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ABSTRACT

CRISPR-Cas genes are extraordinarily diverse and evolve
rapidly when compared to other prokaryotic genes. With
the rapid increase in newly sequenced archaeal and bacterial
genomes, manual identification of CRISPR-Cas systems is
no longer viable. Thus, an automated approach is required
for advancing our understanding of the evolution and
diversity of these systems, and for finding new candidates
for genome engineering in eukaryotic models. In this paper,
we introduce a holistic strategy that combines regression
and classification models for improving the quality of protein
cascades, predicting their subtypes, detecting signature
genes and extracting potential rules that reveal functional
modules for CRISPR.

INTRODUCTION

CRISPR-Cas systems provide archaea and bacteria with
a nucleic acid based adaptive immune system against
invading viruses and plasmids. Mechanistically, the immune
response can be divided into three stages, namely adaptation,
processing and interference, each carried out by different
sets of protein complexes (1). The universally conserved
proteins Cas1, Cas2 and, optionally Cas4, are responsible for
the adaptation stage, when a fragment of invader DNA is
excised and stored in the host chromosome as a spacer in the
non-coding CRISPR region. The processing and interference
stages are much more mechanistically diverse, using different
sets of proteins, depending on the type of CRISPR-Cas
system. CRISPR-Cas systems are found in many bacteria
and most archaea, and have diversified as much as their host
organisms (2).

While the mechanistic principles are similar, with spacers
comprising templates for synthesis of CRISPR interference
RNAs (crRNAs) against the invader, the different types
and classes of CRISPR-Cas systems show some important
differences. Class 2 systems use a single multi-domain protein
for locating and cleaving the re-invading nucleic acid, whereas
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Class 1 systems employ a large multi-subunit complex for the
same purpose. Class 2 systems can be further subdivided into
type II, V and VI, which appear to have evolved independently
from each other. Thus, the respective Cas9, 12 and 13 enzymes
that carry out invader cleavage rely on diverse mechanisms
involving differing nuclease domains (2, 3, 4).

Class 1 systems, on the other hand, with types I, III and IV,
use structurally related proteins to carry out similar functions,
although the protein subunits have diverged considerably.
Common to all Class I systems is that Cas7 forms a helical
backbone that spans the length of the tightly bound crRNA.
This backbone is terminated in one end by Cas5, which
itself is bound to Cas8 or Cas10 for type I and IV, or type
III systems, respectively. Type I systems use Cas8 for the
recognition of the protospacer adjacent motif (PAM) (5),
which, along with invader crRNA hybridisation, comprises
a signal for recruitment of the Cas3 helicase-nuclease
protein that subsequently digests the invader chromosome
(6). Type III systems, however, use the Cas7 backbone for
cleaving invader mRNA while the Cas10 HD nuclease cleaves
transcribed DNA (7, 8). Cas10 also synthesises a signaling
molecule that recruits additional accessory Cas proteins for
other functions, such as cell suicide or activation of other
defense systems (8, 9).

The different types of CRISPR-Cas systems are themselves
so diverse that each type can be further subdivided into
several subtypes. Type III, for example, is divided into four
subtypes III-A, B, C and D. While CRISPR-Cas systems
of the same subtype encode similar proteins that occupy
the same roles, the proteins have often diverged beyond
the point of recognition by conventional sequence alignment
methods such as Blast, even within a subtype. This level
of sequence diversity makes proper identification of the
found CRISPR-Cas systems very challenging, and the field
has thus far relied upon the gold standard of periodic
manual annotations by experts, published once every few
years (2, 10, 11). The annotation involves profile HMM
searches for finding core genes, followed by the inspection of
their neighborhoods, gauging operonic structures, and manual
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BLAST and PSI-BLAST searches (12). With the increasing
number of genome sequences from uncultured microbes and
metagenomic data, however, manual annotations cannot keep
up and an automated approach is needed, which yields
comparable accuracy to manual annotation. Furthermore,
research groups working on organisms not yet covered by
published annotations have thus far made their own manual
annotations, leading to inconsistencies in nomenclature and
inaccuracies in some cases.

There have been numerous attempts at devising
computational pipelines for the identification of different
elements of the CRISPR system, such as CRISPR arrays
(13, 14, 15) and CRISPR leaders (16). Detection tools for
CRISPR cascades have been implemented only for the simpler
Class 2 systems (3, 17, 18, 19), resulting in the detection
of novel Class 2 types. These new types have expanded
the known diversity and are now being re-engineered for
gene-editing applications. Class 1 systems, however, have
not been successfully addressed by automated approaches,
despite being much more widespread than Class 2 systems.
They are difficult to detect due to the signal being spread out
across multiple genes, each encoding separate subunits of
the effector ribonucleoprotein complex. Previously published
methods (20, 21) produce inaccurate results, except for
derivatives of the most well-known Class I systems, and not
all genes are successfully annotated.

In this work, we present a machine learning (ML) approach
intending to capture much of the relevant essence of manual
annotation. It is based on evidence for the different Cas
proteins to be contained in a specific Cascade, and thus
represents genomic CRISPR-Cas systems as cascades of
adjacently encoded proteins. These evidences are calculated
by newly designed sets of HMM models for each Cas
protein, covering the diversity of Cas protein families. The
proposed approach solves the problem of classification of
new systems into types and subtypes. As our features for
the ML approach correspond to evidence for Cas proteins,
we can determine Cas proteins whose evidence is critical
for predicting a subtype, which corresponds to the concept
of signature genes. We show that our approach correctly
identifies known signature genes for types and subtypes. In
addition, our approach is able provide more information about
the composition of cascades. One application is to predict
evidence for Cas proteins that have been missed in the Cas
protein screening. This provides researchers with hints to
search for remote homologs of the missing Cas proteins, or
for new proteins that might replace the associated function.
Furthermore, we are able to learn association rules, which are
subsets of proteins being important to each other, indicating
functional modules. As a proof of concept, when we search
for Cas proteins associated with an interference protein,
our approach finds other interference proteins to be most
important. The more interesting cases are undoubtedly with
the non-interference protein, where our tool could correctly
predict a strong association of the ancillary protein Csn2
with Cas1, consistent with its hypothesized role in adaption.
For the helper protein CasR we found that it is associated
with different functional modules in subtypes I-A and I-E,
indicating a possible functional diversity. Thus, the set of
protein associations derived in this manner provides a proper

resource for researchers that want to investigate the function
of different Cas proteins.

MATERIALS AND METHODS

Data collecting and preprocessing
All Cas proteins used in this study were selected from
the most recently classified archaeal and bacterial CRISPR-
Cas systems (2, 3, 4, 19). We performed an all-against-all
sequence similarity comparison on these data using Fasta (22).
Subsequently, we clustered the proteins using the Markov
Cluster Algorithm (MCL) (23) based on custom similarity
criteria (9, 16). These criteria consider the size of the proteins,
the length alignment and the relative locations of similar
regions between the two compared proteins. After clustering
the protein sequences from a specific Cas protein family,
we generated a multiple sequence alignment (MSA) using
MUSCLE (24). Next, these alignments were converted to
HMM profile models by using hmmbuild (25). Except for
MCL, all other tools were run with default parameters.

To generate the feature vectors, we ran all HMM profile
models using hmmsearch against all cascades. We selected
the cascades which had a hit for all proteins annotated for that
subtype, and used for the classification pipeline. Cascades that
had a missing protein were used instead as a test case for our
regression models and the full pipeline.

Classification of CRISPR Cascades
For this task, we apply ML algorithms onto a finite sample
of CRISPR data in order to obtain predictive models that
are able to classify protein cascades into their respective
subtypes using a data matrix representation (see Results and
discussion). Thus, based on the finite sample of data, we
investigate the application of classification algorithms that
estimate a function which is able to generalize the association
between a cascade and its subtypes. As a consequence, we
intend to use this function to classify new cascades that
were not seen during the training phase into their respective
subtypes with a high level of accuracy.

Prediction of missing Cas proteins
We also investigate the problem of predicting (possibly)
missing Cas proteins by estimating their normalized bit-
scores. For this problem, we modelled it as follows. Given
m Cas proteins, we filter, for each subtype, its set of l<m
proteins (i.e., all Cas proteins whose bit-score is larger than
zero for at least one cascade of the subtype). Next, we induce
l regressors, where the jth regressor, j∈{1,··· ,l}, predicts
the bit-score of the jth Cas protein using the remaining l−1
proteins as input.

Experimental evaluation of ML algorithms
We apply three ML algorithms to the preprocessed dataset
to obtain predictive models for regression and classification
tasks. These algorithms are:

• Classification and regression trees (CART) (26),
which induces a predictive model represented by a
decision tree. This algorithm can induce decision trees
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for classification (classification trees) and regression
(regression trees) tasks. A decision tree is composed by
a set of interpretable rules extracted from the training
dataset. These rules explain the decisions made by the
model to predict the class or regression value for new,
previously unseen, examples.

• Support Vector Machines (SVM) (27), which induces
a binary classifier represented by a hyperplane
that separates examples from two classes with the
maximum possible separation margin. By using kernel
functions, an SVM can be applied to non-linearly
separable problems. For multiclass classification tasks,
a multiclass dataset is usually first decomposed into
several classification binary datasets. SVMs can then be
applied to each binary dataset, and their predictions are
combined for a multiclasss classification.

• Extremely Randomized Trees (ERT) (28), uses an
ensemble of decision trees, where each tree is induced
using a random subset of the original features. Instead
of selecting the best discriminating threshold for each
feature considered for a split, as would be the case
for classical decision trees, ERT chooses a random
threshold value. The final predictions are the average of
the predictions of all the decision trees in the ensemble.
We can extract the importance of each feature in the
classification or regression task from the decision trees
in the ensemble. The importance is represented by the
decrease in impurity caused by a node that splits the
feature, weighted by the number of examples contained
in such a node (29), and averaged over all trees of the
ensemble.

The model selection and evaluation of predictive models is
a widely studied problem in the ML literature. Several works,
such as (30, 31, 32), investigate the advantages and drawbacks
of different methodologies. Based on these previous studies,
we use the nested cross-validation procedure. Given a set of
data, the classical cross-validation approach splits the data into
K mutually exclusive and similar sized subsets called folds.
Next, at each iteration, K−1 folds are used for inducing an
ML model and the remaining fold for testing it (33, 34). The
nested cross-validation approach separates the model selection
and evaluation steps, by using two different cross-validation
loops: an outer loop, which splits the data into K1 folds, and
is used for model evaluation; and an inner loop, which splits
the training data intoK2 folds, and is used for model selection.
In this paper, we set K1=K2=10, and repeat the evaluation
procedure 50 times, due to the variance of the results when
considering different splits (32). It is important to mention
that, during our experiments, to guarantee that examples from
all classes are present in each outer fold, we used only classes
containing at least 10 examples.

For each cross-validation iteration, we aggregate the
predictions from all folds and calculate a single predictive
performance evaluation, in order to avoid any averaging
problems that might arise, especially when the dataset is
imbalanced (35). For the classification experiments, we
used the following evaluation measures: adjusted balanced
accuracy score (36, 37), an adaptation of the original accuracy
measure that gives higher weights to examples from smaller

classes; and the F-score with macro-averaging (38), which is
the average F-score among all classes. Both measures treat
different subtypes equally. Thus, they do not favor those
with the largest numbers of cascades. For the regression
experiments, we used the mean absolute error (39), which is
the average absolute difference between the expected and the
predicted target values.

Regarding the model selection step of each ML algorithm
used, we performed a grid search over 20 different
hyperparameter combinations, based on the guidelines
from the scikit-learn package (40). We describe these
hyperparameter grids next. For the CART algorithm, we
varied the hyperparameters that determine the maximum
depth of the decision tree and the minimum number of
examples necessary for a node to become a leaf. For the
former, we considered the values in {5,10,15,max}, where
max allows the tree to grow as deep as possible. For the
latter, we varied the values in {5,6,7,8,9}. For the SVM
algorithm, we used a Gaussian kernel, due to its ability
to model nonlinear decision boundaries and its reduced
number of hyperparameters when compared with another
commonly used nonlinear kernel, the polynomial kernel (41).
For the cost hyperparameter C, we considered the values
in {1,10,100,1000}. Regarding the kernel coefficient γ,
we assessed the values in {0.01,0.1,1,10,100}. Finally, for
the ERT algorithm, we varied the ensemble size using the
values in {25,50,75,100}, and the quantity of features to be
considered when performing a split from the set of values
in {25%,50%,75%,100%,

√
m}, where m is the number of

known Cas protein families.

Software and data
CRISPRCasIdentifier is implemented in Python
and freely available in http://padilha.
github.io/CrisprCasIdentifier (password:
i4Jpw2hDjPZQi7dBZEIn) under the GNU General Public
License v3.0 (GPLv3). It integrates our best ML models
for classification and regression in a simple and ready-
to-run script. Given an input cascade as a Fasta file,
CRISPRCasIdentifier runs our HMM models for the available
proteins and labels them according to their best hits.
Afterwards, it predicts the normalized bit-scores for the
proteins that were not recognized by any HMM. Finally, it
proceeds to the classification step, where it is also able to
return probabilities for an input cascade belonging to different
subtypes.

RESULTS AND DISCUSSION

A combined approach to determine Cas proteins and
Cascade subtypes.
The classification of a subtype is based on the membership for
specific Cas proteins. Thus, any ML-based classification of a
cascade requires the detection of the contained Cas proteins
as a first step. While this first step is commonly performed
using Hidden Markov models, a difficulty arises from the fact
that a single Cas protein family has to be split into different
subfamilies due to the high evolutionary diversity of their
members. Due to missing values in the dataset for a family,
even the problem of splitting into different subfamilies is
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not an easy one. Even further, we have observed that the
splitting of Cas protein families influence the quality of ML-
based subtype classification. This would be quite obvious if
subfamilies of individual Cas protein would correlate well
with subtypes. The real situation, however, is more complex,
partially due to the fact that cascades are composed in a
modular way, often involving horizontal gene transfer (2, 9).

In brief and as described in more detail later, our
classification approach takes the bit scores for the contained
Cas proteins as evidence of their membership to the cascade.
We use this information to apply a set of ML algorithms
to classify the subtypes of cascades. By generating different
divisions of subfamilies for each Cas protein, we obtain
different evidences for the contained Cas proteins. Thus,
we can investigate which division is best related to subtype
evolution. With this holistic view of Cas protein and
subtype annotation, we can further examine relations between
subtypes and Cas protein membership and as a result re-assure
key components of subtytes like signature genes.

Detection of Cas proteins by families of HMMer models
Our definition of Cas protein subfamilies is based on
clustering the known sequences of a specific Cas protein
family. We use a set of 3125 cascades with 68594 labeled Cas
proteins as a database, and applied different cluster criteria.
Each cluster characterizes a subfamily, which is afterwards
represented by a HMM model. All models for a Cas protein
are grouped, and the best matching HMM for each Cas protein
is used to score a new sequence. To cluster the sequences, we
performed an all-against-all sequence similarity comparison.
Subsequently, we applied the Markov Cluster Algorithm
(MCL) (23) to cluster the known sequences for a specific
Cas protein family according to their sequence similarities.
However, protein sequences can be clustered in different ways,
depending on the cut-off for sequence similarity and the
requested coverage of the alignment between two sequences.
In addition, different hyperparameters for the MCL clustering
algorithm result in different data partitions. Each partition
defines different subfamilies, for which we train HMM
models.

The different clustering approaches thus result in HMM
models for different subfamilies, with varying specificity and
sensitivity to detect members of a Cas protein family. We
created five different collections of HMM models labeled
HMM1 ... HMM5 using different hyperparameter values for
the clustering algorithm and distinct threshold values for the
all-against-all sequence similarity detection (see Methods for
detail; the number of models for each Cas protein family is
listed in Supplementary Table S1). For a given Cas protein
sequence, we applied all HMM models that are contained
in a specific collection for that protein family and took the
maximum bit score, and zero otherwise. Non-zero values
indicate that the investigated protein sequence belongs to the
Cas protein family defined by the HMMer model set.

We used different measurements to assess the quality of
a specific division represented by a set HMMi. One quality
criteria for a set HMMi is clearly the capability for detecting
known members of Cas proteins. Table 1 shows the sensitivity
for the five sets HMM1 ... HMM5 by reporting the number of
cascades found in each subtype. It is easy to see that the more

Table 1. Properties and Quality Measurements for the collections HMM1 ...
HMM5. (a) Sensitivity of set HMMi in detecting Cas proteins, measured by
the number of cascades found per subtype. Sets HMM1, HMM2 and HMM3

are more fine grained than sets HMM4 and HMM5, which detect less Cas
proteins overall. (b) Median Accuracy for the classification of subtypes when
using set HMMi with different ML-approaches to determine the evidence for
a Cas protein in a cascade. The quality difference is much lower in the overall
task of subtype classification compared to the task of detecting individual Cas
proteins.

HMM1 HMM2 HMM3 HMM4 HMM5

No. models 379 385 416 209 201
No. sequences 14674 14674 23622 16018 16018

(a
)S

en
si

tiv
ity

pe
rS

ub
ty

pe

I-A 116 116 117 0 0
I-B 714 714 707 415 415
I-C 627 627 627 608 608
I-D 138 138 137 100 100
I-E 1100 1100 1102 1052 1052
I-F 354 354 353 339 339
I-U 136 136 82 8 8

II-A 319 319 329 244 244
II-B 24 24 35 35 35
II-C 327 327 333 328 328

III-A 374 374 358 321 321
III-B 290 290 288 172 172
III-C 93 93 93 83 83
III-D 181 181 183 45 45
IV-A 36 36 36 43 43
V-A 18 18 32 27 27

VI-A 6 6 4 6 6
VI-B 40 40 40 40 40

Total Sens. 4893 4893 4856 3868 3868

(b
)A

cc
ur

ac
y

ERT 0.9908 0.9900 0.9849 0.9916 0.9915
CART 0.9690 0.9695 0.9644 0.9541 0.9544
SVM 0.9850 0.9857 0.9802 0.9846 0.9846

fine grained sets, HMM1, HMM2 and HMM3, clearly detect
more Cas proteins than the less fine grained sets HMM4 and
HMM5.

In our holistic view of Cas protein detection and subtype
classification, however, we want to understand also how the
division into subfamilies relates to the cascade subtype, and
thus influence the subtype classification. For that reason, we
show in Table 1 also as another quality criteria the median
accuracy for correctly predicting the subtype of a cascade
when using the HMMi in a ML-based subtype classification
approach as described in the next section. The surprising result
is that the sensitivity of a specific set HMMi in detecting Cas
proteins does not correlate with the accuracy that is achieved
in a subtype classification using this set HMMi.

A pipeline for CRISPR cascades classification based on
Cas protein evidences
Our classification pipeline for CRISPR cascade is described in
Figure 1 and has five steps. For each set HMM1 ...HMM5, we
build a data matrix for classification and regression analysis
of cascades as follows. Usually, a CRISPR cascade C is a
collection of Cas proteins and is thus defined as a subset
of all known Cas proteins P (i.e., C⊂P). However, when
predicting Cas proteins with HMMer models, this would
imply a discretization of the bit score that would omit the
information about the evidence we have for the prediction.
For this reason, we define for each cascade Ci a real vector
Xi of length m, where m is the number of known Cas protein
families, containing an entry for each possible Cas protein.
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Figure 1. Experimental methodology adopted for this study. (a) Every cascade from our positive set is encoded into a feature vector, which has an entry for
each Cas protein family. Given a specific cascade with known Cas proteins, we apply to each Cas protein sequence all HMMs from the set of HMMs that were
generated for that specific Cas protein. The best bit-score is included into the feature vector Xi encoding the ith cascade. (b) This feature vector is stored in the
data matrix X, together with the known subtype. (c) As the trained model highly depends on the collection of used cascades, we use the ten-fold cross-validation
strategy. Thus, we split the training set into 10 subsets called folds. We perform 10 runs, where, in each run, one of the folds is used for testing and the remaining
9 for selecting and training the best ML model. (d) For selecting the best ML model, a similar cross-validation strategy is applied to tune twenty hyperparameter
combinations that affect the model predictive performance. Then, in (e), the selected model is trained using the whole training set. Finally, in (f) and (g) we apply
the trained model to the respective test set of the outer fold and evaluate its performance.

Each element Xij is defined as the best bit-score obtained by
Pj among all HMM models of its family if it is detectable by
the models, and zero otherwise (Figure 1a). By concatenating
the vectors obtained for all the n available cascades, we obtain
a data matrix X∈Rn×m

+ (Figure 1b). In addition, each cascade
is associated to a label that indicates its subtype, according to
the classification provided by (2, 4, 9).

This data matrix, along with the feature vectors and the
subtype labels for all known cascades, is our training data
for the subtype classification task. For the evaluation of our
classification models, we apply a ten-fold cross-validation
procedure on this data matrix. For this, we randomly split the
data matrix X into 10 folds (Figure 1c), each one containing
a subset of cascades encoded by the associated feature
vector. Each vector is annotated (labeled) by its true subtype.
For model selection, we perform hyperparameter tuning by
employing a grid search over 20 hyperparameter combinations
and applying an inner cross-validation loop (Figure 1d, see
Methods for detail). After selecting and training the best
model (Figure 1e), we have a classifier that, along with a
feature vector with HMM bit scores for all known Cas protein
families, predicts the subtype of new cascades (Figure 1f and
Figure 1g).

The classification pipeline successfully predicts the
subtype of cascades
To evaluate the pipeline, we first assessed whether it can
successfully perform the classification task, i.e., correctly
predict the subtype of a cascade. As shown in Figure

2 for HMM1, the predictive performances, measured by
the adjusted balanced accuracy, for CART, ERT and SVM
algorithms are above 96%. These high values suggest that,
though imbalanced, the cascade subtypes are well-defined
in the feature space. It is important to mention that not
all cascades are complete in the investigated datasets. Some
cascades are composed only by subsets of the Cas proteins that
integrate its subtype definition. In Supplementary Table S2,
we summarize the percentage of cascades that are complete
for each subtype, ignoring Cas proteins that are contained in
less than 5% of the cascades of each subtype. We observed in
the experimental results that, even though some incomplete
cascades are present, the three classifiers were still able
to capture the relations among the remaining proteins. The
results for the other four sets of HMM models, and for the
F-score with macro averaging measure, were similar and
allowed us to draw similar conclusions (see Supplementary
Figure S1).

To investigate the prediction quality for specific subtypes,
we performed an experiment using the one-vs-the-rest strategy
(33). Given k different classes, the one-vs-the-rest strategy
induces k classifiers, one for each subtype, which learns
how to discriminate this subtype (positive class) from the
remaining classes (negative class). In Table 2 we show
the average F-scores, after 50 cross-validation repetitions,
obtained by the classifiers using the one-vs-the-rest strategy. It
is clearly visible that the k classifiers were able to discriminate
each class with a high predictive performance, in agreement
with our previous results. In the case of SVM, one can use the
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Figure 2. Adjusted balanced accuracy obtained for the 50 repetitions of
nested ten-fold cross-validation applying ML algorithms to the dataset
generated by the HMM1 set. The x-axis corresponds to the classifiers induced
by different ML algorithms. The y-axis shows the range of adjusted balanced
accuracy values.

margin separating positive and negative data as an additional
quality criterion. Again one can see here a clear separation
of SVM scores for the positive and negative classes (see
Supplementary Figure S2).

Table 2. Mean F-scores for 50 nested cross-validation repetitions using the
one-vs-the-rest strategy and Cas protein set HMM1.

Subtype CART ERT SVM Subtype CART ERT SVM
I-A 0.94 0.98 0.97 II-C 1.00 1.00 0.99

I-B 0.95 0.99 0.98 III-A 0.98 0.99 0.97
I-C 0.97 1.00 0.99 III-B 0.97 0.99 0.98

I-D 0.97 0.99 0.97 III-C 0.93 0.98 0.97

I-E 0.99 1.00 1.00 III-D 0.96 0.99 0.97
I-F 0.96 0.99 0.99 IV-A 1.00 1.00 1.00

I-U 0.99 1.00 0.97 V-A 1.00 1.00 0.99

II-A 1.00 1.00 1.00 VI-B 0.86 0.97 0.94
II-B 1.00 1.00 1.00

The classification pipeline detects signature proteins
Makarova et al. (2) define the presence of unique signature
Cas proteins that characterize most of the investigated
CRISPR subtypes. According to the authors, signatures
usually consist of either one or multiple Cas proteins that
co-occur in the same cascade. Based on the aforementioned
results, we hypothesize that the classifiers were able to
learn these signature proteins. Since one-vs-the-rest classifiers
introduced in the last section learned how to discriminate a
different subtype, we assessed whether it is possible to derive
insights about signature proteins for each class by analyzing
each classifier separately.

We thus propose a new approach to detect signature proteins
for a subtype by determining the importance of a specific
feature (i.e, the evidence for a Cas protein in a cascade) to
correctly predict the subtype in the respective one-vs-the-rest
classifier. The rational is that Cas proteins which are highly
important for discriminating a specific subtype against all
others are likely signature proteins for this subtype. Figure 3
shows the importance of each Cas protein (see Methods for
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Figure 3. One-vs-the-rest average Cas protein importance of ERT for I-D
subtype. The x-axis presents different Cas proteins. The y-axis shows the
importance of each Cas protein regarding the decision trees of the ensemble
split. Note that the feature importance is not only related with the classification
into the I-D subtype, but may also be related to its contribution to classify a
cascade into any other subtype. Thus, some of the proteins in the figure may
not be related to I-D, but to any other subtype.

definition of feature importance) in predicting subtype I-D. As
can be seen, the importance is specifically high for Cas10(d)
(resp. Cas3), which is the signature protein for the subtype I-D
(resp. the type I) according to (2). Overall, we observed that
Cas10 and Cas3 account, on average, for more than 60% of
the importance for classifying I-D.

To investigate the relation between the two signature genes
for proteins Cas10 and Cas3 in more detail, we selected the
decision tree obtained by CART for the I-D subtype (Figure
4). In this tree, terminal nodes with the blue color indicate I-
D classification (positive class), while those with brown color
indicate any other subtype classification (negative class). As
shown in Figure 4, Cas10 is the most important protein for
identifying I-D, which is in agreement with (2), where the
subtype I-D is characterized by the presence of a variant of
the Cas10 protein (instead of a protein from the Cas8 family,
which is common for the other I subtypes) and two variants
of the Cas3 protein. Interestingly, we need middle to strong
evidence for Cas10 and only weak evidence for Cas3. In the
case of weak evidence for Cas10, we also need weak evidence
for both Cas3 and Cas1 in order to correct the missing 36
examples, albeit in this case the classification would not be
pure anymore. Overall, it can be observed that CART was
able to correctly model this signature, since most of the
nonterminal nodes refer to these proteins, indicating that they
are the most important features in this subtype.

Since the current classification (2) is based only on
the interference module, the adaptation-related Cas proteins
(Cas1, Cas2 and Cas4) should not have a high importance
for our classification pipeline. Thus, in another experiment,
we removed these proteins and the process proteins (Cas6),
and tested the predictive performance of our classification
pipeline when removing this information. The obtained
results were similar to those previously discussed in this
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Figure 4. Reduced one-vs-the-rest CART for the I-D class (see
Supplementary Figure S3 for full tree). Cascades that are labeled as
subtype I-D are highlighted in blue, the others in brown. Each node shows
the fractions of class I-D and other cascades, indicating the purity of the
node. The number of cascades is shown under the ”samples” entry. In each
node, we query for evidence of a specific Cas protein, indicated by the score
calculated by the HMM family models. As one can see, a strong evidence
for Cas10 immediately points to a subtype I-D (top node and right branch).
Otherwise, if we have middle evidence for Cas10, we need at least weak
evidence for Cas3 to determine subtype I-D. Finally, if we have only weak
evidence for Cas10, we need at least weak evidence for Cas3 and also for
Cas1 to determine subtype I-D (left branch). However, the classification is
not pure anymore (bottom nodes).

section and support our discussion and main conclusions
(see Supplementary Figure S4), strengthening the hypothesis
that our ML-based approach captured biologically relevant
information.

All the aforementioned examples illustrate how our ML
models are able to learn the protein signatures without any
extra information other than the normalized bit scores and
cascade subtype labels. These results validate our hypothesis
and provide models that are able to automatically categorize
new cascades with a high predictive accuracy.

Regression instead of classification learns association
rules
In our next set of experiments, we were interested in
answering the question of whether some Cas proteins tend
to be co-occurring frequently with other proteins. To answer
this question, we hypothesized that they form a functional
module. However, as we have varying information about
the evidence for a specific Cas protein, and there is also
some redundancy and flexibility in forming this module, we
followed an approach different from that described in the
previous section. We believe that if a specific Cas protein is
frequently associated with other Cas proteins, it is possible
to predict the evidence for this protein by relying only on
the known evidence for the other members of the functional
module. We can confirm this belief by removing a specific Cas

protein from the feature vector, and predicting the “expected”
normalized bit score for this protein from the remaining
feature vector. This amounts to learning a regression model
from known examples.

Association rules can now be inspected by determining
again the important features (i.e., Cas proteins) to predict the
correct evidence for a specific Cas protein. In Table 3, we list
the three most important proteins for some target Cas proteins
in some subtypes. In this case, for predicting evidence for
Cas10d in subtype I-D, we need the information about Cas3,
Cas5 and Cas7. In agreement with the fact that subtypes are
mainly associated with the interference complex (2), we find
that for the interference proteins Cas10d, Cas3 and Cse2, the
associated proteins are also interference proteins. For the non-
interference proteins Csn2 and Cas4 in II-A and II-B, not only
is Cas9 an interference and signature protein for type II, but it
is associated with them as well as the adaptation proteins Cas1
and Cas2. Interestingly, though Cas9 information is important
for Cas4, Cas1 is actually more significant for Csn2. This
is in agreement with the hypothesized role of Csn2 in the
adaptation process (42, 43, 44, 45).

Table 3. Top 3 most important proteins according to ERT when trying to
predict a target protein across different subtypes. For the interference proteins
Cas10d, Cas3 and Cse2, the other most important Cas proteins are also
interference proteins. For non-interference proteins, other Cas proteins linked
to adaptation, e.g. Cas1 and Cas2, are also important. The helper protein CasR
seems to have different modules associated in I-A and I-E.

Subtype Target protein Most important proteins
I-D Cas10d (Cas3, 0.37), (Cas5, 0.16), (Cas7, 0.12)
I-D Cas3 (Cas11, 0.41), (Cas10, 0.28), (Cas5, 0.14)
I-E Cse2 (Cas8, 0.23), (Cas5, 0.22), (Cas7, 0.18)
II-A Csn2 (Cas1, 0.57), (Cas9, 0.24), (Cas2, 0.19)
II-B Cas4 (Cas9, 0.84), (Cas2, 0.12), (Cas1, 0.04)
I-A CasR (Csa5, 0.33), (Cas5, 0.17), (Cas6, 0.15)
I-E CasR (Cas1, 0.38), (Cas8, 0.27), (Cas7, 0.17)

An interesting case to consider is CasR, a helper protein of
unclear function. This protein seems to have different roles
in subtypes I-A and I-E, and also appears to be associated
with the different proteins in I-A and I-E (see Table 3, last
two rows). In I-A, the most important proteins are Csa5, Cas5
and Cas6, whereas in I-E they are Cas1, Cas8 and Cas7.

The ML-approach can handle missing Cas proteins
In real world applications, it is necessary to predict the subtype
for cascades that have one or more Cas proteins missing, i.e.,
there are no hits in their corresponding HMM models during
the preprocessing step (Figure 1a). Therefore, it is important to
assess whether our ML-based pipeline can handle these cases,
which are frequently occurring in real application scenarios.
We furthermore assessed whether we can also predict the
missing evidence for these proteins.

Concerning the first task, we took cascades that had a
missing protein in the annotation. Note that we had excluded
these cascades before training the regressor (see Methods),
thus forming an independent test set. We then applied
our classifiers to predict the subtype for these incomplete
cascades. Table 4 shows the classification results for all ML
algorithms on this independent test. Especially the ERT-based
classifier is still capable to predict the corrected subtype with
high quality, even in the hard case of incomplete annotation.
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Figure 5. Mean absolute error results for Cas proteins contained in I-A (a) and I-E (b) subtypes over 50 nested cross-validation repetitions. In the x-axis we
list the different Cas proteins that were used as target variables. In the y-axis we present the mean absolute error values. In general, missing proteins are well
predicted, especially in the case of the core Cas proteins Cas1 to Cas7. For other Cas proteins like CasR, the prediction quality is varying between I-A and I-E.
This is likely to the higher amount of I-E cascades in the data basis, indicating a more complex relationship between CasR and other Cas proteins.

Table 4. Average adjusted balanced accuracy for classification on the
independent test set, consisting of cascades with one Cas protein missing.

Classif. HMM1 HMM2 HMM3 HMM4 HMM5
CART 0.53 0.53 0.69 0.50 0.50
ERT 0.72 0.72 0.76 0.72 0.72
SVM 0.58 0.58 0.72 0.62 0.62

One can also see that in this real world scenario, the more fine
grained Cas protein set HMM3 is clearly outperforming the
other HMM collections.

In our experiments, we observed that most of the
aforementioned cascades contained only one protein that did
not achieve any hit for the HMM models of its family. We thus
investigated whether we could predict the missing evidence
using the previously described regression approach, trained on
all subtypes. The basic idea is that a high predicted evidence
for a missing protein is a hint for researchers to perform an
in-depth attempt to annotate the missing protein, or to search
for new proteins that might replace the function of the missing
protein.

To investigate this, we removed one bit score for a specific
protein, and learn a model that is able to predict this bit score
using the evidence information from the remaining proteins.
In Figure 5, we present the Cas protein regression results for
ERT; the regressor with the lowest mean absolute error for
subtypes I-A and I-E in the dataset generated by HMM1.
Concerning the different subtypes and datasets, the other
results were similar and are presented in our Supplementary
material, Figures S5–S10. We can see that the missing proteins

are well predicted in general. The core proteins Cas1 ... Cas8
are especially well predicted by the approach, showing a high
interdependence between these core proteins and other Cas
proteins important for the subtype. We also observed that for
proteins different from the core Cas proteins such as CasR, the
size of the data basis (i.e., number of known cascades) for the
subtype is influencing the prediction quality, indicating a more
variable (or complex) interaction between these proteins and
other proteins important for the subtype.

We also observed that the ERT obtained in general the best
results for Cas protein regression (see Supplementary Figures
S5–S10). In most cases, ERT achieved mean absolute error
values below 0.05 for the normalized bit score prediction.
These results confirm the relevance of building specific
regressors for each Cas protein inside of a specific subtype
for the identification of unknown or possibly missing Cas
proteins, when the label of the cascade of interest is known.

Finally, as a proof of concept, we looked at the independent
test case consisting of cascades with one missing protein, and
applied our regression approach in order to determine the
cascades where the evidence for having a specific missing
protein was predicted to be high. These cases would be good
candidates for missing annotations. We found 13 cascades
that predicted a missing DinG protein of which three had a
predicted evidence of 0.5 or higher. By applying a HHblits
(46) search for all ORFs in the respective genome of these
three cascades, we found an ORF with convincing homology
to DinG-proteins in each case (see Figure 6A for an example).
Another case was Cas2, where we found 13 cascades with a
missing Cas2 protein predicted. We again used HHblits on all

117 nt

Aromatoleum aromaticum EbN1
(putative)

Ding csf5 csf1 csf2 csf3

Thermoanaerobacter italicus Ab9

3010 nt

(putative)

cas3 cas5 cas7 cas8 cas2

Figure 6. The Cascades with missing proteins. A) In this genome, we predicted a DinG protein missing in the cascade with evidence >0.5. The HHblits (46)
search in this genome for all ORFs determined one ORF 117nt upstream of the cascade with a high confidence score for a DinG homology (E-value: 7.6e-22). B)
In the case of Cas2, the predicted evidence was lower, between 0.221 to 0.165. Nevertheless, we found one ORF with a high confidence score for Cas2 homology
(E-value: 1e-37) 3010nt downstream of the cascade.
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ORFs in the genome of the top three cascades, and found one
case with a convincing Cas2 homology (see Figure 6B).

CONCLUSIONS

In this paper we introduced a new ML-based pipeline for
the identification and classification of genomic CRISPR-
Cas systems. To assess the predictive performance of this
approach, we conducted an in-depth investigation of the
suitability of commonly used ML algorithms for the task by
using the normalized profile HMM search bit scores of Cas
proteins as input, and classifying cascades of proteins to their
respective subtypes according to the most recent classification
(2, 4, 9).

Overall, this work covers three different research issues: (i)
the classification of cascades; (ii) the prediction of normalized
bit scores for missing Cas proteins; and (iii) the investigation
of the properties of CRISPR types and subtypes. Concerning
topic (i), our classification models were able to achieve very
high classification performance, above 0.96, in terms of the
adjusted balanced accuracy score. Thus, they are well placed
for the prediction of CRISPR systems of newly sequenced
organisms, or metagenomic data with sufficient read length
to cover the full cascade in one contig. In addition, we
introduced a new method for determining signature genes,
which are genes most important for predicting the correct
subtype. This approach was able to properly learn the known
signature genes of CRISPR-Cas subtypes without any extra
information other than the available protein cascades and
their labels, but provides additional information about the
composition of cascades. In topic (ii), our regressor models
achieved very small deviations between the expected and
predicted normalized bit scores for different Cas proteins
across the different subtypes. This illustrates the usefulness
of these regressors on new cascades that have missing hits
for some Cas proteins. A high bit score provides a hint to
researchers to search for more diverged forms of the protein,
or to look for proteins which could replace the missing
function. The analysis performed under topic (iii) enabled us
to correctly identify known signature genes, and to identify
putative functional modules. Overall, it provided us with a
set of association rules for potential use in more advanced
classification scenarios, in addition to providing insights about
the biology of the systems.

Manual annotation is the gold standard when it comes
to classification and identification of genomic CRISPR-
Cas systems. Replacing or supporting this process with an
automated algorithm requires a degree of flexibility that
is challenging to model. CRISPRCasIdentifier provides a
boost in classification accuracy when compared to existing
tools, because it builds on an understanding of the manual
annotation process. We made CRISPRCasIdentifier available
for researchers to use with their own data.
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