b) The distribution of amino acid composition (the input variables of the SVM model we used) 688 

among all the proteins in the eSol database (the date source we used to train the SVM model). The violin 689 

plot showed the mean value and the range of the amino acid composition used to train the SVM model. 690 

(c) The Spearman’s rank correlation between actual/predicted protein solubility and various amino acids. 691 

Spearman’s correlation, 𝜌𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛 , is a measure of monotonicity and represents the general sensitivity 692 

of solubility to amino acid composition. A comparison between the Spearman’s rank correlation tornado 693 

plot for actual solubility and predicted solubility depicted how the model captured and magnified general 694 

trends between amino acid composition and solubility. For example, for both the actual and predicted 695 

solubility of proteins in the eSol dataset, the composition of D, E, or K was positively correlated with 696 

solubility.  697 

 698 
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