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DeepSeqgPanll: an interpretable recurrent neural
network model with attention mechanism for
peptide-HLA class Il binding prediction
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Abstract—Human leukocyte antigen (HLA) complex molecules play an essential role in immune interactions by presenting peptides on
the cell surface to T cells. With significant progress in deep learning, a series of neural network based models have been proposed and
demonstrated with their good performances for peptide-HLA class | binding prediction. However, there still lack effective binding
prediction models for HLA class Il protein binding with peptides due to its inherent challenges. In this work, we present a novel
sequence-based pan-specific neural network structure, DeepSeaPanll, for peptide-HLA class |l binding prediction. Compared with
existing pan-specific models, our model is an end-to-end neural network model without the need for pre- or post-processing on input
samples. Besides state-of-the-art peformance in binding affinity prediction, DeepSeqgPanll can also extract biological insight on the
binding mechanism over the peptide and HLA sequences by its attention mechanism based binding core prediction capability. The
leave-one-allele-out cross validation and benchmark evaluation results show that our proposed network model achieved
state-of-the-art performance in HLA-II peptide binding. The source code and trained models are freely available at

https://github.com/pcpLiu/DeepSeqPanll.

Index Terms—MHC; HLA; Deep Learning; Attention mechanism; Binding core.

1 INTRODUCTION

The human leukocyte antigen (HLA) complex is respon-
sible for presenting peptides on cell surfaces for recog-
nition by T-cells. There are two major groups of HLAs:
class I and class II. HLAs class I present peptides that
originate from the cytoplasm while HLAs class II present
those originating extracellularly from foreign bodies such
as bacteria. Another difference between these two classes is
how they are expressed. The class I HLA protein has one
chain (o) and the class II HLA protein has two chains («
and ). HLA genes are highly polymorphic, which allows
them to fine-tune the adaptive immune system. Prediction
of HLA-II binding peptides is important to vaccine design
and targeted therapy development in immunology and can-
cer immunotherapy, but is challenging because HLA-II are
highly polymorphic and the size of the peptides presented
varies [1], [2]. As experimentally characterizing the binding
specificity for all HLA molecules is costly in terms of time
and labor, effective computational prediction methods are
needed for HLA-II peptide binding affinity prediction. It
has been shown that computational tools for predicting
neoantigens are placing an increasingly important role in
interrogating cancer immunity [3].

In the past few years, deep neural networks have
achieved great success in computer vision, pattern recogni-
tion, and natural language processing [4]. Inspired by that,
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a series of deep neural network models have been proposed
to address the peptide-HLA class I binding problem [5],
[6], [7]. In our previous work, we developed a novel deep
convolutional neural network based pan-specific model for
MHC-I peptide binding prediction [8]. However, for HLA
class 1II, there are few deep neural network based prediction
algorithms in the published literture. In 2018, Nielsen et
al. established an automated benchmarking platform for
MHC class II binding prediction methods [9] while a few
benchmark studies have been conducted for MHC class
I binding [10], [11], [12]. Currently, NN-align(2009) [13],
NetMHClIpan-3.1(2015) [14], Comblib matrices(2008) [15],
SMM-align(2007) [16]], Tepitope(1999) [17] and Consensus
IEDB (2008) [18] are included in this benchmark study,
most of which were developed quite a while ago. More
recently, there are several major reports on HLA-II pep-
tide binding prediction [1]], [2], [19]. First Garde et al. [2]
proposed to take advantage of a large set of MHC class
II eluted ligands generated by mass spectrometry to guide
the prediction of MHC class II antigen. Next in Nature
Biotechnology, Racle et al. [19] proposed to combine unbiased
mass spectrometry with a motif deconvolution algorithm to
analyze peptides eluted from HLA-II molecules. They de-
veloped a probabilistic framework to learn multiple motifs
on the peptides, as well as the weights and binding core
offsets of these motifs. Their probablistic predictor of HLA-
II ligands (MixMHC2pred) was shown to outperform the
NetMHCIIPanIl. At the same time, also in Nature Biotech-
nology, a long short-term memory (LSTM) based recurent
neural network model, MARIA [1]], was proposed to handle
the high variability in the length of HLA-II peptide ligands
(826 amino acids). When trained with both traditional HLA
binding affinity data, the MS-based antigen presentation
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profiling datasets together with gene expression data and
flanking residues of peptides, their deep learning model
achieved significantly better prediction performance. While
their focus is on demonstrating the importance of new
multi-modal data sources such as peptide HLA ligand se-
quences identified by mass spectrometry, expression levels
of antigen genes and protease cleavage signatures, their
deep neural network model is a basic LSTM model with
one-hot encoding and two dense layers.

In this paper, we are interested in developing more
advanced deep neural network architecture for achieving
interpretable Class-II HLA peptide binding affinity predic-
tion and binding core prediction. Compared with HLA class
I peptide binding prediction, binding prediction of peptide-
HLA class II is much more challenging due to two main
facts [20]:

1) Two amino acid chain structure and highly variable
lengths. HLAs of class I have one protein sequence
and all HLA protein sequences have the same length.
While in class II, HLA proteins have two amino acid
sequences and their sequence lengths vary for different
alleles, which causes issues for pan-specific binding
prediction methods [§].

2) Longer peptides. HLA class I molecules have close-end
binding groove. Thus, MHC-I binding peptides are 811
consecutive residues among which 9 peptide nonamers
are most common. On the other hand, the groove of
MHC-II molecules has open ends, which generally bind
to longer peptides, normally 1418 residues. In those
long peptides, a small part (usually nine amino acid
residues, called binding core) is fitted into the groove,
with remaining peptide termini on both ends extending
outside [21].

In previous work, several strategies have been proposed to
address these two challenges in MHC-II binding prediction.
SMM-align, an allele-specific method (each allele has a
trained model), uses Metropolis Monte Carlo procedure to
search an optimal weight matrix which could be used to
calculate the binding affinity given any 9-length peptide
[16]. NN-align instead identifies the binding core given a
peptide using Gibbs sampling, and then uses this binding
core and binding affinity to update network weight [13].
NetMHClIIpan-3.1 is a pan-specific method (one model for
all alleles), in which protein sequences are represented as
pseudo sequences which were extracted from known bind-
ing structures. And then a peptide is processed through
SMM-align to generate one binding core peptide and subop-
timal peptides (as shown in Figure S1.). All these methods
use some kind of alignment or pre-processing on peptides
to obtain the binding core of the peptide to overcome highly
variable length of the peptides issue. In NetMHClIIpan-
3.1, the only pan-specific method, pseudo sequences are
used to address variable lengths of different HLA class II
proteins. In the latest MARIA algorithm, the variable lenght
of peptides are handled with the LSTM layer.

To address two issues seamlessly, here we propose a
novel pan-specific deep neural network model with the
attention mechanism, DeepSeqPanll (as shown in Figure
for MHC-II peptide binding prediction. In our recurrent
neural network module, raw peptide and HLA sequences
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are directly encoded as three vectors of unified-sizes. We
then feed these three vectors into a convolutional network
to extract binding context information,which is then used
to predict binding affinity. A major advantage of our model
compared to MARIA and other conventional machine learn-
ing models is that by taking advantage of the attention
mechanism [22], we could identify the binding core of the
peptide based on the attention vector automatically learned
by the model during the end-to-end training without any
supervised or alignment information. Our contributions in
this work are summarized as follows:

o We proposed an end-to-end pan-specific deep neu-
ral network architecture with attention mechanism for
MHC-II peptide binding prediction, in which only raw
sequences are needed to train the prediction models.

o We develop a way to interpret the learned weights
of our model to identify the peptide binding core ab
initio, which demonstrates that our model could learn
insightful knowledge of the binding mechanism in an
unsupervised way:.

e Based on extensive benchmark experiments, we
showed that our model could achieve state-of-the-art
prediction performance.

e The DNN architecture, source code and pre-trained
models are all available for downloading for others to
reproduce our work.

2 MATERIALS AND METHODS
2.1 Dataset

In this work, we collected two training data sets: BD2013
and BD2016 which were generated in 2013 [23] and 2016
[24], respectively. Both data sets were sourced from the
IEDB/[] In the related works, NetMHCIIPan 3.0 was trained
on BD2013 and NetMHCIIPan 3.2 was trained on BD2016.
Recently, Andreatta et al. setup an automated platform to
benchmark peptide-MHC class II binding prediction meth-
ods [9]. We downloaded all available benchmark datasets
from 2016-12-31 to 2017-12-29 and evaluated our model on
this dataset.

HLA class II protein sequences were downloaded from
IPD-IMGT/HLA [25] database. With downloaded o se-
quences and [ sequences, we performed two multiple-
sequence alignments separately. Online alignment tool
Clustal Omega E] supported by EMBL-EBI [26] was used
here,which is a fast multiple-sequence alignment tool that
only requires a list of protein sequences as input. All
datasets used in our experiments are included in our GitHub
repository for this project.

2.2 Sequence encoding

We mix one-hot encoding and BLOSUM62 matrix to rep-
resent a protein sequence. Given a sequence with L
amino acids, it is encoded as a 2D tensor with dimension
L(length) x 43(channel). We tried several permutations of
one-hot, BLOSUM62 and physical properties. At last, we
found this combination gave us best performance. To reduce

1. www.iedb.org
2. www.ebi.ac.uk/Tools/msa/clustalo/
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the training time, we padded all sequences to maximum
lengths such that they can be processed in batch during the
training stage. More specifically, we set the encoding lengths
of peptide sequences, HLA av and 3 sequences as 25, 274 and
291 respectively. Theese values were obtained by identifying
the maximum lengths for all the HLA o and 3 sequences
and peptides in our training dataset. Though we padded
our input sequences during training, in evaluation stage,
LSTM encoders can accept input of arbitrary length.

2.3 LSTM-CNN model with Attention mechanism

Figure [1I| shows the neural network architecture of our
DeepSeaPanll model. It is developed based on our previous
work DeepSeqPan for MHC-I binding prediction, which
includes a peptide encoder, a HLA encoder, a binding
context extractor, and binding affinity predictor. Here, our
DeepSeqPanll network also has three parts but with dif-
ferent configuration compared to DeepSeqPanl: i) sequence
encoders, ii) binding context extractor and iii) affinity pre-
dictor. Given a sample of HLA « chain, HLA § chain and
peptide, sequence encoders encode them as shape-unified
output tensors. These three encoded tensors are expected to
extract key features that contribute to the binding. Binding
context extractor will then take three encoded tensors and
output a vector encoding the binding context between this
allele and the peptide. It will learn the coupling relationship
between the peptide and the HLA sequence. Finally, based
on this binding context vector, the predictor will be trained
to predict the binding affinity.

As we discussed above, unlike HLA class I, a HLA class
II receptor consists of two amino acid sequences with highly
variable lengths. Also, since HLA class II binding pockets
are open pockets, the peptide sequence lengths range from
8 to 26 in general. To address these two issues, choosing
proper encoder architecture becomes critical. Compared to
the encoder design, We found that the structures of the con-
text extractor and the affinity predictor do not have dramatic
impact on DeepSeqPanll’s prediction performance. At first,
we tried to use convolutional neural networks as encoders
as we did in DeepSeqPan. However, we could not achieve
satisfactory performance with this encoder architecture. A
possible reason is that the lengthsof protein and peptide
sequences of class II are highly variable. In DeepSeqPan
for HLA class I, since all protein and peptide sequences
have the same lengths, this was not a problem. To address
this highly variable length issue, we propose to use LSTM
for encoding the peptide and HLA sequences, which has
obtained great success in natural language processing. Also,
considering the existence of binding motifs in both the
HLA alpha and beta sequences and the peptides, we added
an attention module to each of the three encoders [27] in
our model to learn the importance of different positions to
peptide binding.

Below, we introduce details of each part in the DeepSeq-
PanlIl model as illustrated in Figure

(a) DeepSeqPanlII network. The overall network is com-
posed of three sequence encoders, a binding context
extractor, and an affinity predictor. An input sample
consists of three parts: HLA « chain, 8 chain and
a peptide. Three sequences are encoded as discussed
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in previous section. For each sequence, it will be fed
into its LSTM block (LSTM Block in Figure a)) first.
The LSTM block will output two tensors: hidden state
tensor and sum of all hidden state tensor. Then these
two tensors go into the attention block (Attn. Block in
Figure [[[a)), which will compute weighted output and
the associated attention vector. For attention vectors,
they are not directly used to predict final binding
affinity values. However, the attention vectors could
give us insight over the position importance to the final
binding affinity prediction. With three weighted output
obtained from the attention blocks, we combine them
along channel axis as a new tensor (Encoded input in
Figure a)), which will be fed into the convolutional
network (Context Extractor in Figure a)). This con-
volutional network then outputs a 1D vector (Context
vector in Figure a)), which encodes all binding context
information of this sample. It will go through a fully
connected network (Affinity Predictor in Figure [I(a)) to
calculate the final predicted binding affinity value.

(b) LSTM block. The input of the LSTM block is the
encoded sequence tensor with dimension L(length) x
C(channels) and the sequence mask vector with di-
mension L(length). The encoded sequence tensor is fed
into the LSTM layer with N hidden states. The LSTM
layer will output a tensor with dimension L x N. With
this raw output tensor and the sequence mask vector,
we manually masked the raw output by assigning
padding positions’ output values as 0. The reason for
masking output is that even though LSTM can handle
variable-length input, we padded all input sequences
to the same length L for easier training of the deep
neural network. It allows batch training and speeded
training, which is a common setup in LSTM training.
By output masking, it could make the network learn
faster instead of leting itself figure out the padding’s
existence via learning. In our experience, we found that
masking can also improve network performance. After
output masking, a masked tensor with dimension L x N
is obtained, which is one of the two output tensors from
this block. An additional summarization operation is
further applied on this marked tensor to get another
output tensor with dimension N. This tensor would be
used as one of inputs for the attention block.

(c) Attention block. The attention block aims to extract
weighted information based on all hidden states output
from the LSTM layer. With the summarization tensor
of all hidden states from LSTM as the input signal, it
is first normalized and then fed into a fully connected
(FC) layer with L hidden units. After the FC layer, a
vector of L size is then calculated, which will be masked
again and be fed into the SoftMax layer to calculate an
attention vector. After calculating the attention vector,
a batch matrix-matrix product (BMM) operation will be
applied on the attention vector and all hidden states
tensor. The result is a vector with dimension N, which
contains weighted information of all previous hidden
states.

The detailed parameter setup of our network are set as
follows.


https://doi.org/10.1101/817502

bioRxiv preprint doi: https://doi.org/10.1101/817502; this version posted October 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

PREPRINT. NOT A PEER-REVIEWED VERSION. 4
HLA a chain Binding affinity !
— el Z Q 3> prediction i
y : Block S = Bl e — o = 0.5 !
i oOF ey - Y T ;
9 x Q= B s Loss
) Encoded @ :
HLA b chain input Context 0.7 s ;
— Block vector Label

Attn. vector

Peptide 7w % B -:,—— Binding core prediction :
Block (Unsupervised) (@) |

iy

; Q Sum of
; hidden
Sequence | | E< : ‘ )
input =+ E B —é / All hidden
P . Hia (masked)

Sum of

hidden < mm— s Affn. vector

Al hidden w. @ - weighted output

(masked)

Fig. 1. Model architecture of DeepSeqPanll. (a) The overall network structure. (b) Inner structure of LSTM Block. (c) Inner structure of Attention

Block.

e LSTM layer. The LSTM has 100 hidden units and 2
stacked layers.

o Context Extractor The Context Extractor consists of 4
1-D convolutional layers and a max pooling layers.

o Affinity Predictor Affinity Predictor is composed of
three fully connected layers. First 2 layers have 200
hidden units and followed by a LeakyReLU activation
layer and a dropout layer with drop rate of 0.25 The
last layer has 1 hidden unit and followed by a Sigmoid
activation layer.

2.4 Network as math functions

To make it clear to understand our network, we denote the
whole network as a series of mathematic functions.
Encoding. We use S,, Sg and S, to denote encoded
sequence tensors of the HLA a, HLA (3 and the peptide
sequences. M, Mg and M, are the corresponding mask
tensors.

S, M = fgncoding(Amino Acid Sequence) 1)

LSTM Block. The LSTM block function (Equation [2) takes
S and M and outputs H g, the sum of all hidden states
H ;. For peptide, we got H gll and H? For HLA « and

sum-*
B chains, we got Hy;;, HS,,.,, Hfll and HY .

H. = fuask(frstm(S), M)
Hsum = ZHall

Attention Block. The attention block function (Equation
for HLA o and HLA 3 (Equation ) takes H,; and H 5y,
obtained from Equation [2} It outputs an attention vector A
and weighted output L. After attention block, we got A%,
L*, A” and L.

2

A= fSoftMam(fMask:(fFC’(fNorm(Hsum))))

3
L = fpyum(Hau, A) )

For the peptide sequence, the attention block function
(Equation [) is slightly different since it takes additional
inputs: H®, and H? . It outputs A” and L.

’
— P
Hsum - Hsum

A= fSoftMaac(fMask(fFC(fNorm(Hlsum)))) (4)
L= fpum(Hyy, A)

+ H”

sum

+ H

sum

Prediction network. After the encoding stage, we have
six vectors as output. L,, Lg and L, are the encoded
input vectors for the prediction network together with three
attention vectors: A,, Ag and A,. First, we concatenate
three encoded input vectors into a new tensor L'. Then the
prediction network function (Equation B takes this as input
and outputs the binding affinity value P.

L/ = fCOncat(LOwLﬁ,Lp) (5)

P = fAffnityPredictoT (fContethwtractor (L ))

2.5 Network training setup

Our batch size is set as 128 and start learning rate is
set as 0.01. Our learning rate decay with the Reduce On
Plateau strategy is adopted here. We reduce the learning
rate if the evaluation loss does not decrease for 4 consec-
utive epochs and we cool down another 4 epochs before
checking. The minimum learning rate is 0.0001. We use
vanilla SGD as the network optimizer with weight decay
regularization (the decay value is 0.01). Also, since training
LSTM is sometimes difficult due to gradient exploding, we
added gradient clipping into our optimization stage and
the threshold is 0.8. Our implementations are based on
PyTorch 0.4.1 and all source codes and trained models are
freely available at the GitHub repository https://github.
com/pcpLiu/DeepSeqPanll
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TABLE 1
LOAO results on BD2016

Allele
DQA1*06:01-DQB1*04:02
DQA1*05:01-DQB1*04:02
DQA1*@5:01-DQB1*@3:03
DQA1*05:01-DQB1*@3:02
DQA1*@5: 01-DQB1*03: 01
DQA1*05:01-DQB1*@2:01
DQA1*Q4:01-DQB1*04:02
DQA1*@3:03-DQB1*04:02
DQA1*03:01-DQB1*@3:02
DQA1*@3:01-DQB1*03:01
DQA1*02:01-DQB1*@4:02
DQA1*02:01-DQB1*@3:03
DQA1*02:01-DQB1*@3:01
DQA1*02:01-DQB1*02:02
DQA1*@1:04-DQB1*@5:03
DQA1*01:03-DQB1*06: 03
DQA1*@1:02-DQB1*06: 02
DQA1*01:02-DQB1*@5:02
DQA1*@1:02-DQB1*@5: 01
DQA1*@1:01-DQB1*@5: 01
DPA1*03:01-DPB1*04:02
DPA1*@2:01-DPB1*14:01
DPA1*02:01-DPB1*@5:01
DPA1*@2:01-DPB1*@1:01
DPA1*01:03-DPB1*06:01
DPA1*Q1:03-DPB1*04:02
DPA1*01:03-DPB1*04:01

AUC

.694
.697
.782
.794
867
790
.835
.686
.666
.723
.762
.827
.748
.642
.689
.817
.832
.672
.797
833
.865
.900
.877
.857
.988
759
.872

Allele
DPA1*Q1:03-DPB1*03:01 0
DPA1*01:03-DPB1*02:01 @
DRA*@1:01-DRB5*01:01 @
DRA*@1:01-DRB4*01:03 @
DRA*@1:01-DRB4*01:01 @
DRA*Q1:01-DRB3*@3:01 0@
DRA*@1:01-DRB3*02:02 @
DRA*@1:01-DRB3*01:01 @
DRA*@1:01-DRB1*16:02 @
DRA*@1:01-DRB1*15:01 @
DRA*@1:01-DRB1*13:02 @
DRA*@1:01-DRB1*13:01 @
DRA*Q1:01-DRB1*12:01 0@
DRA*@1:01-DRB1*11:01 @.819

Q
0
Q
0
Q
0
(7]
Q
0
Q
0
0
Q

DRA*@1:01-DRB1*10:01
DRA*@1:01-DRB1*29:01
DRA*@1:01-DRB1*08:02
DRA*@1:01-DRB1*08:01
DRA*@1:01-DRB1*07:01
DRA*@1:01-DRB1*04:05
DRA*@1:01-DRB1*04:04
DRA*Q1:01-DRB1*04:03
DRA*@1:01-DRB1*04:02
DRA*@1:01-DRB1*04:01
DRA*@1:01-DRB1*03:01
DRA*@1:01-DRB1*01:03
DRA*Q1:01-DRB1*01:01

[SESESESESESESESESESRSESESESESESESESESESESESRSRSESESES]

3 RESULTS
3.1 Leave one allele out cross-validation

We performed a leave-one-allele-out (LOAO) cross-
validation on the BD2016 dataset. We split BD2016 into
54 folds based on allele types. Then, we hold one fold as
the testing data and other folds as the training data. The
process will be iterated for all folds until we tested on all
allele folds. In this way, we mimick the situation where the
trained model predicts the binding affinity of unseen allele
samples. Actually, one important advantage of pan-specific
models with increasing attention over allele-specific models
is that they can make predictions on HLA alleles that are
not included in the training dataset. For researchers who
are interested in alleles without any binding data, this is
especially useful.

The LOAO cross-validation results are listed in Table Il
We calculated AUC scores for each validated allele. From
the table we observed that out of 54 results, 44 scores of our
algorithm are over 0.7, 23 scores are over 0.8 and 3 scores
are over 0.9. The results showed that our model has good
generalization capability.

In Figure [2} we compared LOAO results of NetMHCI-
Ipan as included in the original dataset with our re-
sults by DeepSeqPanlIl. We found that on 26 alleles, our
method performed better over NetMHClIpan. If we ignore
the records with minimal score difference less than 0.01,
our model still performs better than NetMHClIIpan on 19
alleles. Moreover, if we only consider particularly large
score difference, there are 3 alleles on which NetMHCI-
Ipans scores are at least 0.1 higher than ours. Those alle-
les are DQA1*02:01-DQB1*02:02, DQA1*05:01-DQB1*04:02
and DRA*01:01-DRB1*04:02. In the opposite, our model
has at least 0.1 higher scores than NetMHClIIpan on 4
alleles, those are DQA1*01:02-DQB1*05:01, DQA1*04:01-

=-NetMHCPanII

DeepSeqPanII

Seoo oSSR R
VOO NN®®OOS S

Fig. 2. LOAO Performance comparison between DeepSeqPanll and
NetMHCllpan.

DQB1*04:02, DQA1*01:01-DQB1*05:01 and DRA*01:01-
DRB1*13:02. And our models scores on three of those al-
leles are higher than the NetMHClIIpans above 0.15. But in
most cases (47 of 54), two models delivered very similar
performances with less than 0.1 margin (as shown in Figure
[2). This indicates that two models have similar performance
over most alleles while each one has several groups of alleles
that it could achieve more accurate affinity prediction.

3.2 Prediction of peptide binding cores via attention
mechanism

As we mentioned before, due to the open-ended binding
pockets in HLA-II proteins, researchers are usually inter-
ested in finding the binding cores of a peptide sequence.
In NetMHClIpan, a pre-processing procedure was used to
generate binding core labels. Here, a major goal of our
model for binding affinity prediction is to extract insights of
the binding mechanism by taking advantage of the attention
mechanism, which can learn the importance or contribution
of each peptide position to the final binding affinity predic-
tion performance. By inspecting what the attention vectors
learned, it makes it possible to predict the binding core of
a given peptide sequence. Our intuitive hypothesis is: if
the learned neural network pays relatively more attention
to some specific amino acid locations of the peptide, these
locations may correspond to the binding core.

Here we used a simple approach to determine the bind-
ing core from the attention vector: find the subsequence of
length-9 with the maximum sum of attention weights (as
shown in Figure ). We conducted testing on the binding
core dataset prepared in [14]. In their paper, the authors
downloaded the peptide/HLA-DR complexes from PDB
database. Then structure-based binding cores were identi-
fied by inspecting the location of the bound peptide core
within the MHC binding groove. We compared the pre-
dicted binding cores on 47 complexes and the results are
listed in Table 2| Our of 47 complexes, 8 predicted binding
cores match exactly with the experimental ones. In addition,
our predicted binding cores missed only one amino acid in
27 complexes. For the remaining 12 complexes, two or more
amino acids are missed in our binding core predictions.
Overall for about 74% out of the 47 complexex, our attention
mechanism based binding core predictions could either
exactly match or just miss one amino acids compared to
the experimentially determined binding cores. This proves
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Fig. 3. Extract binding core from the peptide attention vector. Using
a 9-length sliding window to find out the subsequence with maximum
attention weights.

TABLE 2
Binding core prediction results. Colored amino acids are
structure-based experimental binding cores. Green ones are matched
amino acids in our predicted binding cores. Orange ones are missed
amino acids in our predicted binding cores.

PDB A Chain B Chain Peptide Structure Core Attention Core
1T5X DRA*01:01 DRB1*01:01 AAYSDOATPLLLSPR YSDQATPLL SDQATPLLL
2FSE DRA*01:01 DRB1*01:01 AGFKGEQGPKGEPG FKGEQGPKG KGEQGPKGE
3L6F DRA*01:01 DRB1*01:01 APPAYEKLSAEQSPP YEKLSAEQS AYEKLSAEQ
1KLG DRA*01:01 DRB1*01:01 GELIGTLNAAKVPAD IGTLNAAKV IGTLNAAKV
40V5 DRA*01:01 DRB1*01:01 GSDARFLRGYHLYA ARFLRGYHL ARFLRGYHL
3PGD  DRA*o1:01 DRB1*01:01 KMRMATPLLMQALPM MRMATPLLM MATPLLMQA
3PDO  DRA*o1:01 DRB1*01:01 KPVSKMRMATPLLMQALPM MRMATPLLM SKMRMATPL
4AEN DRA*01:01 DRB1*01:01 MPLAQMLLPTAMRMKM MLLPTAMRM AQMLLPTAM
1SJH DRA*01:01 DRB1*01:01 PEVIPMFSALSEG VIPMFSALS IPMFSALSE
1SJE DRA*01:01 DRB1*01:01 PEVIPMFSALSEGATP VIPMFSALS IPMFSALSE
1FYT DRA*01:01 DRB1*01:01 PKYVKQNTLKLAT YVKQNTLKL VKQNTLKLA
3QXA  DRA*o1:01 DRB1*01:01 PVSKMRMATPLLMQA MRMATPLLM KMRMATPLL
1AQD DRA*01:01 DRB1*01:01 VGSDWRFLRGYHOYA WRFLRGYHQ DWRFLRGYH
415B DRA*01:01 DRB1*01:01 ONCLKLATK VVKQNCLKL QNCLKLATK
1PYW  DRA*o1:01 DRB1*o1:01 XFVKQNAAALX FVKQNAAAL VKQNAAALX
2IPK DRA*01:01 DRB1*01:01 XPKWVKONTLKLAT WVKQNTLKL WVKQNTLKL
1A6A DRA*01:01 DRB1*03:01 PVSKMRMATPLLMQA MRMATPLLM KMRMATPLL
4MD4  DRA*o1:01 DRB1*04:01 ATEYRVRVNSAYQDK YRVRVNSAY YRVRVNSAY
2SEB DRA*01:01 DRB1*04:01 AYMRADAAAGGA MRADAAAGG RADAAAGGA
4MCZ DRA*01:01 DRB1*04:01 GVYATRSSAVRLR YATRSSAVR ATRSSAVRL
1J8H DRA*01:01 DRB1*04:01 PKYVKQNTLKLAT YVKQNTLKL VKQNTLKLA
4MCY DRA*01:01 DRB1*04:01 SAVRLRSSVPGVR VRLRSSVPG RLRSSVPGV
41S6 DRA*01:01 DRB1*04:01 WNRQLYPEWTEAQRLD LYPEWTEAQ QLYPEWTEA
4MDI DRA*01:01 DRB1*04:02 SAVRLRSSVPGVR VRLRSSVPG RLRSSVPGV
4MD5 DRA*01:01 DRB1*04:04 SAVRLRSSVPGVR VRLRSSVPG RLRSSVPGV
1BX2 DRA*01:01 DRB1*15:01 ENPVVHFFKNIVTPR VHFFKNIVT VVHFFKNIV
1YMM  DRA*01:01 DRB1*15:01 ENPVVHFFKNIVTPRGGSGGGGG VHFFKNIVT VVHFFKNIV
2Q6W DRA*01:01 DRB3*01:01 AWRSDEALPLGS WRSDEALPL SDEALPLGS
4H25 DRA*01:01 DRB3*03:01 QHIRCNIPKRIGPSKVATLVPR IRCNIPKRI RCNIPKRIG
4H1L DRA*01:01 DRB3*03:01 QHIRCNIPKRISA IRCNIPKRI RCNIPKRIS
3CsJ DRA*01:01 DRB3*03:01 QVIILNHPGQISA IILNHPGQI ILNHPGQIS
4H26 DRA*01:01 DRB3*03:01 QWIRVNIPKRI IRVNIPKRI IRVNIPKRI
1H15 DRA*01:01 DRB5*01:01 GGVYHFVKKHVHES YHFVKKHVH YHFVKKHVH
1FV1 DRA*01:01 DRB5*01:01  NPVVHFFKNIVTPRTPPPSQ FKNIVTPRT VHFFKNIVT
1HQR  DRA*01:01 DRB5*01:01 VHFFKNIVTPRTP FKNIVTPRT FKNIVTPRT
1ZGL DRA*01:01 DRB5*01:01 VHFFKNIVTPRTPGG FKNIVTPRT FKNIVTPRT
4P4K  DPA1*01:03 DPB1*02:01 QAFWIDLFETIG FWIDLFETI WIDLFETIG
4P57  DPA1*01:03 DPB1*02:01 QAFWIDLFETIGGGSLV FWIDLFETI WIDLFETIG
4P5M  DPA1*o1:03 DPB1*02:01 QA YIALKG YDGKDYIAL DGKDYIALK
3LQZ  DPA1*o1:03 DPB1%02:01 RKFHYLPFLPSTGGS FHYLPFLPS HYLPFLPST
3WEX  DPA1*o2:01 DPB1*05:01 VAFNQFGGS KVTVAFNQF VAFNQFGGS
1UVQ DQA1*01:02 DQB1*06:02  MNLPSTKVSWAAVGGGGSLV LPSTKVSWA PSTKVSWAA
4D8P DQA1*03:01 DQB1%*02:01 PQPEQPEQPFPOP EQPEQPFPQ EQPEQPFPQ
4GG6  DQA1*03:01 DQB1*03:02 QQYPSGEGSFQPSOENPQ EGSFQPSQE PSGEGSFQP
1JK8 DQA1*03:03 DQB1*03:02 LVEALYLVCGERGG EALYLVCGE ALYLVCGER
40ZG  DQA1*05:05 DQB1*02:01 APOPELPYPQPGS PQPELPYPQ PELPYPQPG
1S9V DQA1*05:05 DQB1*02:01 LQPFPQPELPY PFPQPELPY PFPQPELPY

that our deep neural networks with attention mechanisms
could capture some key information related to HLA-peptide
binding by exploiting large number of training samples.

3.3 Comparison with other HLA-Il binding prediction
models on weekly benchmark data

Andreatta et al. recently setup an automated benchmarking
for HLA class II alleles [9]. It evaluates participated methods
in a similar way as the one for HLA class I [28], which
has been widely used to compare performances of different
models. We also performed an evaluation for our proposed
DeepSeqPanll on the available dataset. Since the bench-
mark dataset includes data on IEDB since 2014, we trained

6

DeepSeqPanll on BD2013 for a fair comparison. AUC and
SRCC scores used in this benchmark were calculated based
on all methods” predictions. The binding prediction results
of other methods are included in the original dataset down-
loaded from the IEDB website. Methods NN-align [13],
NetMHClIpan-3.1 [14], Comblib matrices [15], SMM-align
[16], Tepitope [17] and Consensus IEDB [18] are included
in this benchmark. We grouped the benchmark data by
target alleles and the measurement type. Totally, we have
44 testing groups.

The performance results are listed in Table [3] From
the table we can see that, different methods outperformed
others on various alleles. And in general, NetMHClIIpan-
3.1 and DeepSeqgPanll significantly outperform the remain-
ing methods. NetMHCIIpan-3.1 outperforms other methods
over 25 test groups in terms of AUC scores and 26 test
groups in terms of SRCC scores. DeepSeqPanll outperform
all others over 16 test groups in terms of AUC scores and 14
test groups in terms of SRCC scores. NN-align obtains the
best AUC scores among 4 groups and best SRCC scores in 3
groups. Surprisingly, Consensus IEDB which combines top
performing algorithms does not show a good performance
here. One possible reason could be that in the original
Consensus IEDB paper, it only included results of several
old methods available in 2008. And because their code is not
open-sourced, its predictions have not been updated. Since
our method and NetMHClIIpan performed overwhelmingly
better than other methods on different alleles, an ensemble
method based on these two methods could be very promis-
ing to improve the overall performance on peptide-HLA
class II binding prediction.

4 CONCLUSION

In this work, we proposed a novel deep neural network
with attention mechanism for peptide-HLA class II bind-
ing affinity prediction. Compared with existing pan-specific
prediction algorithms, our pan-specific model successfully
adopted the attention mechanism, which allows us to extract
mechanistic insights of HLA-II peptide binding by inter-
preting the learned attention vector. The leave-one-allele-
out results showed what 44 of 54 (80%) alleles” AUC scores
are over 0.7. This indicated that our model has a good
generalization capability, which is a major advantage of pan-
specific model since it could predict on unseen alleles. In
LOAO experiments, our model and NetMHCPanlII deliv-
ered similar performance on big part of tested alleles, while
one method outperformed the other on some specific alleles.
In weekly benchmark test, we also found similar trend. We
argue that combining DeepSeqPanll with existing models,
researchers could achieve even more accurate prediction
results. Examining attention vectors learned by our model,
we observed that DeepSeqPanll could see the important part
of a peptide. By listing attention cores and structure cores
side by side, we surprisingly found that our model could
capture insightful structural information in an unsupervised
way. The proposed sequence encoding approaches and the
attention mechanism can be applied to other sequence re-
lated bioinformatics problems since it only needs sequence
information as input. We are looking forward expanding
this approach to other sequence related prediction problems.
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TABLE 3
Performance comparison on weekly benchmark dataset.
Allele Count Type DeepSeqPanII NN-align NetMHCIIpan3.1 Comblib SW-align Tepitope Consensus IEDB
AUC SRCC AUC SRCC AUC SRCC AuC SRCC AUC SRCC AUC SRCC AUC SRCC
HLA-DQA1*@1:02/DQB1*@5:01 825 ICso 0.60 0.21 - - 0.60 0.21 - - - - - - - -
HLA-DQA1*@1:02/DQB1*06:02 10 ICso 0.56 0.12 0.81 0.27 0.81 0.22 0.25 -0.24 1.00 0.38 - - 0.75 0.22
HLA-DQA1*@1:03/DQB1*06:03 357 ICso 0.56 0.10 - - 0.81 0.42 - - - - - - - -
HLA-DQA1*02:01/DQB1*@3:01 818 ICse 0.75 0.48 - - 0.81 0.59 - - - - - - - -
HLA-DQA1*02:01/DQB1*@3:03 759 ICse 0.76 0.50 - - 0.76 0.54 - - - - - - - -
HLA-DQA1*02:01/DQB1*04:02 765 ICse 0.56 0.11 - - 0.52 0.04 - - - - - - - -
HLA-DQA1*@3:01/DQB1*03:02 18 ICse 0.36 0.02 0.96 0.62 0.97 0.55 0.83 0.42 0.95 0.72 - - 0.99 0.70
HLA-DQA1*@3:03/DQB1*04:02 567 ICse 0.57 0.06 - - 0.48 -0.08 - - - - - - - -
HLA-DQA1*@5:01/DQB1*@3:02 834  ICse 0.74 0.48 - - 0.77 0.57 - - - - - - - -
HLA-DQA1*@5:01/DQB1*03:03 564  ICso 0.76 0.47 - - 0.81 0.61 - - - - - - - -
HLA-DQA1*@5:01/DQB1*04:02 747 ICso 0.56 0.10 - - 0.58 0.14 - - - - - - - -
HLA-DQA1*06:01/DQB1*04:02 565 ICso 0.52 0.00 - - 0.50 -0.06 - - - - - - - -
HLA-DRA*@1:01/DRB1*01:01 69 Binary| 0.85 0.54 0.83 0.51 0.84 0.52 0.66 0.25 0.79 0.44 0.23 -0.42 0.79 0.44
HLA-DRA*@1:01/DRB1*01:01 1070  ICse 0.81 0.63 0.78 0.60 0.80 0.63 0.70 0.43 0.74 0.51 0.28 -0.46 0.75 0.53
HLA-DRA*@1:01/DRB1*03:01 1001 ICse 0.76 0.50 0.79 0.60 0.85 0.71 - - 0.78 0.58 0.25 -0.52 0.80 0.61
HLA-DRA*@1:01/DRB1*03:01 79 Binary| 0.49 -0.01 0.59 0.15 0.62 0.21 - - 0.62 0.20 0.43 -0.11 0.60 0.17
HLA-DRA*@1:01/DRB1*04:01 104 Binary| 0.73 0.39 0.77 0.47 0.76 0.46 - - 0.69 0.33 0.22 -0.48 0.69 0.34
HLA-DRA*@1:01/DRB1*04:01 179 ICse 0.77 0.42 0.81 0.50 0.84 0.58 - - 0.67 0.34 0.44 -0.19 0.68 0.34
HLA-DRA*@1:01/DRB1*04:04 861 ICse 0.85 0.67 0.80 0.59 0.86 0.71 - - 0.78 0.58 0.17 -0.63 0.80 0.62
HLA-DRA*@1:01/DRB1*07:01 1071 ICso 0.86 0.70 0.87 0.74 0.88 0.76 0.79 0.55 0.86 0.71 0.19 -0.61 | 0.86 0.72
HLA-DRA*@1:01/DRB1*07:01 69 Binary| 0.80 0.52 0.86 0.63 0.88 0.65 0.66 0.27 0.85 0.60 0.26 -0.41 | 0.84 0.59
HLA-DRA*@1:01/DRB1*08:01 889  ICso 0.82 0.64 - - 0.86 0.72 - - - - 0.20 -0.59 | 0.80 0.59
HLA-DRA*Q@1:01/DRB1*08:02 142 ICso 0.74 0.31 0.70 0.32 0.74 0.44 - - 0.39 0.19 0.72 0.41 0.32 -0.15
HLA-DRA*@1:01/DRB1*@9:01 873 ICso 0.84 0.59 0.85 0.67 0.87 0.70 0.60 0.16 0.79 0.57 - - 0.81 0.60
HLA-DRA*@1:01/DRB1*@9:01 34 Binary| 0.66 0.28 0.84 0.59 0.84 0.58 0.62 0.22 0.80 0.51 - - 0.76 0.45
HLA-DRA*@1:01/DRB1*11:01 66 Binary| 0.64 0.23 0.72 0.37 0.75 0.42 - - 0.69 0.32 0.29 -0.35 0.74 0.41
HLA-DRA*@1:01/DRB1*11:01 1006 ICse 0.84 0.68 0.87 0.75 0.89 0.78 - - 0.85 0.71 0.20 -0.60 0.84 0.70
HLA-DRA*@1:01/DRB1*12:02 17 Binary| 0.84 0.59 - - 0.80 0.51 - - - - - - - -
HLA-DRA*@1:01/DRB1*13:01 18 Binary| 0.91 0.72 - - 0.86 0.63 - - - - 0.23 -0.47 Q.77 0.47
HLA-DRA*@1:01/DRB1*13:01 866  ICse 0.82 0.59 - - Q.77 0.53 - - - - 0.21 -0.55 0.79 0.55
HLA-DRA*@1:01/DRB1*13:02 134  ICso 0.71 0.14 0.91 0.61 0.90 0.62 - - 0.76 0.42 0.72 0.28 0.76 0.53
HLA-DRA*Q@1:01/DRB1*14:54 854 ICso 0.85 0.66 - - 0.89 0.71 - - - - - - - -
HLA-DRA*@1:01/DRB1*15:01 167  ICso 0.85 0.65 0.74 0.53 0.76 0.50 - - 0.51 0.06 0.64 0.18 0.47 0.02
HLA-DRA*@1:01/DRB1*15:01 79 Binary| 0.52 0.03 0.61 0.17 0.58 0.12 - - 0.45 -0.08 0.50 0.01 0.52 0.03
HLA-DRA*@1:01/DRB1*15:02 17 Binary| 0.85 0.51 - - 1.00 0.74 - - - - 0.17 -0.48 0.83 0.48
HLA-DRA*@1:01/DRB1*15:02 18 ICse 0.93 0.69 - - 0.67 0.41 - - - - 0.44 -0.39 0.54 0.38
HLA-DRA*@1:01/DRB3*01:01 852 ICse 0.66 0.32 0.83 0.55 0.84 0.60 0.68 0.30 0.81 0.53 - - 0.80 0.48
HLA-DRA*@1:01/DRB3*02:02 771 ICse 0.70 0.38 - - 0.74 0.43 - - - - - - - -
HLA-DRA*@1:01/DRB3*03:01 854  ICse 0.73 0.45 - - 0.78 0.56 - - - - - - - -
HLA-DRA*@1:01/DRB4*01:01 14 ICse 0.63 0.38 0.60 0.40 0.80 0.52 0.73 0.55 0.73 0.46 - - 0.65 0.46
HLA-DRA*@1:01/DRB4*01:01 18 Binary| 0.75 0.39 0.74 0.37 0.72 0.35 0.49 -0.01 | 0.55 0.08 - - 0.6 0.23
HLA-DRA*@1:01/DRB4*01:03 839  ICso 0.80 0.58 - - 0.79 0.54 - - - - - - - -
HLA-DRA*@1:01/DRB5*01:01 18 Binary| 0.97 0.77 0.92 0.68 0.96 0.75 - - 0.85 0.57 0.31 -0.32 | 0.78 0.45
HLA-DRA*Q1:01/DRB5*@1:01 762 ICso 9.79 0.63 0.81 0.66 0.84 0.74 - - 0.78 0.61 0.26 -0.53 0.77 0.61
Outperformance Count 16 14 4 3 25 26 Q 1 1 2 Q Q 1 Q
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