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Abstract  36 

Understanding speech in noise (SiN) is a complex task that recruits multiple cortical 37 

subsystems. There is a variance in individuals’ ability to understand SiN that cannot be 38 

explained by simple hearing profiles, which suggests that central factors may underlie the 39 

variance in SiN ability. Characterizing central functions that exhibit individual differences during 40 

a SiN task and finding their relative contributions to predicting SiN performance can reveal key 41 

neural mechanisms of SiN understanding. Here, we elucidated a few cortical functions involved 42 

during a SiN task and their hierarchical relationship using both within- and across-subject 43 

approaches. Through our within-subject analysis of source-localized electroencephalography, 44 

we demonstrated how acoustic signal-to-noise ratio (SNR) alters neural activities along the 45 

auditory-motor pathway, or dorsal stream, of speech perception. In quieter noise, left 46 

supramarginal gyrus (SMG, BA40) exhibited dominant activity at an early timing (~300 ms after 47 

word onset). In contrast, in louder noise, left inferior frontal gyrus (IFG, BA44) showed dominant 48 

activity at a later timing (~700 ms). Further, through an individual differences approach, we 49 

showed that listeners show different neural sensitivity to the background noise and target 50 

speech, reflected in the amplitude ratio of cortical responses to speech and noise, named as an 51 

“internal SNR.” We found the “softer noise” pattern of activity in listeners with better internal 52 

SNR, who also performed better. This result implies that how well a listener “unmask” target 53 

speech from noise determines the subsequent speech analysis and SiN performance. 54 

  55 

Significance 56 

This study elucidated crucial cortical mechanisms underlying speech-in-noise perception using 57 

both within- and across-subject design approaches. We found that cortical auditory evoked 58 

responses to speech involved early activation in the temporo-parietal cortex in an easy condition 59 

while a hard condition cortical activity involved late activation in the frontal cortex. Importantly, 60 

the across-subject analysis showed that pre-speech time cortical activity predicts post-speech 61 
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time activity, in such a way that good performers with better neural suppression of background 62 

noise show cortical activity similar to the pattern observed in the easier condition regardless of 63 

given acoustic noise level. This suggests a critical role of pre-lexical sensory gain control 64 

processes affecting performance and cognitive load during speech-in-noise perception.  65 
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Introduction 66 

Understanding speech in noise (SiN) is essential for communication in social settings. 67 

Yet young normal-hearing listeners are remarkably good at this: even in challenging SiN 68 

conditions where the speech and noise have the same intensity (i.e., 0 dB signal-to-noise ratio: 69 

SNR) and overlapped frequency components, they often recognize nearly 90% of sentences 70 

correctly (Ohlenforst et al., 2017). This suggests a remarkable capacity of the auditory system to 71 

cope with noise. However, the ability to understand SiN degrades severely with increased 72 

background noise level (Ohlenforst et al., 2017), hearing loss (Harris and Swenson, 1990), 73 

and/or aging (Nabelek, 1988). Moreover, recent studies show that normal hearing listeners 74 

show large individual differences in SiN performance (Liberman et al., 2016). By linking this 75 

variable ability for SiN perception to cortical activity, we may be able to understand the neural 76 

mechanisms by which humans accomplish this ability, and this may shape our understanding of 77 

how best to remediate hearing loss.  78 

Different neuro-cognitive mechanisms might give rise to better or worse SiN 79 

performance. First, listeners may vary in the mechanisms for representing sound in the 80 

ascending pathway to the auditory cortex (AC) and in auditory scene analysis (Bregman, 1999), 81 

both of which are required to separate signal from noise. Auditory scene analysis processes can 82 

inhibit neural responses to task-irrelevant sensory inputs even before the target sound is heard, 83 

based on expectations of differences between the target and masker such as differences in their 84 

spectra (Lee et al., 2013), location (Frey et al., 2014; Goldberg et al., 2014), and timing (Lange, 85 

2009). A successful auditory scene analysis during a SiN task will unmask the target speech 86 

from maskers, which will enhance effective signal-to-noise ratio (SNR) in the neural pathway. 87 

Second, listeners might vary in neural mechanisms for representing speech in the temporo-88 

parietal-frontal language network that might compensate for a noisy signal. Current models of 89 

the neural processing of speech suggest two distinct cortical networks (i.e., dorsal and ventral 90 

stream) for speech processing (Scott and Johnsrude, 2003; Hickok and Poeppel, 2007; Myers 91 
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et al., 2009; Gow, 2012). Such a division of labor is highlighted by work showing that speech in 92 

noise engages the dorsal stream more strongly than in quiet (Hickok and Poeppel, 2007; 93 

Liebenthal et al., 2013; Bidelman and Howell, 2016; Du et al., 2016). However, we have limited 94 

knowledge of the functional roles of these two cortical pathways, their timing, and their 95 

hierarchical relation.  96 

Signal separation and compensatory mechanisms can be distinguished by using 97 

functional neuroimaging in an individual differences approach. That is, we can compare the 98 

degree to which accuracy in a SiN task is correlated to either pattern of activity in auditory and 99 

related (signal analysis), or with frontal areas involving articulation and decision making 100 

(compensation)1. A few have studies asked how individual differences in cortical pathways 101 

correlate with SiN performance. These suggest activity in frontal areas (e.g., inferior frontal 102 

gyrus: IFG) predict SiNs performance (Wong et al., 2009; Bidelman and Howell, 2016; Du et al., 103 

2016). They largely did not find an influence of lower-level areas; however, as we discuss, 104 

methodological limits may have prevented this. Importantly, no work has examined both dorsal 105 

and ventral processes simultaneously to determine if signal separation or compensatory speech 106 

pathways capture unique variance in performance. Our central hypothesis is that the quality of 107 

early signal analysis that occurs before auditory-motor transformations, rather than variation in 108 

later compensatory processes dependent on the dorsal pathway, uniquely predicts speech 109 

perception accuracy. 110 

A secondary test of the importance of each pathway is the relative timing of activity in 111 

these pathways during speech processing. Functionally, work using eye-movements in the 112 

                                                
1 A third possible mechanism—differences in auditory attention—likely spans both networks. Auditory 
attention likely originates in a fronto-parietal network involving the inferior frontal gyrus (IFG), the superior 
parietal sulcus, and the intraparietal sulcus (Teki et al., 2011; Hausfeld et al., 2018), but affects early-
stage auditory activity (Choi et al., 2013; Choi et al., 2014; Bressler et al., 2017). Under an attentional 
account, if the most variance amongst listeners is due to differences in deploying attention, we should see 
SiN performance primarily correlated with frontal activity; whereas if most variance is due to using 
attention to clean up the signal it should primarily be associated with the auditory and related cortex. 
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visual world paradigm has extensively characterized the time course of word recognition in both 113 

quiet (Allopenna et al., 1998; Dahan and Gareth Gaskell, 2007; Magnuson et al., 2007) and 114 

under challenging conditions such as noise or signal degradation (Huettig and Altmann, 2005; 115 

Ben-David et al., 2011; McQueen and Huettig, 2012; Brouwer and Bradlow, 2016; McMurray et 116 

al., 2017). In general, this work suggests that in quiet, listeners activate a range of lexical 117 

candidates immediately at the onset of the auditory stimulus. This lexical competition resolves 118 

rapidly by around 250 ms after the uniqueness point of the word. A moderate amount of 119 

degradation or noise typically imposes about a 75-100 ms delay on this recognition process 120 

(Ben-David et al., 2011; Farris-Trimble et al., 2014), where severe degradation can delay lexical 121 

access by up to 250 ms (Farris-Trimble et al., 2014; McMurray et al., 2017). This is particularly 122 

relevant for evaluating the causal role of downstream compensatory processes – if such 123 

processes are later than 400-500 ms, this may be too late to reflect lexical competition. 124 

However, the timing of cortical activity within each pathway is largely unknown, as most of the 125 

work on speech in noise perception has been conducted with functional magnetic resonance 126 

imaging (fMRI) (Wong et al., 2008; Wong et al., 2009; Du et al., 2014, 2016) which has the poor 127 

temporal resolution.  128 

Assuming that left supramarginal gyrus (SMG: the anterior part of the inferior parietal 129 

lobule) is an early stage in the dorsal pathway works as an interface between 130 

auditory/phonological representations in the superior temporal gyrus and motor ones in the 131 

frontal lobe (Binder et al., 2004; Gow, 2012), we expect to see early SMG activity in the less 132 

adverse listening situation. In contrast, we hypothesize that noisier listening conditions will 133 

evoke late activities in the frontal area, reflecting downstream compensatory processes. 134 

The present study tests above hypotheses using both a within-subject design and 135 

individual differences approaches. First, we identify how both primary auditory pathways and 136 

frontal compensatory processes differ in noise. This within-subject design examined the effect of 137 

acoustic SNR on the a) timing and b) location of cortical activity during word-in-noise 138 
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recognition. For this, we used two distinct high-density electroencephalographic (EEG) 139 

analyses: 1) Hypothesis-driven source estimation that examined time courses of evoked 140 

responses within two regions-of interest (ROIs) – SMG and IFG; and 2) sensor-space 141 

microstate analysis as a data-driven approach that cross-validates the ROI-based analysis. 142 

Next, we assessed the relative and unique contributions of both primary and compensatory 143 

cortical processes in predicting SiN performance. We use the same EEG data to quantify an 144 

individual’s speech unmasking ability by computing the ratio of cortical evoked responses to 145 

noise- and target speech-onset, or “internal SNR.” We also quantify post-speech-time neural 146 

activity in the dorsal speech-motor pathway. These were then used in a regression analysis to 147 

determine the relative contribution of each to SiN performance. 148 

 149 

Materials and Methods 150 

Participants 151 

            All study procedures were reviewed and approved by the local Institutional Review 152 

Board. Thirty subjects between 19 and 31 years of age (mean = 22.4 years, SD = 2.8 years; 153 

median = 22 years; 9 (30%) male) were recruited from a population of students at a large 154 

Midwestern university. All subjects were native speakers of American English, with normal 155 

hearing thresholds no worse than 20 dB HL at any frequency, tested in octaves from 250 to 156 

8000 Hz. Four subjects (1 male) were excluded from the analysis due to signal contamination 157 

across several EEG channels. 158 

 159 

Task design and procedures 160 

We simultaneously measured behavioral performance and cortical neural activity a short 161 

(15 minute) experimental sessions.   162 

Each trial (Figure 1) began with the presentation of a fixation cross (‘+’) on the screen. 163 

Listeners were asked to fix their gaze on this throughout the trial to minimize eye-movement 164 
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artifacts. Next, they heard the cue phrase “check the word.” This enabled listeners to predict the 165 

timing of next acoustic event (the noise onset). After fixed-duration (700 ms) silence that 166 

followed the cue phrase, multi-talker babble noise started and continued for 2 seconds. One 167 

second after the noise onset, the target word was heard 100 ms after the composite auditory 168 

stimulus (noise + word) offset, four written choices appeared on the screen. The response 169 

options differed either in the initial or the final consonant (e.g., ‘than,’ ‘van,’ ‘ban,’ and ‘pan,’ for 170 

target word ‘ban’; ‘hit,’ ‘hip,’ ‘hiss,’ ‘hitch’ for target word ‘hiss’). Subjects pressed a button on a 171 

keypad to indicate their choice. No feedback was given to the subject at the end of a trial. The 172 

next trial began 1 second after the button press. This trial structure was intended to minimize 173 

visual, pre-motor, and motor artifacts during the time of interest surrounding the auditory stimuli. 174 

The timing and intervals of auditory stimuli (i.e., cue phrase, noise, and target) were intended to 175 

derive well-distinct cortical evoked responses to the onsets of background noise and target 176 

word. 177 

 178 

Since we are particularly interested in SMG/IFG regions that are involved in 179 

phonological/lexical processing (Hickok and Poeppel, 2007), we elected to use natural 180 

monosyllabic words, rather than simpler non-sense speech tokens used by prior studies 181 

Figure 1. Trial and stimulus structure. Every trial starts with the cue phrase “check the word.” A target 
word starts 1 second after the noise onset. Four choices are given after the word ends; subjects select 
the correct answer with a keypad. No feedback is given. The noise level is manipulated to create high 
(+3 dB) and low (-3 dB) SNR conditions. Subjects complete 50 trials for each condition. 
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(Parbery-Clark et al., 2009; Bidelman and Howell, 2016). This engaged lexical processing, 182 

placed high demands on cortical processing, and maximized ecological validity (Gagne et al., 183 

2017). Thus, target words consisted of 100 hundred CVC words from the California Consonant 184 

Test (CCT) (Owens and Schubert, 1977), spoken by a male speaker with a General American 185 

accent.  186 

The RMS level of noise was either 68 and 62 dB SPL, and target word was always 187 

presented at 65 dB SPL.  This led to either +3 or -3dB SNR (referred to as “high SNR” and “low 188 

SNR,” respectively). Fifty words were presented at each SNR (±3 dB). -3 dB SNR was chosen 189 

to emulate a highly effortful listening condition yielding ~70% accuracy from pilot experiments. 190 

+3 dB SNR condition emulates an easy listening condition.  191 

The task was implemented using the Psychtoolbox 3 package (Brainard, 1997; Pelli, 192 

1997) for Matlab (R2016b, The Mathworks). Participants were tested a sound-treated, 193 

electrically shielded booth with a single loudspeaker (model #LOFT40, JBL) positioned at a 0° 194 

azimuth angle at a distance of 1.2 m. A computer monitor was located 0.5m in front of the 195 

subject at eye level. The auditory stimuli were presented at the same levels for all subjects. 196 

  197 

EEG acquisition and preprocessing 198 

Scalp electrical activity (EEG) was recorded during the SiN task using the BioSemi 199 

ActiveTwo system at a 2048 Hz sampling rate. Sixty-four active electrodes were placed 200 

according to the international 10-20 configuration. Trigger signals were sent from Matlab 201 

(R2016b, The Mathworks) to the ActiView acquisition software (BioSemi). The recorded EEG 202 

data from each channel were bandpass filtered from 1 to 50 Hz using a 2048-point FIR filter. 203 

Epochs were extracted from -500 ms to 3 s relative to stimulus onset. After baseline correction 204 

using the average voltage between -200 and 0 ms, epochs were down-sampled to 256 Hz.  205 

Since we were interested in the speech-evoked responses from frontal brain regions, we 206 

opted for a non-modifying approach to eye blink rejection: Trials that were contaminated by an 207 
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eye blink artifact were rejected based on the voltage value of the Fp1 electrode (bandpass 208 

filtered between 1 and 20 Hz). Rejection thresholds for eye blink artifacts were chosen 209 

individually for each subject, and separately for the noise and target word periods. After 210 

rejecting bad trials, grand averages for each electrode were calculated for the two conditions. 211 

For analysis of speech-evoked responses, we repeated baseline correction using the average 212 

signal in the 300 ms preceding the word onset.  213 

 214 

Source analysis 215 

 The source-space analysis was based on minimum norm estimation (Gramfort et al., 216 

2013; Gramfort et al., 2014) as a form of multiple sparse priors (Friston et al., 2008). After co-217 

registration of average electrode positions to the reconstructed average head model MRI, the 218 

forward solution (a linear operator that transforms source-space signals to sensor space) was 219 

computed using a single-compartment boundary-element model (Hämäläinen, 1989). The 220 

cortical current distribution was estimated assuming that the orientation of the source is 221 

perpendicular to the cortical mesh. Cross-channel EEG-noise covariance, computed for each 222 

subject, was used to calculate the inverse operators. A noise-normalization procedure was used 223 

to obtain dynamic statistical parametric maps (dSPMs) as z-scores (Dale et al., 2000). The 224 

inverse solution estimated the source-space time courses of event-related activity at each of 225 

10,242 cortical voxels per hemisphere. In the present study, two predetermined ROIs will be 226 

included: (1) bilateral SMG, and (2) bilateral pars opercularis and pars triangularis of IFG. The 227 

SMG is an early stage in the dorsal pathway and, among its many roles, works as an interface 228 

between auditory/phonological representations in the superior temporal gyrus and motor ones in 229 

frontal lobe including precentral/postcentral and IFG (Binder et al., 2004; Gow, 2012). To ensure 230 

the fidelity of source localization at our ROIs, we applied the same analysis to HG, which 231 

expected to be active in auditory tasks, before running ROI-based source analysis explained 232 

below (supplement Figure 1).  233 
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 234 

Statistical analyses 235 

 ROI-based source analysis. For ROI-based source analysis, one-sample t-tests were 236 

used to compare the distributions of mean source event-related potential (ERP) to zero 237 

(baseline voltage) in each SNR condition. The t-value envelope was then computed (as a form 238 

of smoothing). This was done by applying a bandpass filter, then calculating the absolute value 239 

of the Hilbert transform. The bandpass filter was set to one of two center frequencies, 240 

depending on the specific ROIs. Because the neural oscillations evoked by early ERP 241 

components such as N1-P2 have peak latencies of about 100 ms at their half cycle 242 

(approximately 5 Hz), and late ERP components such as N2-P3 have latencies of about 200 ms 243 

at their half cycle (approximately 2.5 Hz), the bandpass filter was set to between either 3 to 7 or 244 

1 to 5 Hz to highlight these components. The t-value envelope calculated using the bandpass 245 

filter between 3 to 7 Hz was used to investigate HG and SMG ROIs, and earlier times of 246 

interest, while the envelope using the 1 – 5 Hz filter was used for IFG ROI and later times of 247 

interest. For each SNR condition, the whole brain t-value envelope time courses were obtained.  248 

Since we did not have individual structural MRI head models, it was not ideal to take the 249 

summed activity (mean or median) for all the voxels within ROIs. This is because individual 250 

difference in functional and anatomical structure of the brain may result in spatial blurring since 251 

current densities across adjacent voxels can overlap each other. Instead, representative voxels 252 

were identified for each ROI, for each SNR condition. We used a combination of previously-253 

described methods to select voxels of interest that were used in fMRI studies (Tong et al., 254 

2016). The cross-correlation coefficients for t-value envelopes between all voxels in an ROI 255 

were calculated across time (up to 800 ms after the target word onset), and then the mean 256 

coefficient was calculated for each voxel. The most representative voxel was defined as having 257 

the maximum value mean coefficient, while also being above threshold at two or more 258 
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continuous timepoints based on voxel’s p value, as determined using one-sample t-tests (Tong 259 

et al., 2016).  260 

Once the most representative voxel was chosen for each SNR condition, a leave-one-261 

out procedure (i.e., Jackknife approach) was used to compare the population means between 262 

the two SNR conditions, at those voxels, using paired t-tests. Prior to computing p-values, t-263 

statistics were adjusted for jackknifing (Luck, 2014). The positive false discovery rate (pFDR) 264 

was estimated from those p-values after downsampling the time sequence according to Nyquist 265 

theorem, and used to find timepoints that showed significant difference between SNR conditions 266 

(Storey, 2002). Finally, the whole cortical surface source space was evaluated at those 267 

timepoints. 268 

 269 

Microstate analyses. Microstate analysis was conducted to cross-validate our ROI-270 

based analyses that assess effect of external SNR on ERPs at the group level. Microstates 271 

describe transient, quasi-stable topographic orientations which provide information about the 272 

timing of cognitive processes (Koenig et al., 2014). Microstates have been used to characterize 273 

both resting state and event-related EEG activity (Ott et al., 2011; Schiller et al., 2016). The 274 

microstate analysis was conducted on grand mean data (averaged across all subjects), 275 

separately in each SNR condition and were implemented in the RAGU program (Koenig et al., 276 

2011; Koenig et al., 2014).  277 

To conduct this analysis, we first identified four microstate cluster maps based on spatial 278 

clustering of ERP topographies. To this, a k-means algorithm was used for microstate 279 

identification with ten random re-initializations. As a cross-validation procedure, the 26 subjects 280 

were randomly split 50 times into a training set and a test set, each comprising 13 subjects. 281 

Next, the grand mean voltages at each timepoint of each SNR condition were assigned to the 282 

best fit cluster map (Koenig et al., 2011; Koenig et al., 2014). To do this, each timepoint of the 283 
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ERP was assigned to the specific microstate cluster map that had the highest correlation 284 

coefficients with the topography of the ERP, across all electrodes, at that timepoint.  285 

To assess how well the grand mean ERPs were explained by the different microstate 286 

clusters, we calculated the relative area of global field power (GFP) for each cluster, after 287 

assigning the timepoints to microstates. The GFP at time t is equal to the standard deviation of 288 

the signal at all N electrodes, which is defined as 289 

(1) GFP(𝑡) = 	)
∑ (+,(-).+/(-))01
,23

4
, 290 

where 𝑣6(𝑡) is the voltage at electrode i, and	𝑣̅(𝑡) is the average voltage across all electrodes at 291 

time t.  292 

After identification of the microstate explaining the most variance for grand average ERP 293 

in each SNR condition, the timepoints of maximum GFP for that microstate were used to create 294 

whole brain maps showing cortical source activity. The t-value envelope calculated by one-295 

sample t-tests in each SNR condition was used to investigate the source activity at early 296 

timepoints (about up to 400 ms after the word onset) using the bandpass filter between 3 to 7 297 

Hz, and the source activity at later timepoints (about after 400 ms) using the 1 – 5 Hz filter. 298 

 299 

 Regression approaches. To conduct multiple linear regressions, we used a jackknifing 300 

approach (Stahl and Gibbons, 2004; Luck, 2014). In this approach the relevant neural factors 301 

were computed for all subjects but one. This was repeated leaving out each subject in turn, and 302 

the resulting data submitted to a linear regression with SiN performance (accuracy) as the 303 

dependent variable, and SMG/IFG activation, and internal SNR as the predictor variables. Test 304 

statistics were then adjusted to account for the fact that each data-point represents N-1 305 

participants.  306 

Correlation/regression analyses used these techniques to simultaneously examine 307 

bottom-up and compensatory related SiN performance to three factors. Our first, analysis 308 
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examined raw cortical evoked activity to the target and noise. To best represent bilateral 309 

auditory cortical activity, we used sensor-space ERP envelopes using the 3 – 7 Hz bandpass 310 

filter from channel Cz at around 200 ms after the noise onset and at about 200 ms after the 311 

target word onset, based on the timing determined by microstate analysis. Then, “internal SNR” 312 

was defined as the ratio of target word-evoked ERP envelope peaks to noise-evoked ERP 313 

envelope peaks magnitude described above, in dB scale, obtained from channel Cz (Equation 314 

3). The internal SNR is different for each subject, and is separate from the fixed external, or 315 

acoustic, SNR (here, ±3 dB). 316 

(2) I𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝑆𝑁𝑅 = 20𝑙𝑜𝑔EF
GHIJ	KLHMKJ	NHOKPOQRS
THQUK	KLHMKJ	NHOKPOQRS

 317 

Second, to examine dorsal regions, we used cortical regions that were previously 318 

identified in the ROI-based source analysis described above. The peak magnitudes of the t-319 

value envelopes were obtained for early SMG activation in the high SNR condition and late IFG 320 

activation in the low SNR condition.  321 

 322 

Results 323 

SiN performance 324 

There was a large variance in performance among participants. This was observed in 325 

both the high SNR condition (mean accuracy = 80.64%, SD = 7.81%, median = 83.01%; mean 326 

reaction time = 1.53 s, SD = 0.32 s, median = 1.55 s) and the low SNR condition (mean 327 

accuracy = 68.21%, SD = 8.92%, median = 70.37%; mean reaction time = 1.70 s, SD = 0.36 s, 328 

median = 1.69 s). Both accuracy (t(25) = 6.99, p < 0.001, paired t-test) and reaction time (t(25) = 329 

-3.81, p < 0.001, paired t-test) differed significantly between the two SNR conditions (Figure 330 

2A). Reaction time and accuracy were correlated in the high SNR condition (Figure 2B, 331 

Pearson correlation r = -0.50, p = 0.009), but not in the low SNR condition (Figure 2C, r = -0.19, 332 
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p = 0.34). As a whole, these results validate that the SNR manipulation was sufficient to create 333 

more challenging speech perception conditions.  334 

 335 

The effect of SNR on cortical activity 336 

To assess the cortical activity, we converted sensor-space EEG signals to whole brain 337 

source-activity. This allowed us to localize the effects of noise on targeted ROIs at specific 338 

times. Within left hemisphere SMG, the high SNR condition showed significantly greater activity 339 

than the low SNR condition from 200 to 330 ms (FDR adjusted p < 0.05) (Figure 3B left). 340 

Within left hemisphere IFG, the low SNR condition showed significantly greater activity than the 341 

high SNR condition from 740 to 830 ms (FDR adjusted p < 0.05) (Figure 3B right), throughout 342 

triangular and opercula regions.  343 

Figure 2. Behavioral results. A. Summary of behavioral performance for the two conditions (+3 and -
3 dB SNR). Boxes denote the 25th – 75th percentile range; the horizontal bars in the center denote 
the median; the ranges are indicated by vertical dashed lines. Solid lines connect points for the same 
subject in different conditions. B. Average accuracy as a function of reaction time in +3 dB SNR 
condition. C. Average accuracy and reaction time in -3 dB SNR condition. 
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A visual representation of this finding can be seen in Figure 3C. Here, t-values reveal 344 

significant differences between high and low SNR conditions. The timepoints were chosen for 345 

display where the greatest number of voxels have significant differences. We observed 346 

increased amplitude of the left hemisphere SMG activation in the high SNR condition at around 347 

250 ms (t-value envelope). This may indicate efficient lexical processing in a relatively favorable 348 

listening condition. However, in the low SNR condition, the peak amplitude of the left 349 

hemisphere IFG activation (t-value envelope) seen around 700 ms after word onset. Given most 350 

target words were around 500 ms in duration, SMG was primarily activated during the 351 

presentation of the target word, while IFG was activated after its offset.  352 

Figure 3. Region-of-interest (ROI) based source analysis. A. Cortical labels for two ROIs in left 
and right hemispheres: supramarginal gyrus (SMG), and the pars opercularis and triangularis of 
the inferior frontal gyrus (IFG), respectively. B. The time course of the t-value envelope, with the 
standard error of the mean (±1 SEM), obtained at representative voxels in each SNR condition 
(red color: +3 dB SNR, blue color: -3 dB SNR). An asterisk shows the timing of significant 
difference between +3 and -3 dB SNR conditions (paired t-test, FDR adjusted p < 0.05). C. Whole 
brain maps showing statistical contrasts (t-values obtained from paired t-tests between the two 
SNR conditions) of source activation at each voxel, only displaying those with p-value less than 
0.05, at the timepoint that shows significant differences over the broadest area in the ROIs within 
the time range described above. 
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To more precisely timelock these neural events to the stimulus, the webMAUS (Kisler et 353 

al., 2017) was used to identify the starting location of second and third phonemes in each of the 354 

100 stimuli. A histogram of these acoustic time points is shown in Figure 4A. Figure 4B shows 355 

the timing of SMG and IFG activity relative to the distribution of phoneme onsets in the target 356 

word stimuli. This confirms that the early SMG activation occurs within the timecourse of target 357 

words before the final phoneme is presented; the late IFG activation occurs after all words are 358 

presented. 359 

 360 

External (acoustic) SNR effects on timepoints and regions of interest based on 361 

microstate analysis         362 

Figure 4. Timings of significant cortical activity relative to distributions of phonological 
events. A. Top and second panel show a histogram of the onsets of second and final 
phoneme of each stimulus. The third panel shows superimposed temporal envelopes 
extracted from waveforms of the 100 words. B. The whole brain maps at the bottom 
are from Figure 3C that shows statistical contrasts of source activation at the 
timepoints that show significant differences between the two SNR conditions. Purple 
curves on the cortical maps represent the conceptual illustration of ascending 
information flow through the dorsal pathway. 
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To further assess temporal dynamics of neural activity during SiN perception in a data-363 

driven way, and to cross-validate our ROI-based analyses, we performed microstate analysis 364 

(Lehmann, 1989b, a; Wackermann et al., 1993). Microstate analysis clusters time series of ERP 365 

data into multiple different brief brain states, which may indicate different stages of the 366 

information processing (Lehmann, 1989b). Four microstate maps were identified. (Figure 5C). 367 

The grand mean ERP at each timepoint was assigned to one of the microstate clusters, and 368 

GFP was calculated at those timepoints (Figure 5B, C).  369 

Calculation of the relative area of GFP revealed that microstates 1 and 2 explained the 370 

largest variance in sensor-space ERPs over time in low SNR (area = 37%) and high SNR (area 371 

= 37%) condition, respectively. The timing, suggested by maximum GFP and the maximum 372 

deflection of ERPs at frontal-central electrodes among the timepoints assigned to microstate 1, 373 

was 0.668 seconds after word onset for the low SNR condition. The timing for microstate 2 was 374 

0.320 seconds after word onset for the high SNR condition.  375 

We next conducted a whole-brain source analysis at the timepoint assigned to 376 

microstate 1 using one-sample t-tests against 0. This revealed increased activity in left 377 

hemisphere IFG activation for the low SNR condition (Figure 5D). The same analysis at the 378 

timepoint assigned to microstate 2 showed increased activity in the left hemisphere SMG for the 379 

high SNR condition (Figure 5D). These results from microstate analysis are consistent with the 380 

results of ROI-based analysis (illustrated in Figure 3) regarding timings and regions of neural 381 

activation. 382 
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 383 

Individual differences in internal SNR predict SiN performance 384 

 For visualization purposes, we identified good and poor performers by conducting a 385 

median split based on their performance in the task. Figure 6A shows GFP of the grand mean 386 

ERPs for good and poor performance and topographies obtained at two timepoints identified by 387 

microstate maps in the low SNR condition: 1) 220 ms after the noise onset, corresponding to the 388 

auditory P2 to the noise; and 2) 240 ms after target word onset, corresponding to the AC-driven 389 

Figure 5. Microstate analysis. A. Evoked responses over time after the word onset for +3 
and -3 dB SNR condition. Each color represents ERPs from a different channel of interest. 
B. Global field power (GFP) is calculated at each timepoint that is assigned to one of the 
microstate clusters. C. Four microstate cluster maps. Dark blue, light blue, red, and dark 
pink colors represent microstates 1, 2, 3, and 4, respectively. The relative area of GFP is 
calculated and reveals the highest value for the microstate 1 and 2 for -3 and +3 dB SNR 
condition, respectively. D. Whole brain maps obtained at the times assigned to 
microstates 1 and 2, that show maximum GFP and the maximum peak of ERPs at the 
frontal-central electrodes. 
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N1 response. The word-evoked N1 was chosen as the first clearly AC-driven response to the 390 

word onset as evidenced by its assignment to microstate 4 in the previous analysis, while the 391 

timing of the noise-evoked P2 was suggested by microstate 3. Despite the same noise level for 392 

these two groups of subjects, good performers exhibited less AC response to the background 393 

noise, and greater AC response to the target word at central channels including Cz. This 394 

validates that each component of the internal SNR measure seems to contribute separately to 395 

SiN performance. 396 

To address our primary research question, we evaluated the simultaneous contribution 397 

of primary auditory pathways and frontal compensatory processes. For this, we computed 398 

internal SNR as the amplitude ratio of the noise and target related cortical evoked responses 399 

(e.g., Figure 6A), expecting to quantify an individual’s speech unmasking ability. We also 400 

computed the mean activity in SMG and IFG separately averaged over 150 to 350 ms (the early 401 

component), and 500 to 800 ms (late). 402 

Figure 6B shows correlations among internal SNR, SMG/IFG source activation, and SiN 403 

performance (accuracy) in the low SNR condition, that are obtained from 26 leave-one-out 404 

grand averages using jackknifing approach (Luck, 2014; Stahl & Gibbons, 2004). Greater 405 

Figure 6. Individual differences in speech-in-noise processing. A. Global field power of the grand 
mean evoked potentials after the noise onset and after the target word onset, separately in the low 
SNR condition. Scalp topographies were examined at the timepoints, suggested by microstate 
analysis from Figure 5, and compared between good and poor performers, as determined by the 
median split. B. A series of scatter plots showing Pearson correlation coefficients among internal 
SNR, early SMG, late IFG activation, and behavioral accuracy. C. A scatter plot showing the 
regression coefficients from a linear regression model where behavioral accuracy is the dependent 
variable while internal SNR, early SMG, late IFG activation are the predictor variables. *The linear 
model significantly predicts behavioral accuracy while internal SNR is the only significant predictor. 
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internal SNR predicted better performance (R = 0.45, p = 0.022). Stronger early SMG activation 406 

also predicted better performance (R = 0.39, p = 0.047). However, greater late IFG activity 407 

predicted poorer performance (R = -0.42, p = 0.033). This suggests that both internal SNR and 408 

SMG activation are positively related to SiN performance, while IFG activation has negative 409 

relation to the performance.   410 

To test their joint contributions, we conducted a linear regression in which internal SNR, 411 

SMG, IFG activation were simultaneously related to SiN performance (Figure 6C). As a whole, 412 

these factors accounted for a large proportion of the variance (R = 0.65, p = 0.00033). However, 413 

among these three factors, internal SNR was the only significant predictor (t = 2.25, df = 22, p = 414 

0.035), whereas SMG (t = 1.80, df = 22, p > 0.05) and IFG activation (t = -2.03, df = 22, p > 415 

0.05) did not significantly contribute in the prediction SiN performance. This suggests that 416 

internal SNR (representing the contribution of lower level signal analysis) uniquely predicts 417 

variation in accuracy. 418 

 419 

Discussion 420 

We found SNR effects on timing and location of cortical activity for a speech-in-noise 421 

recognition task. In a relatively easy SNR condition (in which subjects achieved ~80% 422 

accuracy), left SMG showed a relatively early evoked response (~250 ms after target word 423 

onset). In contrast, a challenging SNR (~68% accuracy) elicited the late response in left IFG 424 

(~700 ms after target word onset). Within the same “external” SNR condition, individual 425 

differences in such SMG and IFG responses predicted SiN performance; good performers 426 

showed stronger early SMG response while poor performers showed stronger late IFG activity. 427 

Individual differences in the ratio of noise- to target word-evoked cortical responses—the 428 

“internal SNR,”—also predicted SiN performance; subjects with lower internal SNR exhibited 429 

poorer accuracy. Importantly, both SMG and IFG responses did not contribute to the prediction 430 

of SiN performance when internal SNR was added to the linear regression model. These results 431 
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from correlational analyses could be explained by auditory scene analysis mechanisms for 432 

target unmasking and by temporal cortical processes for speech perception. A poorer ability to 433 

unmasking target speech from background noise may lead to increased frontal lobe processing 434 

that is employed when lower-level auditory pathways are unable to secure favorable speech 435 

quality due to background noise.   436 

  437 

Internal SNR: A measure of pre-speech processing for speech unmasking  438 

Pre-speech time cortical activity for speech unmasking should be localized to the 439 

primary and secondary AC, appearing as enhanced neural representation of the target sound 440 

(the speech) and suppressed neural representation of ignored stimuli (the noise). This is 441 

consistent with work suggesting that the auditory N1 (the numerator of the measure) can be 442 

localized to AC and the planum temporale (Schneider et al., 2002). 443 

Such responses could reflect auditory selective attention, which shows a similar pattern 444 

in previous studies (Hillyard et al., 1973; Hillyard et al., 1998; Mesgarani and Chang, 2012). In 445 

the present study, good performers showed significantly weaker noise-evoked AC response, 446 

compared with poor performers, approximately 200 ms after the noise onset (Figure 6A). 447 

Decreased AC response to background noise in good performers is compatible with the 448 

presence of a sensory gain control mechanism (Hillyard et al., 1998). The variation in the 449 

sensory gain control may originate from multiple factors. It may reflect the acuity of encoding 450 

spectro-temporal acoustic cues from speech and noise or grouping of such acoustic cues for 451 

auditory object formation. It may also reflect endogenous mechanisms for active suppression of 452 

background sounds along with neural enhancement of foreground sounds (Shinn-Cunningham 453 

and Best, 2008).  454 

Our goal was not to disentangle the sources of variation in sensory gain control but 455 

rather to quantify the effectiveness of sensory gain control by internal SNR and test how it 456 

predicts later speech processes and behavioral accuracy. In this regard, we found a significant 457 
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correlation between accuracy and the relative amplitude word- and noise-evoked potentials. 458 

This demonstrates that individuals have a differential ability to suppress the noise effectively via 459 

early auditory processes (indexed by internal SNR). The first-order correlations between IFG 460 

and SMG activation and behavioral performance were compatible with the effect of SNR on 461 

ERPs: Good performers had stronger SMG activation (as in the high SNR condition), while poor 462 

performers had stronger IFG activation (as the low SNR condition). However, the amplitude of 463 

SMG and IFG response did not uniquely contribute to accuracy when internal SNR was added 464 

to the model. This indicates that changes in SMG or IFG activity are the outcome of pre-speech 465 

sensory gain control processing, rather than an independent causal factor predicting speech 466 

perception performance.  467 

This result conflicts with some findings from earlier studies but also clarifies their 468 

findings. For example, Wong et al. (2009) did not find a relationship between SiN performance 469 

and AC or auditory related cortex.  However, this study used fMRI, which may have missed the 470 

contribution of much shorter-lived bottom-up processes (Parbery-Clark et al., 2009). Like us, 471 

they did find correlations with activity in the IFG (and also the precentral gyrus a second dorsal 472 

route site). However, this study included both younger and older adults (who showed 473 

differences in cortical networks). Thus, some of these correlations may have been driven by age 474 

differences. Also, it is unclear whether these differences in cortical activity are necessary for 475 

successful SiN understanding (or at least helpful), as such differences could also reflect 476 

processes like increased effort (consistent with the view that IFG may be a domain-general 477 

control process) (Fedorenko et al., 2013), error monitoring, or even just increased uncertainty. 478 

Such processes may be engaged by noise without necessarily playing a causal role in 479 

improving perception.  480 

 Similarly, Bidelman and Howell (2016) related both AC and dorsal route activity to 481 

performance. They found no contribution of AC, but a correlation between speech performance 482 

and early (~115 ms) activity in the IFG. However, their measure of AC activity represented the 483 
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response to both the speech and noise, not the ability of AC to pull speech from the noise. 484 

Moreover, speech perception accuracy was assessed in an offline task. As a result, the cortical 485 

activity measures did not reflect cortical processes leading up to accurate (or inaccurate 486 

response); thus, these correlations may reflect broader individual differences, rather than a 487 

causal chain leading to accurate SiN processing. 488 

 489 

SNR effect on timing and location of cortical activity 490 

Previous studies have suggested that spoken-word recognition occurs via a process of 491 

dynamic lexical competition as speech unfolds over time. For many words, this competition 492 

begins to resolve (e.g., the target separates from competitors) around 300 ms after word onset 493 

(Huettig and Altmann, 2005; Farris-Trimble and McMurray, 2013). In significantly challenging 494 

conditions (high noise) however, lexical processing can be delayed about 250 ms until most of 495 

the word has been heard (Farris-Trimble et al., 2014; McMurray et al., 2017), which may 496 

minimize competition. Based on the timing predicted by these studies, we expected early SMG 497 

processing in the high SNR condition, and late IFG processing in the low SNR condition.  498 

Our secondary analysis, a data-driven approach based on spatiotemporal clustering 499 

analysis of ERPs (microstate analysis), supports the conclusion from the ROI-based analysis. 500 

As microstates 1 and 2 explained the greatest amount of the signal’s variance in the low and the 501 

high SNR condition, respectively, we focused on the highest GFP peak timepoints, within 502 

corresponding microstates for each SNR condition. Whole brain maps obtained from those 503 

timepoints were supportive of the ROI analysis: in the high SNR condition, SMG was strongly 504 

activated in the left hemisphere, while left IFG and bilateral Heschl’s gyrus (HG) were activated 505 

in the low SNR condition.  506 

Increased SMG activity between the second and the third phonemes (see Figure 4) in 507 

the high SNR condition may indicate a neural substrate of immediate lexical access (Farris-508 

Trimble et al., 2014; McMurray et al., 2017), consistent with Gow (2012). This immediacy was 509 
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observed when speech sounds were relatively clean (high SNR), and it does not appear in 510 

previous EEG studies using non-word synthesized phonemes (Bidelman and Dexter, 2015; 511 

Bidelman and Howell, 2016). However, we note that Bidelman and Howell used a single non-512 

word stimulus (a vowel-consonant-vowel) that would not be expected to engage lexical 513 

processing. Bidelman and Howell’s results also demonstrated an early activity (~115 ms) in IFG 514 

with a clearly intelligible VCV phoneme. This was not observed in our study. However, because 515 

we used naturally spoken CVC words, we can limit the interpretation of the late IFG activity to 516 

the decision-making process in which listeners are trying to clean up the results of lexical 517 

competition in SMG.  518 

The idea that greater IFG activity is linked with poorer SiN recognition performance 519 

seems to be inconsistent with some fMRI studies that showed the positive correlation between 520 

the IFG activity and speech recognition performance (Zekveld et al., 2006; Wong et al., 2009; 521 

Vaden et al., 2015; Du et al., 2016). This may stem from the difference between fMRI and EEG 522 

in temporal resolution and in sensitivity to either neural metabolic activity or the equivalent 523 

current dipoles (Bridwell et al., 2013). In the present study, we exhibited event-related potentials 524 

at a specific latency of ~700 ms after target word onset, i.e., ~200 ms after target word “offset.” 525 

Previous fMRI studies might have demonstrated IFG activity at different latencies or 526 

accumulated BOLD signal that is not time-locked to a specific sensory event. Alternatively, this 527 

difference between fMRI and the current EEG results might be due to an error in the estimation 528 

of our source location. However, the fact that both of our approaches – an ROI-based approach 529 

and a data-driven approach without a space constraint – resulted in exhibiting the same IFG 530 

activity with a similar latency might make our results more reliable. 531 

So, what is IFG contributing to the process?  It is unknown whether these processes are 532 

due to active compensation for the noise or increased effort (both of which may help) or are a 533 

simply marker of increased response uncertainty. Our correlational analyses do not suggest a 534 

causal role for frontal activity in predicting an individual’s accuracy. The first order correlation 535 
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was negative – more frontal activity was linked to less overall accuracy. More importantly, this 536 

correlation was not significant when internal SNR was added to the model suggesting IFG 537 

activity does not offer a unique contribution to accuracy. Rather it may simply reflect the clarity 538 

of the signal offered by the earlier auditory processes that deal with noise. That is, if we view 539 

IFG as primarily serving a decision-making role in this task when dorsal route areas do not 540 

output clear representations of the signal, IFG must work harder to resolve on a decision. It may 541 

be then that activity in frontal areas is not causally necessary for good SiN performance, but 542 

rather reflects the additional response uncertainty created by noisy listening situations. This 543 

challenges accounts like Du et al. (2016) that argue for a causal role of dorsal route processing 544 

in SiN understanding. 545 

 546 

Methodological advances and justifications for source time course analysis 547 

 Our approach to identifying a single voxel within an ROI deserves a particular 548 

discussion. Identification of the representative voxel of an ROI is a problem common to EEG 549 

source analysis, fMRI, and other functional brain imaging studies. Many relevant neuroimaging 550 

analysis approaches have been described, including univariate, multivariate, and machine 551 

learning; however, most of these are intended for the identification of regions of interest or 552 

functional connections from a whole brain map. Drawbacks of this type of whole-brain analysis 553 

include the need for strict multiple comparisons correction and, therefore, decreased statistical 554 

power. Using strong a priori hypotheses to generate regions of interest allowed us to circumvent 555 

these issues, but still requires identification of representative voxels within our regions of 556 

interest. Favored approaches generally require identification of peak activity within an ROI 557 

(Tong et al., 2016). However, to avoid the assumption that choosing peak activity implies, we 558 

opted instead to choose the voxel that has the maximum average correlation to every other 559 

voxel within the ROI. In the present study, we chose not to constrain the location of the voxel of 560 

interest within an ROI for each condition. Because our anatomic resolution is unlikely to be at 561 
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the voxel level, we elected to choose a different representative voxel for each condition, 562 

unconstrained by the location of the representative voxel from other conditions. 563 

 564 

Conclusion 565 

We found that clean, intelligible speech elicits early processing at SMG, while sensory 566 

degradation results in late processing at IFG for less intelligible speech. Better speech 567 

unmasking in good performers modulated the ratio of cortical evoked responses to the 568 

background noise and target sound, which effectively changed SNR internally, resulting in 569 

facilitated lexical/phonological processing through SMG. These findings may collectively form a 570 

neural substrate of individual differences in speech-in-noise understanding ability. Crucially, 571 

however, only neural representation of SNR uniquely predicted variation in performance, 572 

suggesting that individual differences in SiN comprehension are largely a matter of primary 573 

processes that extract the signal from noise rather than later compensatory ones. 574 

  575 
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Figure Legends 730 

Figure 1. Trial and stimulus structure. Every trial starts with the cue phrase “check the word.” A 731 
target word starts 1 second after the noise onset. Four choices are given after the word ends; 732 
subjects select the correct answer with a keypad. No feedback is given. The noise level is 733 
manipulated to create high (+3 dB) and low (-3 dB) SNR conditions. Subjects complete 50 trials 734 
for each condition. 735 
 736 

Figure 2. Behavioral results. A. Summary of behavioral performance for the two conditions (+3 737 
and -3 dB SNR). Boxes denote the 25th – 75th percentile range; the horizontal bars in the 738 
center denote the median; the ranges are indicated by vertical dashed lines. Solid lines connect 739 
points for the same subject in different conditions. B. Average accuracy as a function of reaction 740 
time in +3 dB SNR condition. C. Average accuracy and reaction time in -3 dB SNR condition. 741 
 742 

Figure 3. Region-of-interest (ROI) based source analysis. A. Cortical labels for two ROIs in left 743 
and right hemispheres: supramarginal gyrus (SMG), and the pars opercularis and triangularis of 744 
the inferior frontal gyrus (IFG), respectively. B. The time course of the t-value envelope, with the 745 
standard error of the mean (±1 SEM), obtained at representative voxels in each SNR condition 746 
(red color: +3 dB SNR, blue color: -3 dB SNR). An asterisk shows the timing of significant 747 
difference between +3 and -3 dB SNR conditions (paired t-test, FDR adjusted p < 0.05). C. 748 
Whole brain maps showing statistical contrasts (t-values obtained from paired t-tests between 749 
the two SNR conditions) of source activation at each voxel, only displaying those with p-value 750 
less than 0.05, at the timepoint that shows significant differences over the broadest area in the 751 
ROIs within the time range described above. 752 

 753 

Figure 4. Timings of significant cortical activity relative to distributions of phonological events. 754 
A. Top and second panel show a histogram of the onsets of second and final phoneme of each 755 
stimulus. The third panel shows superimposed temporal envelopes extracted from waveforms of 756 
the 100 words. B. The whole brain maps at the bottom are from Figure 3C that shows statistical 757 
contrasts of source activation at the timepoints that show significant differences between the 758 
two SNR conditions. Purple curves on the cortical maps represent the conceptual illustration of 759 
ascending information flow through the dorsal pathway. 760 
 761 

Figure 5. Microstate analysis. A. Evoked responses over time after the word onset for +3 and -3 762 
dB SNR condition. Each color represents ERPs from a different channel of interest. B. Global 763 
field power (GFP) is calculated at each timepoint that is assigned to one of the microstate 764 
clusters. C. Four microstate cluster maps. Dark blue, light blue, red, and dark pink colors 765 
represent microstates 1, 2, 3, and 4, respectively. The relative area of GFP is calculated and 766 
reveals the highest value for the microstate 1 and 2 for -3 and +3 dB SNR condition, 767 
respectively. D. Whole brain maps obtained at the times assigned to microstates 1 and 2, that 768 
show maximum GFP and the maximum peak of ERPs at the frontal-central electrodes. 769 
 770 

Figure 6. Individual differences in speech-in-noise processing. A. Global field power of the 771 
grand mean evoked potentials after the noise onset and after the target word onset, separately 772 
in the low SNR condition. Scalp topographies were examined at the timepoints, suggested by 773 
microstate analysis from Figure 5, and compared between good and poor performers, as 774 
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determined by the median split. B. A series of scatter plots showing Pearson correlation 775 
coefficients among internal SNR, early SMG, late IFG activation, and behavioral accuracy. C. A 776 
scatter plot showing the regression coefficients from a linear regression model where behavioral 777 
accuracy is the dependent variable while internal SNR, early SMG, late IFG activation are the 778 
predictor variables. *The linear model significantly predicts behavioral accuracy while internal 779 
SNR is the only significant predictor. 780 
 781 

 782 

Supplement Figure 1. Region-of-interest (ROI) based source analysis. A. Cortical labels for 
Heschl’s gyrus in left and right hemispheres. B. The time course of the t-value envelope, with the 
standard error of the mean (±1 SEM), obtained at representative voxels in each SNR condition 
(red color: +3 dB SNR, blue color: -3 dB SNR). An asterisk shows the timing of significant 
difference between +3 and -3 dB SNR conditions (paired t-test, FDR adjusted p < 0.05). C. Whole 
brain maps showing statistical contrasts (t-values obtained from paired t-tests between the two 
SNR conditions) of source activation at each voxel, only displaying those with p-value less than 
0.05. 
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