
Thermal versus Mechanical Unfolding in a Model Protein
Rafael Tapia-Rojo,1, a) Juan J. Mazo,2 and Fernando Falo3, b)

1)Instituto de Biocomputación y F́ısica de Sistemas Complejos and Departamento de F́ısica de la Materia Condensada,
Universidad de Zaragoza, 50009 Zaragoza, Spain.
2)Instituto de Ciencia de Materiales de Aragón and Departamento de F́ısica de la Materia Condensada,
CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
3)Instituto de Biocomputación y F́ısica de Sistemas Complejos and Departamento de F́ısica de la Materia Condensada,
Universidad de Zaragoza, 50009 Zaragoza, Spain

(Dated: 23 October 2019)

Force spectroscopy techniques are often used to learn about the free energy landscape of single biomolecules,
typically by recovering free energy quantities that, extrapolated to zero force, are compared to those measured
in bulk experiments. However, it is not always clear how the information obtained from a mechanically
perturbed system can be related to that obtained using other denaturants, since tensioned molecules unfold
and refold along a reaction coordinate imposed by the force, which is unlikely meaningful in its absence.
Here, we explore this dichotomy by investigating the unfolding landscape of a model protein, which is first
unfolded mechanically through typical force spectroscopy-like protocols, and next thermally. When unfolded
by non-equilibrium force extension and constant force protocols, we recover a simple two-barrier landscape,
as the protein reaches the extended conformation through a metastable intermediate. Interestingly, folding-
unfolding equilibrium simulations at low forces suggested a totally different scenario, where this metastable
state plays little role in the unfolding mechanism, and the protein unfolds through two competing pathways27.
Finally, we use Markov state models to describe the configurational space of the unperturbed protein close
to the critical temperature. The thermal dynamics is well understood by a one-dimensional landscape along
an appropriate reaction coordinate, however very different from the mechanical picture. In this sense, in our
protein model the mechanical and thermal descriptions provide incompatible views of the folding/unfolding
landscape of the system, and the estimated quantities to zero force result hard to interpret.

I. INTRODUCTION

Force spectroscopy techniques have provided a wealth
of high resolution data, which resulted in a great step
forward towards the understanding of how proteins
fold1,2. Following the classical meaning of spectroscopy, a
biomolecule is perturbed by an external mechanical bias
that induces the unfolding transition, and from which in-
formation from the biomolecule folding landscape can be
inferred. For example, in a force extension protocol, a
probe such as an AFM cantilever is retracted at constant
velocity, applying an increasing force that eventually un-
folds the protein3,4. From the relationship between the
unfolding force and the pulling velocity, we can learn
about the mechanical stability, or the unfolding path-
way of the subject molecule, including how it is modu-
lated by physiological factors, such as disulfide bonds5, or
chaperones6,7. In addition, the implementation of force-
clamp techniques allowed to apply constant forces to in-
dividual proteins and record the unfolding time of the
perturbed system8, but also to carry out equilibrium fold-
ing/unfolding experiments and explore in great detail the
folding pathways9,10, or rare events which might appear
over long timescales11–13.

a)Electronic mail: Rafa.T.Rojo@gmail.com. Current Address: De-
partment of Biological Sciences, Columbia University, New York,
NY 10027, USA
b)Electronic mail: fff@unizar.es

In this context, many theoretical models have been
developed to provide tools to analyze the experimen-
tal data and obtain physical quantities about the sys-
tem. Roughly, we can divide such theoretical efforts into
those devoted to the kinetics, and those to the equilib-
rium properties. Bell-Evans model provided a first phe-
nomenological framework which allowed to recover the
distance to the transition state and the unfolding rate
at zero force from force-extension and constant force
experiments14,15. Later refinements of this theory al-
lowed to recover also the height of the free energy barrier
at zero force16–18. On the other hand, the famed Jarzyn-
ski equality provides the estimation of equilibrium free
energy quantities19, and even allows to reconstruct the
full free energy profile from such non-equilibrium work
measurements20. Importantly, in both cases we obtain
the estimation of free energy magnitudes extrapolated to
zero force, and thus it appears tempting to compare them
directly with those obtained from biochemical experi-
ments, such as thermal of chemical denaturation3,21,22.

However, an evident question arises in this context;
how meaningful is such comparison? When folding and
unfolding mechanically, the pulling force imposes a very
specific reaction coordinate, which is the pulling vector.
As protein folding is known to be a highly complex and
multidimensional process, it is unlikely that the distance
between the N and C-terminal of a protein provides a rel-
evant order parameter to describe protein folding in the
absence of force. Even more, while at very high forces a
protein will unfold along the pulling directions, this is not
clear to be the case at low forces, where orthogonal de-
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grees of freedom might be of relevance, compromising the
use of the aforementioned theories to explain the data.

Here, we explore these questions by analyzing in high
detail the unfolding landscape of the BPN46 model pro-
tein when denatured by temperature and under a me-
chanical bias. The BPN46 protein is a highly studied non-
Go protein model, due to its rich and complex landscape.
It folds spontaneously into a β barrel-like structure, that
shows frustration in the specific arrangement of its β-
sheets, having also intermediate conformations and a
non-trivial folding mechanism when subject to force23–27.
Inspired by typical force spectroscopy protocols, we first
unfold the protein mechanically using non-equilibrium
force extension and constant force modes. These proto-
cols measure the unfolding forces and the unfolding rates
as a function of the pulling velocity and the pulling force,
respectively. By analyzing this dependence, the extrap-
olated to zero force distance to the transition state and
the height of the free energy barrier can be estimated,
assuming a simple one-dimensional pathway16–18. Fur-
thermore, the extended Jarzynski equality can be used
to reconstruct the zero-force free energy profile by sam-
pling the individual force extension trajectories20. Our
data shows that the protein unfolds by surmounting two
distinct free energy barriers, first reaching a mechani-
cal intermediate conformation, previously identified26,27.
Using the lowest pulling velocity to reconstruct the free
energy profile, we obtain a similar unfolding picture, but
with lower free energy barriers, likely to the multiple un-
folding pathways that compete at very low forces, as pre-
viously reported27.

In order to explore the folding landscape in the ab-
sence of force, we carry out equilibrium simulations in
the vicinity of the critical temperature. By using Markov
state models and transition state theory, we obtain a de-
tailed description of the conformation landscape of the
system, and the unfolding pathway. While we can re-
late structurally those states excited mechanically and
thermally, their role in the protein dynamics seems to be
completely different. The thermal unfolding mechanism
can be fairly well described as a one-directional pathway
with two well-defined intermediate states, different from
those observed in the mechanical picture. While our con-
clusions are specific to the BPN46 protein model, which
has some non-standard features for a simple protein fold-
ing model, our data exemplifies some of the problems that
might arise when directly comparing data obtained from
different denaturants. Protein folding in presence and
absence of force are very different processes; hence, it is
unclear how extrapolations to zero force inform about a
folding transition in the absence of force.

II. MODEL AND SIMULATION METHODS

The BPN46 model is a coarsed-grained non-Go protein
model23–26,57. It has a 46-residue sequence where each
residue is represented as a “colored” particle, being either

hydrophobic, hydrophilic, or neutral. The Hamiltonian
of the model is defined by four potential terms: a stiff
nearest-neighbor harmonic potential, a three-body bend-
ing interaction, a four-body dihedral interaction and a
sequence-dependent Lennard-Jones potential. This latter
term contains the sequence dependency, since hydropho-
bic residues attract to each other while every other pair
see a short-range repulsive potential.
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FIG. 1. The BPN46 model protein. (A) Representation of the na-
tive structure of the BPN46 model protein. Hydrophobic residues
(B) are shown in grey, neutral (N) in blue and hydrophilic (P) in
red. (B) Map of native contacts of the BPN46 model protein. It
has a β barrel structure arranged in 3 antiparallel and one parallel
β sheets. (C) Configuration for the pulling simulations. The pro-
tein is fixed from one end while from the other end is attached to
a linear spring of constant κ. Two different pulling protocols are
carried out. In the force extension one, the λ coordinate is linearly
increased λ = vt, where v is the pulling velocity. In the constant
force, the spring is displaced so that a constant force is applied be-
tween the ends of the protein. In contrast with λ which is a control
parameter, ξ represents the end to end distance of the protein and
is a stochastic magnitude.

The BPN46 folds spontaneously into a stable native
structure as a β-barrel constituted by four β-strands and
three neutral turns (see Fig. 1A), mimicking the fold
of other well-known domains. However, potential energy
analysis of the protein conformational landscape have re-
vealed a multiplicity of structurally similar ground states,
separated by large barriers25. The structure is held to-
gether by the interaction between strands β1 and β3,
formed by just hydrophobic residues. Figure 1B shows
the map of native contacts. The hydrophobic strands β1

and β3 run in a parallel disposition, while strands β1-β2,
β2-β3 and β3-β4 run antiparallel between them.

The behavior of this model protein as a function of
temperature and force was reported before24,26–28. It ex-
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hibits a unfolding transition, with a well-defined peak on
its heat capacity at a temperature Tc = 0.9kT .

In all simulations, we generate stochastic trajectories
by integrating numerically the Langevin equation of mo-
tion for the 46 residues,

mr̈i = −γr̈i −∇iVBPN + ηi, (1)

where m is the unitary mass of each residue, γ the friction
coefficient, VBPN the potential defined for the BPN46

model (see App. A), and ηi a gaussian white noise term
of zero average, which fulfills the fluctuation-dissipation
theorem 〈ηiηj〉 = 2kTγδ(t− t′)δij .

In the mechanical simulations, we carry out non-
equilibrium unfolding by fixing the N-terminal of the pro-
tein and attaching a linear spring of constant κ to the C-
terminal, used to apply force (see Fig. 1C). Force exten-
sion trajectories are generated by displacing the spring
at a constant velocity v, so that the control parame-
ter λ increases linearly λ = vt. Constant force trajec-
tories are generated by suddenly displacing the spring
by an amount ∆x so that it generates a constant force
F = κ∆x. In all mechanical simulations, we work at
a temperature of 0.55Tc. When working at this tem-
perature the protein unfolds mechanically at a force of
FU ≈ 20 pN. Here, we will study nonequilibrium unfold-
ing trajectories at forces above the unfolding force. A
conceptually different case is that of the folding-unfolding
equilibrium dynamics at a force below the unfolding
force, studied in detail in27 (there, T = 0.55TC and
F = 0.8FU ).

Equilibrium thermal folding-unfolding simulations are
carried out at the vicinity of the transition temperature
(1.1 Tc), to ensure the system visits the maximum num-
ber of configurations.

III. MECHANICAL UNFOLDING

A. Analysis Methods

a. Force Extension: In force extension trajectories,
the experimental output is the force as a function of
the pulling coordinate λ = ξ + F/κ. Molecular tran-
sitions are identified as rupture peaks characterized by
the rupture force, which increases with the loading rate
rf = vκ. Bells-Evans phenomenological model predicts a
logarithmic dependence of the average rupture force with
the loading rate 〈f∗〉 ∼ log(rf )14,15. Extensions of this
model predict 〈f∗〉 ∼ log(rf )ν , where ν is an exponent
that depends on the potential shape chosen to model the
irreversible rupture process: ν = 2/3 for a linear-cubic,
ν = 1/2 for a parabolic-cusp and ν = 1 for a linear po-
tential, which recovers Bell-Evans model18. Generally, it
can be argued that the linear-cubic landscape is more ap-
propriate, as close to the transition any analytic potential
tilted by a pulling force can be approximated by a linear-
cubic potential. By fitting the average rupture force 〈f∗〉

to the loading rate, the free energy barrier height ∆G†

and position x†, and the intrinsic rate k0 can be obtained
as:

〈f∗〉 =
∆G†

νx†

[
1−

(
− kT

∆G†
log

rfx
†

1.78k0e∆G†/kT

)ν]
. (2)

b. Constant Force: In constant force trajectories,
the experimental output is the end-to-end distance ξ as
a function of the simulation time. Molecular transitions
are identified as discrete increases in the extension, char-
acterized by the rate of rupture k, which increases with
the pulling force. In a similar way to what described
above, Bell-Evans model predicts an exponential depen-
dence of the rate with the pulling force. Extensions of the
model predict a more complex behavior, and fitting k(F )

allows recovering the free energy barrier height ∆G†i and

position x†i , and the intrinsic rate k0:

k(F ) = k0

(
1− νFx†

∆G†

)1/ν−1

e
∆G†
kT

[
1−(1− νFx†

∆G† )1/ν
]
. (3)

The rate of rupture can be estimated by averaging all
rupture traces and fitting to a single exponential or mul-
tiple exponentials, if more than a kinetic process is in-
volved.

c. Reconstruction of the free energy profile: From
non-equilibrium pulling experiments, the free energy pro-
file can be reconstructed by using the extended Jarzynski
expression20:

G0(ξt) = −kT log〈δ(ξ − ξt)e−∆wt/kT 〉 (4)

where G0(ξ) is the free energy profile at zero force along
the pulling coordinate ξ, and ∆wt the difference between
the external work done on the system, and the biasing

potential, ∆wt = −κv
∫ t

0
dt′ (ξ(rt′)− ξ0 − vt′). In this

sense, we take time slices and average over different tra-
jectories the work necessary to take the system there, and
estimate the free energy at that time slice.

B. Results

a. Force extension: We carry out force extension
simulations at pulling velocities between 0.002 and 0.2
nm/τ29, recording the dependence of the force with the
pulling coordinate λ. Figure 2A shows typical force ex-
tension trajectories for v = 0.004 nm/τ . Light grey lines
show three individual realizations, while the black curve
represents the average over a total of 100 trajectories.
The protein extends through two different transitions, as
every trajectory shows two peaks. We identify in the
average a first broad low force transition which leads to
λ ∼ 11 nm, and a second high force one leading a state
with λ ∼ 22 nm. We can relate the first state to the
half-stretched conformation (HS), while the second to the
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FIG. 2. Non equilibrium mechanical unfolding simulation results (in all cases T = 0.55Tc). (A) Typical force extension trajectories
at v = 0.004 nm/τ . Grey lines show individual realizations, and black line the average unfolding trajectory over 100 realizations. The
mechanical unfolding in the force extension protocol occurs through two well distinguished transitions, a first low force one at λ ∼ 5 nm
and a second high force one at λ ∼ 17 nm. (B) Average unfolding force as a function of the pulling velocity for the first transition (red)

and second transition (blue). Data points are fit to the Eq. 2 with ν = 2/3, obtaining ∆G†1 = 7.14 ± 0.51kT, x†1 = 0.96 ± 0.11nm; and

∆G†2 = 10.00 ± 1.00kT, x†2 = 0.70 ± 0.12nm. (C) Constant force trajectories at 42 pN. Grey lines correspond to individual realizations,
and black line is the average over 100 realizations. Analogously to force extension experiments, unfolding occurs through two subsequent
transitions, one yielding to an extension of ∼ 8nm and the second to ∼ 16nm. Red curve is a fit to a two-exponential model, yielding the
microscopic rates for the two kinetic transitions. (D) Unfolding rates as a function of the pulling force for the first (red) and second (blue)

transitions. Solid lines are fits to Eq. 3 with ν = 2/3, obtaining ∆G†1 = 8.54 ± 0.02kT, x†1 = 1.05 ± 0.10nm; and ∆G†2 = 12.02 ± 0.01kT,

x†2 = 0.89 ± 0.10nm. (E) Free energy profile along the end-to-end distance reconstructed from force-extension trajectories at v = 0.002
nm/τ , using the extended Jarzynski equality. The profile yields a similar picture, where the unfolding process takes place through a
mechanical intermediate with and end-to-end extension of ∼7 nm—HS conformation. However, the free-energy barrier estimated to reach
the intermediate is lower than that using the complete pulling rate range, likely since, due to the low forces involved, multiple pathways
are involved, as previously reported. (Dotted line) Tilted landscape under a force of 18 pN. (Inset) Residence time histogram along the
end-to-end distance, from which the profile is built.

fully extended conformation, following the notation pre-
viously stablished27.

Figure 2B shows the rupture forces fitted to Eq. 2,
using ν = 2/3 where red corresponds to the first event
and blue to the second one. Thus, according to this de-

scription, there is a first barrier characterized by ∆G†1 =

7.14±0.51kT and x†1 = 0.96±0.11 nm, and a second one

with ∆G†2 = 10.00± 1.00kT and x†2 = 0.70± 0.12 nm.

b. Constant force: We carry out constant force sim-
ulations at forces ranging from 20 to 42 pN. Figure 2C
shows constant force trajectories where the end-to-end
distance ξ is plot against the time for a pulling force of
42 pN. Light grey traces correspond to three individual
realizations, while the black trace is the average trajec-
tory obtained from averaging 100 realizations. Similarly
to the force extension protocol, unfolding occurs sequen-
tially through a mechanical intermediate, with an end-
to-end distance of, ξ ∼ 8 nm, in accord to the extension
of two β strands. As unfolding occurs through two ki-
netic process, we represent the average extension as a
double exponential 〈ξ〉(t) = ξ1(1 − exp(−k1t)) + ξ2(1 −
exp(−k2t)), where ξ1 is the extension of the mechanical
intermediate and ξ2 the length increment to the unfolded
states, being k1 and k2 the kinetic rates of the two pro-

ceses, respectively.

Unfolding rates obtained at different pulling forces are
fitted to Eq. 3, with ν = 2/3, where red corresponds to
the first barrier and blue to the second one. We obtain
∆G†1 = 8.54 ± 0.02kT , x†1 = 1.05 ± 0.10 nm for the first

barrier while ∆G†2 = 12.02±0.01kT , and x†2 = 0.89±0.10
nm for the second one. The values are in agreement with
those obtained for the force extension protocol.

c. Reconstruction of the free energy profile: Finally,
we use the force-extensions trajectories to reconstruct
the free energy profile along ξ by using the extended
Jarzynski equation (Eq. 4)20. Here, taking ξ = 0 as
the reference distance, the free energy at different val-
ues of ξ is estimated from the exponential average of
the non-equilibrium work required to reach that dis-
tance. Jarzynski equality has well-known convergence
problems, in particular when the data used is very far
from equilibrium—the number of trajectories needed for
convergence increase with the exponential of the dissi-
pated work. Hence, we use the slowest pulling speed
(v = 0.002 nm/τ) for the reconstruction. This landscape
is an estimation of the free energy for the unperturbed
system, and thus should be directly comparable to the
free energy barriers calculated through Eqs. 2 and 3.
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Figure 2E shows the reconstructed profile (solid line).
The unfolding mechanism suggested here agrees with
that depicted by the force-extension and constant force
simulations, since the unfolded state is reached through a
mechanical intermediate—HS configuration. These three
energy minima are more evident when tilting the land-
scape with a pulling force (dotted line). The extensions
of the three involved states match the plateaus at con-
stant force (Fig. 2C), with the native state with a ∼0 nm
end-to-end length, the HS with ∼7 nm, and the extended
state at ∼14 nm. The unfolded state is reached from the
HS state after surmounting a ∼8 kT, similar to that es-
timated in the fits of Figs. 2 B and D. By contrast, the
native and HS state appear separated by an almost neg-
ligible barrier, while the fits to Eq. 2 yielded a barrier of
∼7 kT. This discrepancy arises likely due to the very low
forces at which the transitions occur at this low pulling
velocity. As reported at low constant forces27, the con-
formational landscape of the BPN46 protein under force
is complex, and rich dynamics appear between the na-
tive and HS state, with several other metastable states
separated by very low barriers. Hence, it is likely that
at very low pulling speeds, these quasi-equilibrium tran-
sitions take place and average out the free energy profile
in the Jarzynski reconstruction, yielding to a lower free
energy barrier. Indeed, while the average force-extension
trajectory at v = 0.002 nm/τ shows two clear peaks at
forces of ∼15 and ∼ 35 pN, inspection of individual tra-
jectories reveal complex patterns of unfolding peaks be-
tween 0 and 8 nm, suggesting complex dynamics, com-
patible with those that appear at a constant low force27.

IV. THERMAL UNFOLDING

A. Thermal unfolding simulation details.

We carry out five simulations with a duration of t =
109τ each, close to the critical temperature T = 1.1Tc.
Each simulation is previously thermalized during t =
104τ , to randomize the initial conditions of each trajec-
tory. The simulation time is sufficient for the system to
adequately explore its conformational landscape in equi-
librium, given the high temperature, which leads to very
fast dynamics between all visited states. Equilibrium is
later checked on the Markov network, showing that de-
tailed balance holds.

B. Analysis Methods: Dimension reduction, Markov state
model and transition-path theory

In order to analyze the equilibrium thermal folding-
unfolding process, we represent the configurational space
of the BPN46 protein at Tc as a Markov state network30.
In this representation, the free energy landscape is shown
as a complex network, where the nodes correspond to
macrostates (free energy basins) obtained by some clus-
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FIG. 3. Comparison between PCA and TICA as dimension-
reduction methods. (A) Two-dimensional landscape projected
along the first two principal components. (B) Two-dimensional
landscape projected along the first two TICA components. Com-
pared to PCA, TICA allows to obtain better defined states that
facilitate the discretization and clustering of the trajectories, and
the calculation of the Markov State network.

tering method, while the edges—weighted and directed—
relate to the kinetic transitions between such states. In a
nutshell, building a Markov state network starts by a geo-
metrical discretization of the configurational landscape to
build a first microstate network, typically with thousands
of nodes, and hence, hard to interpret. Next, this net-
work is coarse-grained by some lumping algorithm, that
clusters those states kinetically related, to end up with
a smaller, more significant representation of the system’s
energy landscape. In our case, we use the SSD algorithm
as a clustering method27,31,32.

The full configurational landscape can have typically
several hundreds of dimensions, and a direct discretiza-
tion of it is a futile effort; hence, it is useful to reduce first
the dimensionality of the system to a few, meaningful co-
ordinates. These coordinates should yet be able to iden-
tify the large and slow conformational transitions, which
would allow to rule out the abundant and meaningless
fast fluctuations. Principal Component Analysis (PCA)
is often used as a dimension reduction method27,31–33,
since it identifies the coordinates that contain the largest
structural fluctuations about the average conformation.
However, it has been recently demonstrated that Time-
structure Independent Component Analysis (TICA) is
the optimal method for identifying the ‘slow” order pa-
rameters, since it takes into account, not only the spatial
variation between structures, but also the timescales over
which they occur34,35. In our previous work27, PCA was
sufficient to separate the main macrostates occupied by
the system along its dynamics. However, those simu-
lations were carried out at low temperature, and under
force; hence, the dynamics where intrinsically slow, given
the large free energy barriers that separated the free en-
ergy basins of the system. Here, we carry out simula-
tions close to the critical temperature in order to popu-
late the unfolded state without the need of an external
bias. Therefore, the dynamics and transitions that define
the system dynamics are much abundant and fast, and
PCA is a method likely to fail in separating the main
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conformational changes of the system.

Figure 3 compares the projection of the simulated dy-
namics along the first two PCs (A), and the first two
TICA components (B). These two components capture
the three main conformational states of the system, the
native (N), the half-extended (HE) and the unfolded
state (U). However, it is very evident by comparing both
projections, that TICA does a much better job in defining
the energy basins and free energy barriers that separate
them. The N and HE states are separated by a ∼2.5
kT barrier in the PCA projection, while this barrier is of
∼4 kT in the case of TICA. The unfolded conformation—
with a low population—only appears as a spatially spread
state (given its large entropy) in the TICA projection,
while its representation in the PCA projection is much
dimmer. Finally, along the second TICA coordinate, the
HE shows multiple states associated to similar confor-
mations separated by small energy barriers, that are not
separated with PCA. Hence, this demonstrates the need
to use TICA to find meaningful order parameters to build
the Markov network.

We use the first three TICA components as our con-
figurational space, and discretize them into 30 bins, ob-
taining a microstate network with 6657 nodes connected
through 228682 links. We then lump the microstates
onto kinetically significant macrostates by applying the
SSD algorithm. We obtain a first ‘raw” macrostate net-
work with 45 basins of attraction of macrostates. We
refine such network, eliminating basins with an occupa-
tion πi < 10−4, to avoid extremely rare or pathological
states. The final macrostate network is made up of 21
nodes, and we take it as the representation of the free
energy landscape of the system.

From the equilibrium Markov state network, we can
calculate precisely the unfolding pathways by applying
transition-path theory36–38. Briefly, we start defining the
set of native conformations (N) and the set of unfolded
conformation (U). Next, we will rank all other states,
as intermediates I between N and U, depending on how
close they are to the unfolded conformation in terms of
unfolding pathways. To this aim, we calculate the com-
mittor probability (or unfolding probability) q+

i of each
state (being q+

N = 0 and q+
U = 1 by definition) as the

solution for the system of equations:

−q+
i +

∑
k∈I

Tikq
+
k = −

∑
k∈B

Tik, (5)

where Tik is the rate matrix of the Markov network. Intu-
itively, q+

i represents the probability that, state i reaches
the unfolded conformation U before reaching back the
native state N. Then, we compute the unidirectional flux
to the unfolded state as f+

ij = max[0, fij − fji], where

fij = πi(1 − q+
i )Tijq

+
j . f+

ij defines a network of fluxes
from the native N to the unfolded U configurations, from
which we extract the individual unfolding pathways.

C. Results
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FIG. 4. Fragment of the simulated trajectories along different or-
der parameters, with their projected one-dimensional landsacpe.
(A) Trajectory along the first TICA coordinate. (Inset) detail
where the three main states are identified. (B) One-dimensional
landscape along the first TICA coordinate. (C) Trajectory along
the second TICA coordinate. (D) One-dimensional landscape along
the second TICA coordinate. (E) Trajectory along the fraction of
native contacts. (F) One-dimensional landscape along the fraction
of native contacts.

a. One dimensional free energy landscapes. Figure
4 shows a fragment of the simulated trajectories pro-
jected along three different order parameters, the first
and second TICA components (Figs. 4A and C), and
the fraction of native contacts (Fig. 4E). These frag-
ments represent only 1% of the total simulated time,
which demonstrates that the system explores its land-
scape in a much faster timescale than the simulated time
window. Right panels are the one-dimensional landscape
as obtained from each coordinate. The first TICA com-
ponent separates the transitions between the three major
states, the native (N), half-extended (HE), and unfolded
(U) states. Most of the dynamics correspond to very fast
transitions between the (N and (HE) states, with occa-
sional visits to the unfolded state. The (N) state has
a narrow free energy basin (Fig. 4B), while the (HE)
state appears as shallower basin, likely due to the pres-
ence of multiple conformations, that will be resolved in
higher order TICA components. This suggests that, even
though the native state of the system is frustrated, such
frustration is removed at the simulation conditions, likely
due to the high temperature that sheds the free energy
barriers between the multiple ground states. The second
TICA coordinate maintains the transitions to the un-
folded state, while it shows a much richer conformational
landscape, resolving more subtle structures around the
(HE) state. Finally, the fraction of native contacts (Q),
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is useful to identify the states populated by the dynam-
ics, since it indicates intuitively the degree of nativeness
of the states. However, it does not provide a good re-
action coordinate to represent the dynamics, since most
minima are shallow basins, separated by small barriers,
suggesting that multiple states might be averaged out
when projecting onto this coordinate.

b. The equilibrium Markov state network: Figure
5A shows the macrostate network, calculated as ex-
plained above. The size of the nodes is proportional to
their population with a cutoff of πi < 10−2, below which
beads have the same size, for visualization reasons. Links
with Tij > 10−5τ−1 are represented as arrows connect-
ing states. We calculate the fraction of native contacts
Q of each node (see Table 1), which allows us to clus-
ter them into six major regions, represented in differ-
ent colors: The native state (N) (Q ≈ 0.8; blue); the
half-extended configuration (HE) (Q ≈ 0.5; red); the
collapsed ensemble (C), (Q ≈ 0.3; green); the first in-
termediate state (I1) (Q ≈ 0.2; yellow) the unstructured
ensemble (UE) (Q ≈ 0.2; purple), the second interme-
diate state (I2) (Q ≈ 0.1; magenta), and the unfolded
ensemble (U) (Q ∼ 0; black).

When comparing with the unfolding mechanism de-
scribed for the non-equilibrium pulling simulations, be-
sides the native and unfolded state, we find the HE con-
figuration, which resembles the mechanical intermediate
described in the landscape of Fig. 2E. Both the HE
(thermal) and HS (mechanical) states maintain the core
structure and show strand β4 extended. In the thermal
network, the HE conformation has πHE = 0.53, and is
heavily connected to the native conformation, with fast
transitions between them THE,N ≈ 3 × 10−5τ−1. This
is similar to the almost barrierless landscape we encoun-
tered in the mechanical description in Fig. 2. Addition-
ally, we identify two states that play a central role in
the folding/unfolding dynamics; state I1—which main-
tains the hydrophobic interactions present in the native
interactions between β strands 1 and 3, providing 30% of
the native contacts—and the state I2—which maintains
little structural similarity with the native state, since the
hairpin formed by the weak interactions between the hy-
drophobic residues in β strands 1 and 2 is the only motif
that survives from the native conformation. These two
states are bottlenecks in the pathways connecting the na-
tive and unfolded states, and removal of any of them will
disconnect both ensembles.

c. Free energy profile along the commitor probability:
The committor probability q+

i , or unfolding probability
punfold, is often argued to be the appropriate reaction
coordinate for describing (un)folding transitions37. In
this sense, we can project the simulated trajectories onto
punfold, and calculate a free energy profile along it.

Figure 5B shows the free energy profile along punfold,
where the points correspond to actual free energies es-
timated by binning punfold with a bin size of 0.05, and
the solid line is an interpolation to visualize a smooth
landscape. All states belonging to the native (N),

TABLE I. Magnitudes characterizing the states detected in
the equilibrium network. We characterize the states with
their occupation πi, fraction of native contacts Q, unfolding
probability, and mean escape time te (in τ dimensions).

State πi Q punfold te (τ × 103)

N 0.291 0.82 0.00 14.30
HE 0.372 0.51 0.00 13.70
C 0.264 0.33 0.00 6.25
I1 0.068 0.23 0.14 3.50
UE 0.002 0.19 0.27 1.53
I2 0.036 0.14 0.46 3.92
U 0.002 0.06 0.95 1.80

half-extended (HE) and collapsed (C) ensembles ap-
pear lumped onto the same free energy minimum, with
punfold ∼ 0. This indicates that the majority of the sys-
tem dynamics involves internal transitions among these
three ensembles, that do not lead to unfolding. The in-
termediate state (I1) is the first relevant minimum, with
punfold ∼ 0.15. This procedure allows us to identify the
transition state as that with 50 % probability of unfold-
ing, which corresponds to the state labeled as I2 in the
landscape network.

d. Unfolding pathway: By applying TST, we can
determine the unfolding pathways by converting the
Markov state network shown in Fig. 5A into a one-
directional flux network that connects the native state
(N) with the unfolded ensemble (U). Figure 5C shows the
unfolding network, depicted from left to right in terms
of increasing q+, where arrows connecting states have a
thickness which is proportional to their flux f+

ij , being

only those connections with f+
ij > 10−7 represented for

visualization reasons.
As suggested by the landscape network, thermal un-

folding occurs in a one-dimensional way, where states I1

and I2 are bottleneck nodes, that concentrate the un-
folding flux. Most of the dynamics between states N, HE
and C correspond to conformational changes that do not
drive unfolding. However, we can identify states C2 and
C3 (belonging to the collapsed ensemble) as precursors of
the intermediate I1, that eventually leads to state I2, and
the unfolded state. In this sense, the flux network sug-
gests that the folding/unfolding equilibrium transitions
of the protein follow a one-dimensional dynamics, where
punfold works indeed as a good reaction coordinate. This
unfolding dynamics, although one dimensional as that
described in Fig. 2 when applying large forces, follows a
very different pathway from the nonequilibrium mechani-
cal unfolding. The half-stretched conformation–to which
HE can be ascribed as the non-tensioned homologous–
played a very clear role as a mechanical intermediate, as
shown in the free-energy profile reconstruction. However,
the one-dimensional landscape here has a very different
structure, and the state HE, although kinetically rele-
vant, does not play a significant role in the unfolding
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FIG. 5. Markov state model of the BPN46 model protein close to the critical temperature. (A) Conformational macrostate network
at T = 1.1Tc. Each macrostate is represented as a bead which size is proportional to its population (although states with population
π < 10−2 are represented as beads of same size). Arrows represent observed transitions between states. Most representative structures
are shown next to the associated state. The free energy landscape can be clustered in six major conformational regions, represented
by the colors in the beads. (B) Free energy profile along the punfold reaction coordinate. Data points are the clustered histogram from
projecting the Markov network onto the reaction coordinate, and the solid line is an interpolation to depict a smooth landscape. (C)
Folding pathways as obtained by applying TPT to the macrostate network. Folding/unfolding occurs in a very one-dimensional fashion,
being bottleneck states of the unfolding pathway.

pathway. Interestingly, this simple pathway contrasts
greatly to the dynamics exhibited by the protein when
a small mechanical force is applied. Mechanical forces
seemed to excite conformations that do not appear in the
absence of force, and thus created a much more complex
unfolding dynamics, that could not be described through
a one-dimensional landscape27.

V. DISCUSSION

The results presented in this work, together with
those previously published27, present a threefold vision
of the unfolding mechanism of the BPN46 model pro-
tein; while we previously described the equilibrium land-
scape at low force, here we present the landscape ex-
trapolated to zero force from non-equilibrium pulling
simulations—analogous to what often done in force spec-
troscopy experiments—and an equilibrium landscape ob-
tained from thermal simulations. When comparing these
three landscapes, some similarities appear between the
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unfolding processes, and, more notably, irreconcilably
differences.

The BPN46 is a simple protein model, that, however,
exhibits a complex and rich conformational landscape,
including a frustrated ground state, intermediates, or
a multidimensional folding mechanism26,27,39,40. There-
fore, our results must be understood as an exemplifica-
tion of the dichotomy that might arise when compar-
ing folding mechanisms through different denaturants,
such as force and temperature. Interestingly, in every
of the unfolding protocols we have used, we recover a
similar metastable state, which we dubbed the HS con-
figuration in the mechanical simulations, and HE config-
uration in the thermal landscape. This state maintains
the hydrophobic core between β-strands1-3, with the β-
strand4 dislodge from the structure. The prevalence of
this conformation in every landscape illustrates a simi-
larity between the landscapes recovered through different
techniques. However, the role of this state in the fold-
ing/unfolding mechanisms is very different, depending on
the protocol we use. In non-equilibrium unfolding simu-
lations, the HS conformation appears as a clear mechan-
ical intermediate, and the pulling trajectories reflect the
need to surmount two free energy barriers to reach the
stretched state (Fig. 2). These barriers can be estimated
using the Dudko-Hummer-Szabo theory18, resulting in a
∼7-8 kT barrier separating the native and HS conforma-
tion. However, in the absence of force, this analogous
state appears as a relevant metastable with little role in
the unfolding mechanism, similar to what found in equi-
librium simulations at very low forces27. This indicates
that the mechanical regime used to trigger unfolding can
also alter the pathway the protein explores, preventing
the use of extrapolations to zero-force. Indeed, the re-
construction of the one-dimensional profile using the ex-
tended Jarzynski equality reveals a small first barrier,
likely due to the competence of several transitions that
occur at very low force.

In this sense, the role of mechanical forces in driving
protein unfolding must be extrapolated with caution, not
just when establishing parallelisms or comparison with
unfolding driven by other denaturants (either thermal
or chemical), but also when comparing mechanical un-
folding under different protocols. Here, we have shown
how, surprisingly, the thermal unfolding mechanism of
the BPN46 protein is rather simple; while it exhibits
rich dynamics between different metastable states such
as the HE or the C ensemble, the protein unfolds in a
one dimensional way, with two well defined intermediate
states (I1 and I2). However, when low forces are applied
such that we allow equilibrium transitions between the
folded and unfolded states—similar to what it is possi-
ble to do with force-clamp spectroscopy techniques—the
unfolding mechanism is rather complicated. Contrary
to what could be intuitively predicted—since the force
should impose a reaction coordinate and thus the un-
folding mechanism could be easily described by this geo-
metrical coordinate—the unfolding mechanism gets more

complicated, and roughly two major unfolding routes can
be identified27. When the magnitude of the force is in-
creased so that the equilibrium is shifted to the unfolded
conformation, the intuitive behavior arises, and the pro-
tein unfolds through the end-to-end reaction coordinate.
This implies that the effect of force on the landscape of
this protein cannot be modeled over the whole range as
a simple linear perturbation with a −fx term, as com-
monly done.

Since the advent of force spectroscopy techniques,
free energy quantities extracted from pulling experi-
ments have been usually contrasted with those extracted
from bulk experiments, such as chemical or thermal
denaturation3,22,41–43. This comparison implicitly as-
sumes a simple two-state one-dimensional folding land-
scape, which, while can be reasonable for some systems
over a certain scale, should not be generalized. Force
is a unique denaturant, since it imposes a topological
constraint on the tethered molecule, and defines a very
specific reaction coordinate, which might not be relevant
in the absence of force. Indeed, mechanical pulling ex-
periments and simulations have been shown to reproduce
very different dynamics compared to those exhibited in
the absence of force21,44–48. For instance, downhill pro-
teins are relevant for folding in solution over a marginal
free energy barrier, contradicting the classic two-state
picture49–51. However, recent force spectroscopy experi-
ments on the gpW downhill protein showed that, under
force, this proteins transitions between the folded and
unfolded state with two-state dynamics over a barrier
of about 2.5 kT52. In this sense, recent instrumental
development have increased the resolution at which we
can interrogate a folding protein, revealing a much more
complex scenario than what typically assumed. Pro-
tein L, a very classic two-state folder, folds through a
ephemeral molten globule-like state that lasts few mil-
liseconds, and therefore is only captured through over
very short force quenches9. Additionally, the new access
to very long timescales, allowed exploring unfolding at
low forces, and showing non-monotonic dependences of
the unfolding rates with force, which can be interpreted
as a multipathway unfolding mechanism53,54. Therefore,
while our studies here deal with a specific protein model
with very particular features, our data exemplifies the
dichotomy that can arise, not only when unfolding me-
chanically and thermally a protein, but also when under-
standing this mechanism over different force ranges.

In summary, our works provides a practical case of a
simple protein that, however, exhibits complex unfolding
dynamics that depend strongly on the protocol used to
unfold it. Non-equilibrium mechanical protocols as those
typically used in single molecule pulling experiments re-
veal one-dimensional unfolding through a mechanical in-
termediate, that, however, does not play any role in the
unfolding pathway, neither at low or in the absence of
force.
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Appendix A: Model parameters and simulation procedures

We use the same model protein employed in27. The
interaction between residues account for four terms, an
stiff harmonic nearest neighbor interaction, a three-body
bending interaction, a dihedral four-body interaction,
and a sequence-dependent Lennard Jones potential, this
is:

VBLN =
1

2
K

N−1∑
i=1

(ri,i+1 − r0)
2

+

N−2∑
i=1

[A cos θi +B cos 2θi − V0]

+

N−3∑
i=1

[Ci (1 + cosφi) +Di (1 + cos 3φi)]

+
∑
ij

εij

(
1

r12
ij

− cij
r6
ij

)
,

where rij is the distance between residues i and j, θi
is the angle between three contiguous residues, and φ the
dihedral angle. The sequence-independent parameters
for the model are K = 50, r0 = 1, A = 5.118, B = 5.308,
V0 = −5.295, while the sequence-dependent: Ci = 0 and
Di = 0.2 if two or more residues are neutral, or Ci =
Di = 1.2 otherwise; while the Lennard-Jones: cij = 0,
εij = 4 if either i or j are neutral, cij = 1, and εij = 4
if i and j are hydrophobic, and cij = −1, and ε = 8/3
otherwise, all adimensional units.

Physical units are estimated in the following way.
Length units are recovered assuming that the distance
between α carbons in a protein is 0.38 nm. The energy
units are defined assuming the energy of a hydrogen bond
ε ≈ 1.7kT , which defines force units as F̃ ≈ 17.3pN .
Mass units assume the average mass of an aminoacid
ma ≈ 3 × 10−22kg. Thus, time units can be defined,
as: τ =

√
mar2

0/εH ≈ 3 ps.
We carry out all simulations using a self-written code,

integrating the overdamped Langevin equations using a
stochastic second order Runge-Kutta algorithm55. The
integration step is ∆t = 0.005τ .
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