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Abstract

Nanoparticles have the potential to enhance therapeutic success and reduce toxicity-

based treatment side effects via the targeted delivery of drugs to cells. This delivery relies

on complex interactions between numerous biological, chemical and physical processes. The

intertwined nature of these processes has thus far hindered attempts to understand their

individual impact. Variation in experimental data, such as the number of nanoparticles

inside each cell, further inhibits understanding. Here we present a mathematical framework

that is capable of examining the impact of individual processes during nanoparticle delivery.

We demonstrate that variation in experimental nanoparticle uptake data can be explained

by three factors: random nanoparticle motion; variation in nanoparticle-cell interactions;

and variation in the maximum nanoparticle uptake per cell. Without all three factors, the

experimental data cannot be explained. This work provides insight into biological mecha-

nisms that cause heterogeneous responses to treatment, and enables precise identification of

treatment-resistant cell subpopulations.
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1 Introduction

Elucidating how individual biological and physical processes dictate the successful cellular up-

take of nanoparticles is crucial for future developments in areas such as nanomedicine and nan-

otoxicology (1, 2). Untangling the role of a particular process requires a detailed understanding

of the complex marriage of transport phenomena, physicochemical nanoparticle characteristics

and biological behavior that govern nanoparticle-cell interactions (1–4). It is well established

that the physicochemical properties of a nanoparticle, such as size, shape and surface charge,

impact nanoparticle uptake (1, 2, 4, 5). The exact influence of these properties is unclear, as

the impact is obscured by both the influence of transport phenomena, such as sedimentation,

diffusion and aggregation, and cell-type specific interactions between cells and nanoparticles

(4, 6–8). The inherent variation in cell characteristics within a population further obscures the

roles of individual processes, and results in heterogeneous experimental data (9–13).

Heterogeneity in experimental data may imply that commonly-reported population-averaged

measures do not accurately reflect the underlying biology (14–16). For example, consider a

nanoparticle-cell association assay, where the average number of nanoparticles associated with

a cell is measured after exposure to a particular concentration of nanoparticles (7). This mea-

sure, referred to as nanoparticle dose, can be used as a proxy for the effectiveness of a putative

treatment (17). Effective treatment of disease via drug-loaded nanoparticles may require univer-

sal cellular uptake within a population (12), such that all cells interact with the drug. Reporting

only the average number of associated nanoparticles does not distinguish between the influence

of stochastic processes, where all cells are identical but associate with nanoparticles at random,

and the presence of distinct subpopulations of cells that interact differently with nanoparticles

due to fundamental differences in biology (Fig. 1). Certain cell subpopulations may not asso-

ciate with nanoparticles, or associate with nanoparticles at an inhibited rate (12). Even if such

cell subpopulations are rare, they can nevertheless have a substantial impact on disease pro-

gression (14, 18, 19). Identifying whether a cell population does, in fact, contain heterogeneity

in relevant cell characteristics or whether variation in experimental data is merely a by-product

of the stochastic nature of nanoparticle transport is therefore critical for therapeutic success

(9–13). Furthermore, understanding how heterogeneity in cell characteristics, such as receptor

numbers or vesicle formation rates, manifests itself in commonly-measured experimental data

is crucial for isolating and quantifying sources of heterogeneity.

Nanoparticle motion is inherently stochastic due to the fundamental length scales involved in

the transport process (3, 11). As such, the measured nanoparticle dose per cell will be dis-

tributed according to the transport properties, as well as any potential heterogeneity in cell

characteristics. Without careful consideration of the contribution of the stochastic nature of

transport to the dosage distribution, heterogeneity in cell characteristics can be misidentified

or incorrectly estimated. Mathematical models of nanoparticle motion are effective at isolating

the contribution of nanoparticle transport to dosage from biological interactions (3, 5–8). How-

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 24, 2019. ; https://doi.org/10.1101/817569doi: bioRxiv preprint 

https://doi.org/10.1101/817569
http://creativecommons.org/licenses/by/4.0/


Explained by potential sources of heterogeneity

G1

phase

S

phase

G2

phase

M

phase

Nanoparticle-cell interactions? Cell cycle?

Cell surface area? Nanoparticle motion?Nanoparticle-cell association assay

Nanoparticle suspension Cell population

Experimental approach

Associated nanoparticles

Heterogeneous dosage data

Heterogeneity changes over time

Nanoparticles

per cell

Fr
e

q
u

e
n

cy Early time Late time

Nanoparticles

per cell

Figure 1: Schematic highlighting the experimental approach that gives rise to a het-
erogeneous dosage distribution with potential sources of heterogeneity. Nanoparticle-
cell association assays result in heterogeneous dosage distributions, which may be explained by
heterogeneity in (i) nanoparticle-cell interactions; (ii) the cell cycle; (iii) cell surface area or;
(iv) stochastic nanoparticle motion.

ever, such models describe the average nanoparticle behavior and dose, and are not suitable

for predicting dosage distributions or cell heterogeneity. Statistical approaches allow for the

quantification of heterogeneity from experimental data (9, 10, 13), but do not provide mecha-

nistic understanding about how heterogeneity in experimental data arises from heterogeneity in

multiple cell characteristics. Further, as we will demonstrate, conclusions obtained from previ-

ous statistical approaches are incapable of explaining heterogeneity observed in our time course

experiments.

Results

Here we develop and introduce a model of individual nanoparticle behavior that is capable of

describing and predicting cell heterogeneity. This modeling framework mimics experimental

conditions while providing detail at both an individual particle and individual cell level. The

standard experimental approach for analyzing nanoparticle-cell interactions is an adherent cell

culture association assay (6). In an association assay, a cell population seeded on a culture

dish is incubated in media containing a nanoparticle suspension (Fig. 1) (6). The nanopar-

ticles undergo transport through the fluid via a combination of sedimentation and diffusion,

and ultimately arrive at the cell-media interface (Fig. 2C,E-G) (3, 6–8). Nanoparticles bind

to receptors on the cell surface and are internalized via various endocytic processes (4). The

evolution of the number of nanoparticles associated with each cell is measured to provide time

course information on the dose (Fig. 2D). It is difficult to distinguish between nanoparticles

that are internalized by a cell or are merely bound to the cell surface, and hence we take the

standard approach of using the number of associated nanoparticles as a proxy for dose (7, 20).

Due to the ubiquitous use of association experiments to investigate nanoparticle efficacy, we

calibrate the geometry and conditions in our modeling framework to an association assay.

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 24, 2019. ; https://doi.org/10.1101/817569doi: bioRxiv preprint 

https://doi.org/10.1101/817569
http://creativecommons.org/licenses/by/4.0/


Nanoparticle
concentration

Air
boundary

C
BA

Time

D

N
a

n
o

p
a

rt
ic

le
 

d
o

se

x

y

z

Diffusion

Sedimenation

E F G

Cell
boundary

Figure 2: Experimental and model geometry. (A) Standard experimental geometry for
an in vitro adherent cell culture association assay. (B) Representative geometry for the voxel-
based modeling framework. (C) Typical nanoparticle concentration as a function of depth due
to sedimentation and diffusion of nanoparticles. (D) Typical nanoparticle association curve.
(E) Media-cell boundary in the modeling framework highlighting (F) nanoparticle locations
within a voxel and (G) the contributions of random motion (diffusion) and directed motion
(sedimentation) to nanoparticle transport.

We implement a voxel-based framework, where the experimental domain is discretized into

cube-shaped subdomains known as voxels (Fig. 2A-B). We model the number of nanoparti-

cles within each voxel, which evolves with time due to stochastic transitions of nanoparticles

between voxels. The transition rates correspond to the combined rates of sedimentation and

diffusion (21). Transition events are sampled via a spatial stochastic simulation algorithm, a

modified form of the well-established Gillespie’s algorithm (22). To replicate experimental con-

ditions, there is no transition of nanoparticles through the top of the domain, corresponding to

the air-media interface. At the cell-media interface, the transition rate of nanoparticles from

the media into the cell monolayer corresponds to the cell carrying capacity kinetics derived by

Faria et al. (7). These kinetics have been demonstrated to be the most suitable kinetics for

describing association assays for a wide range of nanoparticle-cell combinations (7). The kinet-

ics rely on two parameters: a nanoparticle-cell affinity parameter, which represents the rate of

interaction between a nanoparticle and a cell, and; a cell carrying capacity parameter, which

is the maximum number of nanoparticles that can associate with a cell (7). The equivalence

of the transition rate used here to the cell carrying capacity kinetics of Faria et al. (7) and an

efficient method to calculate the average behavior in the voxel-based model are derived in the

Supplementary Information (21, 23) and Methods section, respectively.
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Stochastic motion does not account for all observed variation

Our modeling framework describes both individual nanoparticles and individual cells and, there-

fore, we are able to explicitly measure the number of nanoparticles associated with each cell.

As nanoparticle motion is stochastic, the model output will be a distribution of nanoparticles

per cell. This distribution can be readily compared with experimental data, as flow cytometry

techniques can be used to measure the number of nanoparticles associated with each cell for an

entire cell population (24–26).

Experimentally, even when all cells have identical characteristics, the number of nanoparticles

per cell will be heterogeneous due to the inherent stochasticity of nanoparticle motion. This

dosage distribution is dependent on the association regime of the cells. For example, if the cells

are in the linear association regime, where the number of nanoparticles per cell is significantly

lower than the carrying capacity, then the dosage distribution will be Poisson distributed with

an arrival rate equivalent to the average association rate of nanoparticles with the cell layer.

However, this may not be the case when the nanoparticle dose is close to the maximum number

of nanoparticles per cell.

To determine the influence of stochastic transport on the nanoparticle dosage distribution, we

perform simulations using our modeling framework and calculate the number of nanoparticles

associated with each cell. Here we first consider idealized conditions where all cells in an exper-

iment have identical characteristics. These simulations are calibrated to match three different

experiments: the first is performed with 1032nm PMASH capsule nanoparticles and RAW264.7

cells, the second is performed with 282nm PMASH coreshell nanoparticles and HeLa cells, and

the third is performed with 150nm PMASH coreshell nanoparticles and RAW264.7 cells (7, 27).

As noted previously, the dose obtained from the model is only Poisson distributed in the linear

association regime (Supplementary Information, Fig. S1). If the number of nanoparticles per

cell approaches the carrying capacity, the predicted dosage distribution is not well described

by the Poisson distribution. Comparing the dosage distribution obtained from the model with

the experimental data, we observe that the experimental data is overdisperse compared to the

model predictions (Supplementary Information, Fig. S1). This indicates that the cell popula-

tions exhibit heterogeneity, and is consistent with previous observations (9–13).

Heterogeneity is time dependent

Having established that the experimental data is not consistent with a homogeneous cell pop-

ulation, we next consider implementing heterogeneity in our modeling framework. A natural

choice is to allow each cell in the model to have a nanoparticle-cell affinity parameter that is

sampled from a probability distribution. This represents variation in the biological processes

that dictate nanoparticle association, such as the number of receptors or vesicle formation rates

(10). Lognormal distributions are prevalent throughout biology, and arise from multiplicative

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 24, 2019. ; https://doi.org/10.1101/817569doi: bioRxiv preprint 

https://doi.org/10.1101/817569
http://creativecommons.org/licenses/by/4.0/


sources of variability (3, 12, 28). As such, here we make the assumption that affinity is log-

normally distributed. Note that other distributions could be considered, and while this would

affect the final dosage distribution, the analysis techniques remain the same.

As each cell now has an individual affinity parameter, and the association rate for each cell is

proportional to the affinity, the number of nanoparticles per cell will follow a Poisson-lognormal

distribution (29). Critically, this allows us to determine the relative contributions of stochastic

nanoparticle motion and cell heterogeneity to the variation in the dosage distribution. The

applicability of the Poisson-lognormal distribution relies on the assumption that the number

of nanoparticles associated with a cell is independent of other cells; that is, competition be-

tween cells for nanoparticles is minimal. This is appropriate provided that association occurs

sufficiently slowly compared to nanoparticle transport, as is the case for the nanoparticle-cell

combinations considered here. There is only a single free parameter in the distribution, the

standard deviation, as the mean of the Poisson-lognormal distribution must correspond to the

mean number of associated nanoparticles. We refer to this standard deviation as the “apparent

heterogeneity.”

The apparent heterogeneity is a key concept for the work presented here. As the dosage dis-

tribution is described by the Poisson-lognormal distribution, the heterogeneity present in the

data is captured via the measure of spread in the Poisson-lognormal distribution: the stan-

dard deviation (apparent heterogeneity). It is important to note that this is not the “true”

heterogeneity in one (or more) of the cell characteristics. Rather, the apparent heterogeneity

represents how the “true” heterogeneity manifests itself in the experimental dosage distribu-

tion. As the nanoparticle dose can be indicative of therapeutic success, it is therefore necessary

to understand how the apparent heterogeneity arises from the “true” heterogeneity in the cell

characteristics.

To examine the apparent heterogeneity present in the experimental data, we fit the Poisson-

lognormal distribution to the experimental data at each measured time point. In Fig. 3 we

present both the distribution fit and the evolution of the apparent heterogeneity. Fig 3D-F

shows that the Poisson-lognormal describes the data well for all three experiments, indicating

that the assumption of lognormally-distributed cell characteristics is appropriate. Notably, the

apparent heterogeneity changes with time (Fig 3A-C). For each nanoparticle-cell pair, the ap-

parent heterogeneity decreases rapidly at early time before beginning to plateau towards the

final experimental observation. This observation suggests that previous investigations into het-

erogeneity in nanoparticle-cell interactions, where the heterogeneity is assumed to be constant

(10), do not represent a complete picture due to the time-dependent nature of nanoparticle-

cell interactions. Therefore, we next seek to determine how the time dependence of apparent

heterogeneity arises as a consequence of interactions between nanoparticles and various cell

characteristics.
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Figure 3: Heterogeneity appears to change with time. (A-C) Evolution of apparent
heterogeneity obtained from experimental data for three nanoparticle-cell pairs. (D-F) Dosage
distributions for the three nanoparticle-cell pairs after 1, 2, 4, 8, 16 and 24 hours. The cyan
line corresponds to the Poisson-lognormal distribution that best fits the dosage distribution.
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Cell size distribution does not account for time-dependent heterogeneity

To determine whether the experimental apparent heterogeneity arises solely from heterogeneous

nanoparticle-cell association, as suggested previously (10), we introduce cell heterogeneity into

our modeling framework via the affinity parameter. A potential explanation for heterogeneous

affinity is the heterogeneity in cell surface area due to the cell cycle (10, 30, 31). Specifically, we

assume that a cell with higher surface area is more likely to interact and associate with nanopar-

ticles (10). We calibrate a lognormal distribution to the square of small-angle light scattering

intensity obtained via flow cytometry for both HeLA and RAW264.7 cells to estimate the cell

surface area heterogeneity (32). This heterogeneity is used to create the lognormal distribution

for the affinity parameter.

We perform simulations representing the three previously-described experiments, now incorpo-

rating heterogeneous nanoparticle-cell affinity, and present the results in Fig. 4A-F. To obtain

robust estimates of the apparent heterogeneity, we use an efficient approach that provides the

average nanoparticle dose for each cell, and fit the Poisson-lognormal distribution to this dosage

data. This approach provides results that are consistent with the average output of the voxel-

based model (Supplementary Information, Fig. S3.), and avoids fluctuations in the apparent

heterogeneity due to the stochastic nature of the voxel-based model.

As predicted, the dosage distribution obtained from the model is Poisson-lognormal distributed

in the linear association regime, but does not follow the Poisson-lognormal distribution near the

carrying capacity. For the simulation of the experiment that remains in the linear association

regime (Fig. 4D) the apparent heterogeneity stays close to the “true” heterogeneity in the

cell characteristics, that is, the standard deviation of the nanoparticle-cell affinity distribution

(Fig. 4A). For the simulation of the two experiments where the number of nanoparticles per

cell approaches the carrying capacity (Fig. 4E,F), the apparent heterogeneity decreases as time

increases, even though the “true” heterogeneity is constant (Fig. 4B,C).

While this is a potential explanation for the decrease in apparent heterogeneity observed experi-

mentally, the model predicts that the apparent heterogeneity approaches zero as time increases,

whereas the apparent heterogeneity in the experimental data appears to approach a finite pos-

itive value (Fig. 3). Further, the time dependence in the apparent heterogeneity obtained from

the model results from a breakdown in the match between the dosage distribution and the

Poisson-lognormal distribution as the number of nanoparticles per cell approaches the carrying

capacity (Fig 4D-F). In contrast, the experimental dosage distribution is well-described by the

Poisson-lognormal distribution in all cases, even though the number of nanoparticles per cell

approaches the carrying capacity in the 282nm coreshell-HeLa and 150nm coreshell-RAW264.7

experiments (Fig. 3). This suggests that the model assumption of a homogeneous carrying

capacity is incompatible with the experimental data.
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Figure 4: Cell size distribution does not explain changes in heterogeneity. (A-C,
G-I) Evolution of apparent heterogeneity obtained from the modeling framework for three
nanoparticle-cell pairs. The affinity parameter for each cell is sampled from a lognormal dis-
tribution with a standard deviation corresponding to the dashed black line. The cell carrying
capacity parameter is either (A-C) constant or (G-I) lognormally distributed with a standard
deviation corresponding to the dashed black line. (D-F, J-L) Dosage distributions for the three
nanoparticle-cell pairs after 1, 2, 4, 8, 16 and 24 hours obtained from the voxel-based model.
The green line corresponds to the Poisson-lognormal distribution that best fits the dosage dis-
tribution.
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An increase in cell surface area may increase the maximum number of nanoparticles that can

associate with a cell. As such, we now impose a lognormal distribution on the cell carrying

capacity parameter, where this lognormal distribution has the same standard deviation as the

cell surface area distribution. We make the assumption that the nanoparticle-cell affinity and

cell carrying capacity parameters are correlated, that is, a cell with higher affinity due to a

higher surface area will also have a higher carrying capacity. We perform simulations, again

representing the three previously-described experiments, with heterogeneous nanoparticle-cell

affinity and heterogeneous cell carrying capacity, and present the results in Fig. 4G-L. The

apparent heterogeneity is consistent with the cell surface area heterogeneity in each case (Fig.

4G-I), and the model dosage distributions are all described well by the Poisson-lognormal distri-

bution (Fig. 4J-L). However, the model-predicted apparent heterogeneity due to the variation

in cell surface area is constant with time, and therefore insufficient to explain the evolution in

the apparent heterogeneity obtained from the experimental data.

Cell cycle does not introduce time-dependent heterogeneity

The previous results assumed that the cells present in the population are representative of all

phases within the cell cycle. To investigate whether the progression through the cell cycle during

the experiment affects the apparent heterogeneity, we now incorporate the cell cycle explicitly

in our modeling framework. We implement a multistage model of cell cycle progression, where

cells exist in one of m states, representing different phases of the cell cycle (33). Cells transition

between states at rates corresponding to the average time spent in a particular phase. Here

we choose m = 4, corresponding to the G1, S, G2 and M phases. We consider two approaches

for introducing heterogeneity. First, we impose cell heterogeneity via a lognormal distribution

as previously. Second, we introduce a phase-specific mean affinity parameter, representing the

change in cell size between phases. The standard deviation is independent of phase. When a

cell transitions from M phase to G1 phase, and undergoes mitosis, an additional cell is intro-

duced. The daughter cell either inherits the original cell’s affinity parameter, or has the G1

phase affinity parameter, depending on the cell cycle approach considered. The nanoparticle

load of the original cell is split evenly between the original cell and the daughter cell.

We perform simulations representing the three experiments described previously, with the addi-

tion of the two approaches for modeling heterogeneity via cell cycle progression, ensuring that

the mean affinity is consistent with the previous model simulations. The efficient approach used

above to obtain the average nanoparticle dose per cell cannot be used here to obtain the appar-

ent heterogeneity as cell behavior must be explicitly described, and as such we revert to the full

voxel-based model. For both approaches we observe that the apparent heterogeneity is relatively

consistent, though slightly reduced, compared to the true heterogeneity in the cell character-

istics (Fig. 5A-C). This slight reduction is associated with mitosis; splitting the nanoparticle

load into two cells reduces the number of cells carrying high numbers of nanoparticles. In both

cases the apparent heterogeneity is approximately constant over time, unlike the experimental
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Figure 5: Cell cycle progression does not explain changes in heterogeneity. (A-C)
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data, which indicates that the cell cycle cannot explain the apparent evolution of heterogeneity

in nanoparticle dosage distributions. The choice of modeling approach does not significantly

influence either the apparent heterogeneity or the dosage distribution, as highlighted in Fig.

5A-C and Fig. 5D-I, respectively. Therefore, we do not consider the cell cycle in the remainder

of this work. The results presented in Fig. 4 and Fig. 5 clearly demonstrate that conclusions

drawn from previous investigations (9, 10, 13) into the sources of nanoparticle-cell heterogeneity

are incomplete, and are incapable of explaining the observed time-dependence of heterogeneity

in nanoparticle dosage.

Interplay between nanoparticle motion, affinity heterogeneity and capacity

heterogeneity determines apparent heterogeneity

The association of nanoparticles with cells is eventually restricted by the cell carrying capacity

(7). As highlighted by the results in Fig. 4, the heterogeneity in the carrying capacity can-

not be neglected. As multiple biological factors may induce heterogeneity in nanoparticle-cell

affinity or cell carrying capacity, the amount of heterogeneity may differ between different cell

characteristics. Therefore, we now relax the assumption that both the cell carrying capacity

and the nanoparticle-cell affinity are distributed with the same degree of heterogeneity. To

determine the heterogeneity for both cell carrying capacity and nanoparticle-cell affinity we

iteratively calibrate the modeling framework to both the mean nanoparticle dose and the ap-

parent heterogeneity obtained from the experimental data. This allows us to extract estimates

of the heterogeneity in the cell carrying capacity and the nanoparticle-cell affinity, while ensur-

ing that the mean dosage is consistent with the experimental data, as shown in Fig. 6. For each

experimental dosage curve, we observe that the model accurately describes the mean experi-

mental dose. By varying the nanoparticle-cell affinity heterogeneity and cell carrying capacity

heterogeneity independently we are able to match the evolution of the apparent heterogeneity

obtained from the experimental data.

At early time, where the rate of nanoparticle association predominantly depends on the nanoparticle-

cell affinity, the apparent heterogeneity is close to the “true” heterogeneity in the affinity pa-

rameter (1.42, 3.05 and 1.71 in Fig. 6A-C, respectively). As time progresses, the number of

associated nanoparticles per cell becomes more dependent on cell carrying capacity. Therefore,

we observe that the apparent heterogeneity decreases and approaches the “true” heterogeneity

in the cell carrying capacity parameter (0.61, 0.62 and 0.75 in Fig. 6A-C, respectively). This

transition demonstrates how these two sources of heterogeneity interact and, consequently, how

the “true” heterogeneity manifests itself in the experimental dosage data. All three sources of

heterogeneity, namely, the stochastic nanoparticle motion, variation in nanoparticle-cell affin-

ity, and variation in cell carrying capacity, are thus required to explain the heterogeneity in the

experimental dosage distributions. Critically, the heterogeneity in the nanoparticle-cell affin-

ity is different to the heterogeneity in the cell carrying capacity. Without this difference in

heterogeneity between the two cell parameters, we do not observe the change in the apparent
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Figure 6: Combining stochastic transport, nanoparticle-cell affinity heterogeneity
and cell carrying capacity heterogeneity explains experimentally-observed hetero-
geneity. Comparison between the model predictions (green) and experimental data (black)
for A-C. apparent heterogeneity and D-F. number of nanoparticles per cell for the three
nanoparticle-cell combinations. Here the heterogeneity in nanoparticle-cell affinity is different
to the heterogeneity in cell carrying capacity.
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heterogeneity over time.

Discussion and Conclusions

Experimental data obtained from nanoparticle-cell association assays exhibit variation in the

number of nanoparticles associated per cell. We demonstrate that this variation arises from a

combination of stochastic nanoparticle transport and heterogeneity in cell characteristics. In

particular, heterogeneity in the affinity between nanoparticles and cells, and heterogeneity in

the maximum number of associated nanoparticles per cell are shown to be the key biological

processes driving variation in experimental data. The amount of variation in the experimental

data appears to change with time, but we demonstrate that this is a consequence of different

amounts of heterogeneity in these two biological processes.

Uncovering the biological and physical mechanisms that impact the ability of specific cells to as-

sociate with, and subsequently internalize, nanoparticles is necessary for informed nanoparticle

design (1, 2, 7). The ability to reliably deliver nanoparticles to a target cell population such that

the nanoparticles are rapidly internalized has the potential to transform disease treatment and

diagnosis (34–36). However, the journey between nanoparticle creation and cellular internali-

sation is convoluted, and involves a multitude of intertwined biological, physical and chemical

processes (1–4, 7). The combination of this complex tapestry with heterogeneous experimental

data has thus far inhibited understanding of the key mechanisms governing nanoparticle-cell

interactions.

Here we develop a mathematical framework of individual-level nanoparticle-cell interactions

that can be used to separate the physical processes governing nanoparticle transport from the

biological processes dictating the cellular uptake of nanoparticles. We employ this framework

to explain the apparent temporal evolution of heterogeneity within a cell population. This

apparent evolution is driven by the interplay between the inherent stochastic motion of the

nanoparticles, the heterogeneity in the maximum number of nanoparticles internalized by a

particular cell, and the heterogeneity in the affinity between the nanoparticles and the cells.

When considered in isolation, these three processes are unable to describe the apparent evo-

lution in heterogeneity present in the experimental data. All three sources of heterogeneity in

concert are necessary to explain the experimental data. Further, we demonstrate the impact of

the cell cycle is insufficient to explain the heterogeneity in nanoparticle dose. This is in contrast

to results obtained from a recent investigation (10), where it was claimed that the combination

of stochastic nanoparticle motion and the distribution of cell surface area is sufficient to explain

the heterogeneity in nanoparticle dosage. We conclusively demonstrate, using our modeling

framework, that this combination does not give rise to heterogeneity that changes over time,

as observed experimentally. This has important implications for understanding the impact of

heterogeneity, as our modeling approach reveals that the critical biological mechanism inducing
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heterogeneity in nanoparticle dosage changes over time.

By recognizing that early-time nanoparticle-cell association is driven by nanoparticle-cell affin-

ity and that late-time nanoparticle-cell association is governed by the cell carrying capacity, we

provide an intuitive explanation for the apparent evolution of heterogeneity in the experimental

data. That is, the apparent heterogeneity is equal to the nanoparticle-cell affinity heterogeneity

at early time, and will transition to the cell carrying capacity heterogeneity over time, at a rate

corresponding to the nanoparticle transport and association rate.

Extracting reliable estimates of the true heterogeneity in cell characteristics is critical for ther-

apeutic purposes (12, 18, 19). If only a fraction of a cell population appears to internalize a

therapeutic dose of nanoparticles, it is crucial to determine whether this is due to stochastic

interactions or an underlying biological process. The former implies that increasing the dosage

or exposure time will increase the fraction of the population that are effectively treated, whereas

the latter suggests that an alternative treatment protocol may be required. Further, the cells

that do have lower nanoparticle affinity, and a lower carrying capacity, are more likely to not

internalize nanoparticles (Supplementary Information, Fig. S9). This imposes a selective pres-

sure on the cell population toward lower nanoparticle-cell affinity and cell carrying capacity

values, as such cells do not respond to the nanoparticle treatment.

The framework presented here demonstrates that mechanistic modeling approaches can be em-

ployed to isolate the sources of heterogeneity present in a cell population from nanoparticle-cell

association data. Subsequently, this provides insight into whether cell subpopulations exist,

and the degree to which such subpopulations are resistant to treatment. More generally, this

work highlights how mechanistic insight can be utilized to explain the presence and origin of

heterogeneity in experimental data. The influence of cell heterogeneity is a current question

interest across a diverse range of fields, including cancer biology (18, 19), molecular biology

(37), nanomedicine (10, 13) and microbiology (38). Mechanistic models that incorporate het-

erogeneity and examine its associated impact, such as the one presented here, may provide the

key required to understand the influence of cell heterogeneity.

Materials and Methods

Voxel-based Model

While the standard dosage model (Supplementary Information) is effective at calculating the

delivered dose for nanoparticle-cell systems, it does not provide information about variation in

the nanoparticle dose on a cell-by-cell case. That is, the standard dosage model provides the

average number of nanoparticles associated with a single cell, but does not provide a measure of

spread. We therefore propose the use of a mathematical model that describes the transport of

individual nanoparticles. The combination of diffusion and sedimentation can be represented as
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a biased random walk, where a nanoparticle undergoes random motion, albeit with a preferential

direction corresponding to the direction of sedimentation. However, due to the size discrepancy

between nanoparticles and the experimental domain, directly simulating nanoparticle trajec-

tories is extremely computationally demanding. To address this, we consider a voxel-based

approach, where the experimental domain is split into discrete subdomains known as voxels.

Voxel-based approaches are widely used to model chemical reaction kinetics and cell behavior.

Instead of directly simulating the trajectory of each nanoparticle, the voxel-based model only

requires that we simulate the events where nanoparticles transition between voxels. This sim-

plification involves an inherent assumption that nanoparticles are, on average, uniformly dis-

tributed throughout each voxel. For a three-dimensional voxel of length h, the transition rates

from voxel (i, j, k), where i ∈ [1, I], j ∈ [1, J ], k ∈ [1,K], to a neighbouring voxel for a biased

random walk corresponding to sedimentation and diffusion are (21)

T(i,j,k)→(i,j±1,k) = T(i,j,k)→(i,j,k±1) =
D

h2
N(i,j,k),

T(i,j,k)→(i−1,j,k) =

(
D

h2
− V

2h

)
N(i,j,k),

T(i,j,k)→(i+1,j,k) =

(
D

h2
+
V

2h

)
N(i,j,k),

where N(i,j,k) is the number of nanoparticles in voxel (i, j, k) and sedimentation occurs in the

positive i direction. Intuitively, the transition rate is highest in the direction of sedimentation,

and lowest in the opposite direction. To account for the zero nanoparticle transport boundary

condition at the media-air interface, the transition rate in the negative i direction is zero at

i = 1. That is,

T(i,j,k)→(i−1,j,k) = 0, for i = 1.

To describe the cell carrying capacity boundary condition at the media-cell interface, we consider

the bottom surface of certain voxels at i = I to be an individual cell. We implement the indicator

function Mj,k to denote whether the boundary at (I, j, k) contains a cell, that is, Mj,k = 1 if

a cell is located at (I, j, k), and zero otherwise. The proportion of voxels that contain a cell

is equivalent to the level of confluency in the corresponding experiment. We are free to select

h and a natural choice is to choose h such that cross-sectional area of the voxel is equivalent

to the surface area of a cell. Further, we are able to track the number of nanoparticles that

pass through the media-cell interface at each cell location, which provides detailed information

about how the inherently stochastic motion of the nanoparticles influences the spread of the

nanoparticle per cell dose. The transition rate corresponding to the cell carrying capacity

boundary condition is

T(i,j,k)→(i+1,j,k) = γj,kh

(
D

h2
+
V

2h

)
Mj,k

(
Cmax
j,k − Cj,k
Cmax
j,k

)
N(i,j,k), for i = I.
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where γj,k represents the nanoparticle-cell affinity of the cell at (I, j, k) and Cj,k is the number

of nanoparticles associated with the cell at (I, j, k). The nanoparticle-cell affinity parameter γ

in the voxel-based model relates to the affinity parameter in the standard model by γ = α/D,

provided that D/h � V (Supplementary Information). The remaining boundaries are treated

as periodic, that is, when a nanoparticle passes through at j = 1, j = J , k = 1, and k = K, that

nanoparticle is removed from the system and another particle is introduced at j = J , j = 1,

k = K, and k = 1, respectively. This boundary condition implies that the simulation domain

is a representative portion of the experimental domain, and that nanoparticles arrive and leave

the simulation domain at, on average, the same rate in the j and k directions.

To perform realizations of the voxel-based model, we implement an adaptive timestep tau-leap

algorithm (39). This is a modified form of Gillespie’s algorithm, implemented to reduce com-

putation time. Initially, we uniformly distribute the nanoparticles throughout the simulation

domain. During a timestep of duration τ , the number of transition events in each direction for

each voxel is sampled from a Poisson distribution according to the appropriate transition rate.

As we require that the number of nanoparticles in each voxel is non-negative, if the sampled

number of transition events would result in a negative amount of nanoparticles in a voxel, we

halve the timestep and sample the number of transition events in the reduced timestep.

Cell Cycle Model

To describe the cell cycle, we implement a multi-stage model of cell cycle progression, as pre-

sented previously (33). At each point in time a cell belongs to one of m possible phases of the

cell cycle. For the work presented here, we choose m = 4, corresponding to the G1, S, G2 and

M phases of the cell cycle. Cells undergo stochastic transitions between cell cycle phases via the

aforementioned tau-leap algorithm. The possible transitions in the model are from G1 phase

to S phase, S phase to G2 phase, G2 phase to M phase, and M phase to G1 phase, with the

creation of an additional cell that will also be in G1 phase. These transitions occur at rates

denoted rG1, rS, rG2 and rM, respectively. We obtain estimates of the transitions rates based

on the average time a cell spends in each phase. We implement heterogeneity due to cell cycle

via two different approaches:

• Approach One. Here the nanoparticle-cell affinity and the cell carrying capacity distribu-

tions depend on the distribution of cell area and do not change over the course of the cell

cycle. However, cell mitosis still occurs and reduces the nanoparticle load in an individual

cell as it produces a daughter cell. After mitosis occurs, the original cell and the daughter

cell will have an equal nanoparticle load, which is half of the nanoparticle load before

mitosis occurred.

• Approach Two. Here the nanoparticle-cell affinity distribution has a mean value that

depends on the cell cycle phase. The standard deviation of the distribution is independent

of cell cycle phase. As a cell progresses through the cell cycle, the associated affinity
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parameter changes. Mitosis occurs as described previously, with the addition that the

daughter cell inherits the affinity and cell carrying capacity parameter of the original cell.

Hybrid Model

While the voxel-based model provides rich detail regarding the location of individual nanopar-

ticles and the nanoparticle load of individual cells, it is computationally intensive to perform

realizations of the model. To obtain estimates of the apparent heterogeneity arising from the

model, we require a sufficiently large number of cells such that the apparent heterogeneity does

not exhibit significant fluctuations due to the stochastic nature of the voxel-based model. While

this is feasible, there are more efficient methods, providing that the model is performed in pa-

rameter regimes that satisfy several assumptions. We propose a hybrid model, which combines

the efficiency of the PDE-based traditional dosage model with the ability of the voxel-based

model to provide the nanoparticle dose for individual cells.

The key assumption that the hybrid model relies on is that the location of a cell (relative to

other cells) does not affect the ability of that cell to associate with nanoparticles or, equivalently,

there is minimal competition between cells for nanoparticles. Mathematically, this is the same

as the assumption that the rate of nanoparticle-cell association is small compared to the rate

of nanoparticle diffusion out of the voxel. In this case, an individual nanoparticle would likely

transition through many boundary voxels before binding to a cell. Under this assumption, the

net association rate is simply the sum of all of the individual association rates.

Given that a nanoparticle associates with any cell, the probability that it associates with a

particular cell located at (j, k) is the ratio of the net affinity with that cell to the total affinity

of all cells. This can represented as

Pj,k(Cj,k, c(A)) =
γj,kMj,k

(
Cmax
j,k − Cj,k

)
Cmax
j,k Q(c(A))

,

where

Q(c(A)) =
∑
j,k

γj,k

(
Cmax
j,k − Cj,k
Cmax
j,k

)
,

and c(A) is the set of the number of nanoparticles associated with each cell for a total number of

associated nanoparticles A =
∑

j,k Cj,k. That is, (Cj,k ∈ c(A) | j ∈ (1, J), k ∈ (1,K) s.t. Mj,k =

1). This probability can also be considered the proportion of a single nanoparticle that would

associate with a particular cell, given that we know that a nanoparticle has associated with any

cell. We note that both Pj,k and Q are dependent on the number of nanoparticles associated

with each cell, which is, in turn, dependent on the total number of associated nanoparticles.

Initially, we know that each cell is associated with zero nanoparticles. The rate of association

for each cell, with respect to the total number of associated nanoparticles, can be expressed as
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a system of ordinary different equations (ODEs)

dCj,k
dA

= Pj,k(Cj,k, c(t)), ∀j, k.

We can solve these equations in terms of the total number of associated nanoparticles; however,

this does not provide the evolution of the number of nanoparticles associated per cell in terms

of time. To achieve this, we combine this system of ODEs with the traditional dosage model.

For a given number of associated nanoparticles A = C(t), we have

α

(
Cmax − C(t)

Cmax

)
≈ D∑

j,kMj,k
Q(c(A)) =

D∑
j,kMj,k

∑
j,k

γj,k

(
Cmax
j,k − Cj,k
Cmax
j,k

)
.

The above simply states that the nanoparticle flux through the boundary due to nanoparticle-

cell association is approximately equal to the average of the flux through the boundary due to

nanoparticle-cell association for all cells in the system.

The hybrid model is therefore

∂P (x, t)

∂t
=

∂

∂x

(
D
∂P (x, t)

∂x
− V P (x, t)

)
, for 0 ≤ x ≤ L,

with boundary conditions

D
∂P (x, t)

∂x
− V P (x, t) = 0, at x = 0,

and

D
∂P (x, t)

∂x
− V P (x, t) =

SD∑
j,kMj,k

∑
j,k

γj,k

(
Cmax
j,k − Cj,k
Cmax
j,k

)
P (x, t), at x = L,

where
dCj,k
dA

= Pj,k(Cj,k, c(t)), ∀j, k,

and

A(t) =

∫ L

0
P (x, 0)− P (x, t) dx,

with initial conditions

P (x, 0) = Pinitial,

and

Cj,k = 0, ∀j, k.

To obtain numerical solutions to the hybrid model we solve the PDE using central spatial

differences, the backwards Euler method and Thomas’ algorithm (40). However, to solve the

system of ODEs we require a different approach. During an Euler time step of duration ∆t

the number of nanoparticles that became associated with nanoparticles is ∆A = A(t + ∆t) −
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A(t). Provided ∆A is small, A(t) provides a close approximation of the number of associated

nanoparticles during that time step. After we calculate ∆A, we update the system of ODEs

via the forward Euler method. The method to solve the system is therefore: (i) solve the PDE

from t to ∆t; (ii) calculate ∆A from the new solution values; (iii) solve the system of ODEs

from A(t) to A(t+ ∆t); and (iv) repeat.

Poisson-lognormal Distribution

Nanoparticles arrive at the cell-media interface at a rate proportional to the transport properties

of the nanoparticles. Away from the cell carrying capacity, the binding to the cell surface and

subsequent internalization occurs at a rate directly proportional to the affinity parameter α.

This binding is probabilistic and described by the Poisson distribution; the probability that k

nanoparticles are associated with a cell after a given time is

p(k) =
λk exp(−λ)

k!
,

where λ is the average number of nanoparticles associated with a cell after that time. As the

number of associated nanoparticles is directly proportional to the affinity, λ ∝ α (as per the

flux boundary condition). The nanoparticle dosage for the cell population is Ncell samples from

p(k), where Ncell is the number of cells in the population.

Now consider the heterogeneous case where α is lognormally distributed. That is, each cell

has an affinity parameter, αi, that is sampled from the lognormal distribution with mean value

α and standard deviation σα. For an individual cell, the probability mass function that k

nanoparticles, given an affinity parameter αi, are associated with that cell is

p(k|αi) =
λki exp(−λi)

k!
,

where λi ∝ αi. The probability distribution function for k nanoparticles associated with a

particular cell with affinity parameter αi is

p(k, αi) =

(
λki exp(−λi)

k!

)(
1

αiσα
√

2π
exp

[
−(lnαi − α)2

2σ2α

])
,

The dosage distribution for a representative population of cells is therefore

p(k) =

∫ ∞
0

(
λki exp(−λi)

k!

)(
1

αiσα
√

2π
exp

[
−(lnαi − α)2

2σ2α

])
dαi,

which we refer to as the Poisson-lognormal distribution (29).
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Experimental Approach

HeLa and RAW 264.7 cells were seeded in standard 12-well culture plates at a density of

105 cells per well. Cells were incubated in 1 mL total of media, including 10% fetal bovine

serum and fluorescently-labeled particles for the requisite experiments. Introduced particle

concentration was 100:1 particles per cell for all time points. After incubation, cells were

washed gently with sterile phosphate buffered saline to remove un-associated particles, then

detached from wells through the administration of trypsin. Trypsin was deactivated through

the administration of growth media, cells were then re-suspended in phosphate buffered saline.

Cells (now in suspension) were then analyzed through flow cytometry to determine number

of particles associated (bound or internalized) to each cell analyzed. A minimum of 104 cells

were analyzed for each sample. Time course incubation data up to 24 hours was obtained with

independent samples for each time point, which were analyzed at roughly the same time. Time

point “0” (i.e., incubated with particles for 0 minutes) was obtained by analyzing cells that had

not been incubated with particles (i.e., a blank control). As per (7), the number of associated

particles for cell i at time t, Ni(t), is obtained via

Ni(t) = Cpmt

(
Fi(t)− Fbackground

FNP

)
,

where Cpmt is a correction factor that accounts for photomultiplier voltage settings (details in

(7)), Fi(t) is the fluorescence of cell i, which has been incubated with nanoparticles, Fbackground

is the median fluorescence intensity of cells in the absence of nanoparticles and FNP is the me-

dian fluorescence intensity of nanoparticles in solution.

Polymer particles were synthesized through layer-by-layer assembly on nanoparticle templates

of gold (Au, 150nm particles) or silica (SiO2, 282nm, 1032nm particles). Briefly, a layer of

disulfide-stabilized poly(methacrylic acid) (PMASH) was adsorbed onto the surface of particles,

followed with a layer of poly(N-vinyl pyrrolidone) (PVPON) which adhere to the PMASH layers

through hydrogen bonding. This process was repeated for a total of 4 polymer bilayers. Cross-

linking of disulfides within the PMASH layers was then accomplished to stabilize the particles,

and PVPON was removed through increasing the pH; leading to PMASH core-shell particles.

For capsules, templates were removed using potassium cyanide (Au templates) or hydrofluoric

acid (SiO2 templates). Characterization of the nanoparticles indicates monodispersity. Full

details of synthesis and experiments are available in (7).

Data and code availability

Certain experimental data used in this analysis have been previously published (7) and raw data

are available at https://figshare.com/projects/In vitro cell-particle association/59162. The code

used to implement the mathematical framework is available at

https://github.com/DrStuartJohnston/nanoparticle-cell-interactions.
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Traditional Dosage Model

The standard mathematical approach for describing nanoparticle transport is through the use of a partial
differential equation (PDE) [1, 3, 5, 6]. This PDE states that the time evolution of the nanoparticle
concentration is due to the gradient of a combination of diffusive flux (random motion) and advective flux
(sedimentation). Mathematically, this can be stated as

∂P (x, t)

∂t
= ∇ · (D∇P (x, t)− V P (x, t)) ,

where P (x, t) is the nanoparticle concentration, D is the diffusivity and V is the sedimentation velocity [5].
The diffusivity of a nanoparticle arises from the Stokes-Einstein equation:

D =
kbT

3πηd
,

where kb is the Boltzmann constant, T is the temperature of the media, η is the dynamic viscosity of the
media and d is the nanoparticle diameter. The sedimentation velocity of a nanoparticle can be obtained
from Stokes’ Law:

V =
g(ρ− ρm)d2

18η
,

where g is the gravitational acceleration constant, ρ is the nanoparticle density and ρm is the media density.
A standard simplifying assumption for nanoparticle-cell association experiments with static culture media
is that the nanoparticle concentration only varies in the vertical dimension, reducing the model to a single
spatial dimension [3, 5, 6]:

∂P (x, t)

∂t
=

∂

∂x

(
D
∂P (x, t)

∂x
− V P (x, t)

)
, for 0 ≤ x ≤ L.

The interface between the cell monolayer and culture media (x = L) and the interface between the media
and the air (x = 0) provide natural boundary conditions for the model. Intuitively, there will be no transport
of nanoparticles from the media into the air, which can be represented mathematically as

D
∂P (x, t)

∂x
− V P (x, t) = 0, at x = 0.

The boundary condition at the media-cell interface is more complicated. Models have been proposed where
the nanoparticle concentration at the interface is zero, which involves the assumption that any nanoparticle
arriving at the cell monolayer immediately associates with a cell and is removed from the media [6]. Other
models make the assumption that there is a linear flux of nanoparticles into the cell monolayer, governed by a
parameter that represents the nanoparticle-cell association rate [3]. More complicated boundary conditions,
including representing nanoparticle-cell association as a Langmuir binding event, have also been proposed [1].
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More recently, a thorough investigation of multiple nanoparticle-cell systems by Faria et al. [3] demonstrated
that the media-cell interface is best approximated using a cell carrying capacity model, where cells are able to
associate with nanoparticles up to a threshold nanoparticle number. Mathematically, this can be represented
as

D
∂P (x, t)

∂x
− V P (x, t) = αS

(
Cmax − C(t)

Cmax

)
P (x, t), at x = L,

where α (m/s) represents the affinity between nanoparticles and cells, S is the portion of the culture dish
covered by the cell monolayer (level of confluence), Cmax is the nanoparticle carrying capacity of the cells
and C(t) is the number of nanoparticles associated with cells. We obtain this via

C(t) =

∫ L

0
P (x, 0)− P (x, t) dx,

which provides the difference between the number of nanoparticles initially in the system, and the number
of nanoparticles in the system at time t.

The number of nanoparticles in the system is obtained from the initial condition P (x, 0) = P0. That is,
there is a specified nanoparticle concentration that is independent of location, consistent with a well-mixed
nanoparticle suspension.

To solve the traditional dosage model we apply finite difference techniques, using central difference approx-
imations for the spatial derivatives with node spacing ∆x [7]. We implement the backwards Euler method
for the temporal derivative, and solve the resulting tridiagonal system of algebraic equations using Thomas’
algorithm [7].

Results

Model Equivalence

Consider the transition probabilities for a nanoparticle located at (x(t), y(t), z(t)) = (ih, jh, kh).

(x(t+ τ), y(t+ τ), z(t+ τ)) =



(x(t), y(t), z(t)) with probability 1− 6Dτ/h2,

(x(t) + h, y(t), z(t)) with probability Dτ/h2 + V τ/2h,

(x(t)− h, y(t), z(t)) with probability Dτ/h2 − V τ/2h,
(x(t), y(t) + h, z(t)) with probability Dτ/h2,

(x(t), y(t)− h, z(t)) with probability Dτ/h2,

(x(t), y(t), z(t) + h) with probability Dτ/h2,

(x(t), y(t), z(t)− h) with probability Dτ/h2.

For a voxel on the cell-media boundary, at x = Ih, assume the nanoparticle is removed from the system
(associated with a cell) with probability Passoch if it attempts to transition through the cell-media boundary.
The transition probabilities are therefore

(x(t+τ), y(t+τ), z(t+τ)) =



(Ih, y(t), z(t)) with probability

1− 6Dτ/h2 + (1− PassocMj,kh)

(
Cmax−Cj,k

Cmax

)(
Dτ
h2 + V τ

2h

)
,

(x(t)− h, y(t), z(t)) with probability Dτ/h2 − V τ/2h,
(x(t), y(t) + h, z(t)) with probability Dτ/h2,

(x(t), y(t)− h, z(t)) with probability Dτ/h2,

(x(t), y(t), z(t) + h) with probability Dτ/h2,

(x(t), y(t), z(t)− h) with probability Dτ/h2,

and removed from the system with probability PassocMj,kh(Dτ/h2 + V τ/2h)(Cmax − Cj,k)/Cmax.
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Consider now the evolution of the number of nanoparticles in the voxel (i, j, k)

N(i,j,k)(t+ τ) = (1− 6Dτ

h2
)N(i,j,k)(t)

+
Dτ

h2

(
N(i+1,j,k)(t) +N(i−1,j,k)(t) +N(i,j+1,k)(t) +N(i,j−1,k)(t) +N(i,j,k+1)(t) +N(i,j,k−1)(t)

)
+
V τ

2h

(
N(i−1,j,k)(t)−N(i+1,j,k)(t)

)
.

Rearranging, we obtain

N(i,j,k)(t+ τ)−N(i,j,k)(t)

τ
=
D

h2

(
N(i+1,j,k)(t) +N(i−1,j,k)(t) +N(i,j+1,k)(t)

+N(i,j−1,k)(t) +N(i,j,k+1)(t) +N(i,j,k−1)(t)− 6N(i,j,k)(t)

)
+

v

2h

(
N(i−1,j,k)(t)−N(i+1,j,k)(t)

)
.

Taking the limit τ → 0, h→ 0 [2], we recover the traditional dosage model.

For the cell-media boundary, the evolution of the number of nanoparticles in a boundary voxel is

N(I,j,k)(t+ τ) =

(
1− 6Dτ

h2
+ (1− PassocMj,kh)

(
Dτ

h2
+
V τ

2h

)(
Cmax − Cj,k

Cmax

))
N(I,j,k)(t)

+
Dτ

h2

(
N(I−1,j,k)(t) +N(I,j+1,k)(t) +N(I,j−1,k)(t) +N(I,j,k+1)(t) +N(I,j,k−1)(t)

)
+
V τ

2h
N(I−1,j,k)(t).

Upon rearranging, we obtain

N(I,j,k)(t+ τ)−N(I,j,k)(t)

τ
=
D

h2

(
N(I,j+1,k)(t) +N(I,j−1,k)(t) +N(I,j,k+1)(t) +N(I,j,k−1)(t)− 4N(I,j,k)(t)

)
+
V

2h

(
N(I−1,j,k)(t) +N(I,j,k)(t)− PassocMj,kh

(
Cmax − Cj,k

Cmax

)
N(I,j,k)(t)

)
+
D

h2

(
N(I−1,j,k)(t)−N(I,j,k)(t)− PassocMj,kh

(
Cmax − Cj,k

Cmax

)
N(I,j,k)(t)

)
.

This is equivalent to

√
τ
N(I,j,k)(t+ τ)−N(I,j,k)(t)

τ
= D
√
τ

(
N(I,j+1,k)(t) +N(I,j−1,k)(t) +N(I,j,k+1)(t) +N(I,j,k−1)(t)− 4N(I,j,k)(t)

h2

)
+
V
√
τ

2h

(
N(I−1,j,k)(t) +N(I,j,k)(t)− PassocMj,kh

(
Cmax − Cj,k

Cmax

)
N(I,j,k)(t)

)
+
D
√
τ

h

(
N(I−1,j,k)(t)−N(I,j,k)(t)

h
− PassocMj,k

(
Cmax − Cj,k

Cmax

)
N(I,j,k)(t)

)
.

Taking the limit τ → 0, h→ 0 such that
√
τ/h is finite [2], we obtain

D
∂N(x, y, z, t)

∂x
− V N(x, y, z, t) = DPassocMj,k

(
Cmax − Cj,k

Cmax

)
N(x, y, z, t), at x = L.

This is consistent with the boundary condition in the traditional dosage model provided

Passoc = α/D.
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Parameter Definition 1032nm Capsule-RAW 282nm Coreshell-HeLa 150nm Coreshell-RAW

kb Boltzmann constant (J · K−1) 1.38 · 10−23 1.38 · 10−23 1.38 · 10−23

T Temperature (K) 310.15 310.15 310.15

η Dynamic viscosity (Pa·s) 10−3 10−3 10−3

d Nanoparticle diameter (m) 1.32 · 10−6 2.82 · 10−7 1.5 · 10−7

g Gravitational acceleration (m2 · s−1) 9.81 9.81 9.81

ρ Nanoparticle density (kg · m−3) 1009 1850 1.25 · 104

ρm Fluid density (kg · m−3) 1000 1000 1000

S Cell confluence 0.21 0.41 0.21

P0 Nanoparticle concentration (m−3) 9.95 · 1012 9.95 · 1012 9.95 · 1012

Cmax (Mean) Carrying capacity 60 8 20

α (Mean) Nanoparticle-cell affinity (m · s−1) 2.97 · 10−9 8.37 · 10−10 1.47 · 10−9

L Media depth (m) 2.6 · 10−3 2.6 · 10−3 2.6 · 10−3

h Voxel size (m) 2.88 · 10−5 4 · 10−5 2.88 · 10−5

I Number of voxels (x) 91 66 91

J Number of voxels (y) 100 100 100

K Number of voxels (z) 100 100 100

1/rG1 G1 phase length (s) 2.97 · 104 2.4 · 104 2.97 · 104

1/rS S phase length (s) 1.89 · 104 3.0 · 104 1.89 · 104

1/rG2 G2 phase length (s) 4.05 · 103 1.05 · 104 4.05 · 103

1/rM M phase length (s) 1.35 · 103 3.0 · 103 1.35 · 103

τ Gillespie timestep (s) 10 10 2

∆t Euler timestep (s) 1 1 1

∆x Node spacing (m) 2.62 · 10−7 2.62 · 10−7 2.62 · 10−7

Table 1: Table of parameters for both the hybrid dosage model and voxel-based model. Definitions of
individual parameters are as per the text. Parameters T , η, d, ρ, ρm, S, P0, Cmax, α, L are obtained from
[3]. Parameters rG1, rS, rG2, rM are estimated from [4] for the 282nm Coreshell-HeLa experiments and
from [8] for the 1032nm Capsule-RAW and 150nm Coreshell-RAW experiments. All other parameters are
well-established or are numerical solver (user-selected) parameters.

Model Parameters

The parameters used to obtain numerical solutions to the hybrid dosage model and the voxel-based model
are presented in Table 1 for each experiment. Note that for These parameters are used in all figures in
the main document, with the exception of Figure 7, where the nanoparticle-cell affinity and cell carrying
capacity are obtained via nonlinear least squares. For Figure 7, the nanoparticle-cell affinity parameters are
α = 3.79·10−8, α = 3.77·10−7, and α = 1.48·10−8 for the 1032nm Capsule-RAW, 282nm Coreshell-Hela and
150nm Coreshell-RAW experiments, respectively. The cell carrying capacity parameters are Cmax = 9.59,
Cmax = 7.69, and Cmax = 28.42 for the 1032nm Capsule-RAW, 282nm Coreshell-Hela and 150nm Coreshell-
RAW experiments, respectively.

Additional Results

In Figure S1, we show that the dose obtained from the model is only Poisson distributed in the linear
association regime (Fig. S1A-D). If the number of nanoparticles per cell approaches the carrying capacity,
the predicted dosage distribution is not well described by the Poisson distribution (Fig. S1E-F). Comparing
the dosage distribution obtained from the model (Fig. S1A-F) with the experimental data (Fig. S1G-L),
we observe that the experimental data is overdisperse compared to the model predictions.

In Figure S2 we demonstrate that the number of nanoparticles associated with cells is consistent with
the results obtained from traditional dosage model.

In Figure S3 we demonstrate that the apparent heterogeneity obtained from the hybrid model matches the
apparent heterogeneity obtained from the voxel-based model.

In Figures S4-S8, we present the difference between the Poisson distribution (Figure S4) or Poisson-
lognormal distribution (Figure S5-S8) and the dosage distribution obtained from the hybrid model. The
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Figure S1: Stochastic motion does not account for all variation in dosage distributions. His-
tograms of the number of associated nanoparticles per cell for three different nanoparticle-cell pairs after
(A-C) 4 hours and (D-F) 24 hours obtained from the voxel-based modelling framework, and after (G-I) 4
hours and J-L. 24 hours from the experimental data. The (A-F) green and (G-L) cyan lines correspond to
the Poisson distribution that best fits the dosage distribution.
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Figure S2: Comparison in mean nanoparticle dose between the traditional dosage model and
the voxel-based model.
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Figure S3: Comparison in apparent heterogeneity between the hybrid model and two hundred
realisations of the voxel-based model. Error bars correspond to one standard deviation.
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Figure S4: Difference between the Poisson distribution and the model dosage distribution in
Figure S1.
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Figure S5: Difference between the Poisson-lognormal distribution and the experimental dosage
distribution in Figure 3 (main document).
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Figure S6: Difference between the Poisson-lognormal distribution and the model dosage distri-
bution in Figures 4D-F (main document).
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Figure S7: Difference between the Poisson-lognormal distribution and the model dosage distri-
bution in Figures 4J-L (main document).
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Figure S8: Difference between the Poisson-lognormal distribution and the model dosage distri-
bution in Figure 5 (main document) for (A) Cell Cycle Model 1 and (B) Cell Cycle Model
2.
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Figure S9: Scatter plots highlighting the relationship between nanoparticle-cell affinity, cell
carrying capacity and the number of associated nanoparticles. Black circles correspond to cells
with nanoparticle-cell affinity and cell carrying capacity values that resulted in zero associated nanoparticles.

difference is defined as

Error =
1

Ncells

max(Cj,k)∑
m=0

(Ncellsp(m)− h(m))2

1/2

,

where Ncells is the number of cells in the simulation, p(m) is the probability density function for the appropri-
ate distribution and h(m) is the number of cells that are associated with m nanoparticles. Error values that
grow with time indicate that the assumptions regarding the distribution are inappropriate. As expected, the
error in Figure S4 and Figure S6 grows for the 282nm Capsule-HeLa and 150nm Capsule-RAW experiments,
due to the constant carrying capacity. For all other experiments we observe that error is consistently low
and hence the assumption of the Poisson-lognormal distribution appears appropriate.

In Figure S9 we present scatter plots of nanoparticle-cell affinity values and carrying capacity values, as well
as the corresponding number of associated nanoparticles per cell at the end of 24 hours, as predicted by the
voxel-based model. Parameter values that correspond to cells that do not associate with any nanoparticles
are coloured in black. We observe that such cells typically have lower nanoparticle-cell affinity values
and low cell carrying capacity values, which would impose a selective pressure towards these values if the
nanoparticles contained a therapeutic agent.
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