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Abstract 22 

Head motion remains a challenging confound in functional magnetic resonance imaging (fMRI) studies 23 

of both children and adults. Most pediatric neuroimaging labs have developed experience-based, child-24 

friendly standards concerning e.g. the maximum length of a session or the time between mock scanner 25 

training and actual scanning. However, it is unclear which factors of child-friendly neuroimaging 26 

approaches are effective in reducing head motion. Here, we investigate three main factors including (i) 27 

time lag of mock scanner training to the actual scan, (ii) prior scan time, and (iii) task engagement in a 28 

dataset of 77 children (aged 6-13) and 64 adults (aged 18-35) using a multilevel modeling approach. In 29 

children, distributing fMRI data acquisition across multiple same-day sessions reduces head motion. In 30 

adults, motion is reduced after inside-scanner breaks. Despite these positive effects of splitting up data 31 

acquisition, motion increases over the course of a study as well as over the course of a run in both 32 

children and adults. Our results suggest that splitting up fMRI data acquisition is an effective tool to 33 

reduce head motion in general. At the same time, different ways of splitting up data acquisition benefit 34 

children and adults.  35 

Keywords 36 

movement, data quality, pediatric neuroimaging, mock scanner training, study design, development 37 

 38 

Highlights 39 

• In children, fMRI data acquisition split into multiple sessions reduces head motion 40 

• In adults, fMRI data acquisition split by inside-scanner breaks reduces head motion 41 

• In both children and adults, motion increases over the duration of a study  42 

• In both children and adults, motion increases over the duration of a run 43 

  44 
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1 Introduction 45 

“Please remember: Relax and try not to move. Here we go.” In functional magnetic resonance 46 

imaging (fMRI) experiments, this is often the last thing the researcher says before starting the scanner 47 

and the experiment. What is left to do is hoping for good quality data. As MRI is very susceptible to 48 

head motion during the scan (Friston et al., 1996), hoping for good quality data is often equivalent to 49 

hoping for data with low head motion. The importance of reducing head motion during data 50 

acquisition has been impressively documented in several studies showing that head motion can lead to 51 

misleading results (in some cases, even after retrospective motion correction; Power et al., 2012; 52 

Satterthwaite et al., 2012; van Dijk et al., 2012).  53 

In pediatric neuroimaging studies, the general problem of head motion is especially 54 

challenging. Despite children’s high motivation to lie still, in most studies children still move more 55 

than adults. This poses a problem for data quality in pediatric neuroimaging especially for group 56 

comparisons between children and adults. Even with retrospective head motion correction (which is 57 

limited in its ability to correct for motion Field et al., 2000; Freire and Mangin, 2001; Friston et al., 58 

1996), group differences in head motion often persist. This usually leads to the exclusion of motion-59 

affected runs or participants from data analysis (e.g. Meissner et al., 2019; Nordt et al., 2018; Walbrin 60 

et al., 2020), hence requiring additional time and research funds to achieve an adequately powered 61 

study design.  62 

To minimize motion during data acquisition, various solutions have been developed. For 63 

structural MRI scans in clinical settings, sedation is often used. However, this is not an option for 64 

fMRI studies in research settings due to the need for attentive participants as well as the unacceptable 65 

risk of health-related side effects (Bie et al., 2010). One set of solutions for fMRI studies aims at 66 

restraining head motion physically. Restrictive approaches including bite bars (Menon et al., 1997) or 67 

thermoplastic face masks (Green et al., 1994), are considered effective for short scan durations. 68 

However, they reduce comfort and are therefore seldomly accepted in pediatric neuroimaging. In 69 

contrast to the desired outcome, the discomfort of these methods can also lead to more fidgeting and 70 

wiggling in search of comfort (Zeffiro, 1996), especially for longer scans. Approaches that use 71 
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individually 3D-printed styrofoam head molds are effective and said to be comfortable (Power et al., 72 

2019), but require additional time and research funds for each participant. A less resource-intensive, 73 

yet effective and accepted solution, is to provide tactile feedback about participant’s head motion by 74 

applying a tape or ribbon across the head coil that touches the participant’s forehead (Krause et al., 75 

2019).  76 

Aside from physical constraints, pediatric neuroimaging groups often adapt the study 77 

procedure to reduce children’s motion during data acquisition. The most prominent tool is to precede 78 

the actual MRI session(s) with a scanner training session (Raschle et al., 2009; Slifer et al., 1993). 79 

Scanner training sessions are usually performed in a mock scanner, a custom-built or purchased 80 

facsimile of a real MRI, which lacks the technical capability to acquire actual data, but can play 81 

scanner sounds and has a similar setup to the real scanner (e.g. head coil-mounted mirror, response 82 

buttons, etc.). During these sessions, behavioral training is used to teach lying still in the scanner bore 83 

and responding to the task. There is a general consensus that a scanner training session is beneficial for 84 

fMRI data acquisition as it reduces children’s anxiety (Durston et al., 2009; Raschle et al., 2009; 85 

Rosenberg et al., 1997). While a reducing effect on head motion is also assumed, the current literature 86 

has not been able to show this (due to a lack of control groups that did not receive scanner training; but 87 

see Barnea-Goraly et al., 2014; Bie et al., 2010; Epstein et al., 2007 for success rates and reduced 88 

motion after scanner training). 89 

Similarly, many pediatric neuroimaging groups have established experience-based guidelines 90 

for child-friendly study designs in terms of the scanning procedure. These usually include keeping 91 

runs short, interspersing anatomical scans as task-free inside-scanner breaks while presenting 92 

entertaining video clips, and limiting the total scanning session time. Moreover, based on findings in 93 

adults (Huijbers et al., 2017), tasks are designed in an engaging and interactive way rather than just 94 

requiring passive perception of stimuli. In consequence, a small body of literature has developed that 95 

recommends scanning procedures for pediatric neuroimaging (e.g. Greene et al., 2016; Habibi et al., 96 

2015; Raschle et al., 2009). However, as for scanner training, the contribution of presumably child-97 
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friendly adaptations in scanning procedures on minimizing head motion has not been investigated so 98 

far.  99 

The present study set out to identify which fMRI study procedures contribute to reduced head 100 

motion in fMRI studies. Our aim was to generate data-driven suggestions to optimize study procedures 101 

for children and adults separately. To this end we utilized head motion estimates derived from a 102 

standard motion correction pipeline applied to 77 children and 64 adults from three fMRI studies at 103 

two sites, and notes that yielded demographic data, the date of scanner training, and the sequence of 104 

data acquisition. Using separate multilevel linear models for children and adults, we investigated the 105 

effect of splitting up data acquisition into several days or sessions, the effect of interspersing 106 

functional data acquisition with structural runs and video clip breaks, the effect of time between 107 

scanner training and the actual scan, and the effect of task engagement.  108 

  109 
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2 Methods 110 

2.1 Definition of session, run, and functional segment 111 

In this article, we make important distinctions between “session”, “run”, and “functional 112 

segment”. Session corresponds to a continuous period of time spent inside the scanner. A session 113 

begins upon entering the scanner and ends as a participant leaves the scanner. For example, if a 114 

participant enters the scanner, takes a break outside the scanner and re-enters the scanner, this would 115 

constitute two sessions. Run corresponds to a continuous image acquisition sequence. For example, a 116 

participant could complete an experiment with four fMRI runs within a single session. Functional 117 

segment corresponds to a period of consecutive acquisition of functional runs inside the scanner. For 118 

example, if a scan procedure involves an anatomical T1-scan, three fMRI runs, two diffusion-weighed 119 

imaging (DWI) sequences, and finally four more fMRI runs, this participant has completed two 120 

functional segments. 121 

2.2 Participants 122 

Our study included data from two neuroimaging centers (see 2.3, Neuroimaging) and three 123 

developmental cognitive neuroimaging studies, a total 680 runs from 77 children and 624 runs from 64 124 

adults. Some of the data has been used to answer questions concerning the neurocognitive visual and 125 

social development in children and adults previously (Meissner et al., 2019; Nordt et al., 2018; 126 

Walbrin et al., 2020). The final analyzed data set was reduced to 626 runs from 77 children and 470 127 

runs from 54 adults due to several exclusion criteria (see 2.5, Data exclusion). In children, the number 128 

of runs per participant ranged from 1 – 14 (M = 8.13, SD = 3.21), in adults, the number of runs per 129 

participant ranged from 4 – 14 (M = 8.70, SD = 3.33). Children’s age ranged from 6.78 – 13.01 years 130 

(M = 9.52, SD = 1.68), adult’s age ranged from 18.41 – 35.02 years (M = 21.76, SD = 2.67). All 131 

participants were healthy, had normal or corrected-to-normal vision, and had been born at term. No 132 

participant reported past or current neurological or psychiatric conditions, or had structural brain 133 

abnormalities. All participants as well as children’s parents gave informed and written consent to 134 

participate voluntarily. 135 
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2.3 Neuroimaging  136 

fMRI took place at the Neuroimaging Centre of the Research Department of Neuroscience at 137 

Ruhr University Bochum and the Bangor Imaging Centre at Bangor University. At Bochum, a total of 138 

338 runs in 50 children and 346 runs in 40 adults were acquired—at Bangor, a total of 188 runs in 27 139 

children and 123 runs in 14 adults were acquired. At both sites, 3.0T Achieva scanners (Philips, 140 

Amsterdam, The Netherlands) and 32-channel head coils were used (Supplementary Figure S1). For 141 

all fMRI, we used blood oxygen level dependent (BOLD) sensitive T2*-weighted sequences. Across 142 

sites and experiments, the following fMRI acquisition parameters were constant: FOV = 240 mm × 143 

240 mm, matrix size = 80 × 80, voxel size = 3 mm × 3 mm × 3 mm, TR = 2000 ms, TE = 30 ms. 144 

However, slice gap (Bangor: 0 mm, Bochum: 0.4 mm), number of slices (Bangor: 32, Bochum: 33), 145 

slice scan order (Bangor: ascending, Bochum: ascending interleaved), and flip angle (Bangor: 83°, 146 

Bochum: 90°) differed between sites. Visual stimuli were presented via a VisuaStim Digital goggle 147 

system (FOV: 30° × 24°, 800 × 600 pixel, Resonance Technology Inc., CA, USA) in Bochum and via 148 

a MR-safe monitor and mirror system (FOV: 25.92° × 16.90°, 1920 × 1200 pixel; Cambridge 149 

Research Systems, UK) in Bangor. Due to the visual isolation inherent with the goggle system, a 150 

researcher was present next to the scanner bore opening at all times for immediate verbal contact and 151 

motion feedback in Bochum, but not in Bangor.  152 

For each study, a certain number of functional runs and structural scans were planned. Details 153 

on the experiments that were done during the functional runs as well as the number of participants and 154 

runs for each of the tasks are given in the Supplementary Text S1 and Supplementary Table S1. In 155 

adults, experimenters followed this protocol, checking in with participants after the completion of each 156 

experiment (i.e. after multiple runs) to explain what would happen next and only stopped or diverted 157 

from protocol if participants actively reported feeling unwell. In contrast, in children, we checked in 158 

with participants after each run to actively inquire about their well-being. Moreover, nearing the end of 159 

a session, we also actively asked if they still felt good and ready to do another run. This was done in 160 

order to give children the opportunity to express any signs of discomfort, which to our experience 161 

children do not necessarily utter spontaneously but sometimes only after encouraging them to be open 162 
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about it or giving them an explicit opportunity. Thus, we dynamically decided when to break up 163 

acquisition into sessions or days, when to intersperse tasks with a structural scan accompanied by an 164 

entertaining video, or when to end the study. 165 

2.4 Scanner training 166 

All children underwent a scanner training in order to familiarize them with the scanner 167 

environment and achieve high-quality scans with as little motion as possible (Supplementary Figure 168 

S1). At both scanner sites, pre-recorded audio of MRI acquisition sequences was played during 169 

scanner training to simulate the real scanner environment and visual stimulation was achieved through 170 

a mirror system targeted at a monitor outside of the mock scanner bore.  171 

In other aspects, training sessions differed between sites. In Bangor, scanner training was 172 

conducted right before scanning and entailed lying inside a mock scanner with a motion sensitive 173 

electrode placed on the forehead to measure movement across three translation and three rotation axes 174 

(MoTrak Head Motion Tracking System; Psychology Software Tools, 2017). Children received visual 175 

motion feedback via an on-screen cursor that was controlled by children’s head movements. Children 176 

were instructed to lie still and keep the cursor in the middle of a target circle, whose diameter allowed 177 

for 3 mm head translations in any direction. Once children were able to keep the cursor within this 178 

target region for a timed period of 30 seconds, children watched a short animated video. When 179 

movement exceeded 3 mm translation, video playback was paused, providing immediate feedback that 180 

they had moved too much. Once children were able to watch the video for a period of 2 minutes 181 

without a video pause, scanner training was completed.  182 

In Bochum, scanner training was conducted between one to ten days before the MRI study for 183 

the majority of participants (n = 48). A minority was trained on the same day as the first scan (n = 1) 184 

or between 12 to 35 days before the first scan (n = 7). Training began with sitting on the extended 185 

mock scanner bed, watching a short animated video that introduced a cover-story explaining the tasks 186 

to be performed inside the scanner, and practicing these tasks (button-press). This was followed by 187 

explaining and demonstrating the procedure of entering an MRI scanner with a large puppet. Next, 188 
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children entered the mock scanner bore, watched a short animated video and performed several 189 

practice trials of the tasks presented on a screen that was visible via a mirror system. The researchers 190 

gave feedback with respect to the level of movement and task performance throughout the scanner 191 

training session. It was established that a researcher would gently touch the children’s shin in case of 192 

excessive motion as a means of motion feedback. Verbal feedback was gradually decreased 193 

throughout the session. As head motion during the mock scanner session in Bochum was not 194 

quantified, feedback was based on the experimenter’s observation of children’s head motion. Once the 195 

researcher decided that motion levels were acceptable and the tasks were understood, scanner training 196 

was completed. 197 

2.5 Data exclusion 198 

Our initial dataset encompassed all completed fMRI runs of two developmental cognitive 199 

neuroscience studies conducted in Bochum and one in Bangor. Aborted runs (e.g. due to technical 200 

errors) were not included, as they were not retrieved from the MRI-controlling computer and not 201 

reliably recorded in handwritten notes. To ensure that our results are valid and interpretable, we 202 

excluded data that would have biased our analyses (Figure 1).  203 

In a first step, we excluded ten participants (110 runs) from Bangor that were recorded with 204 

Figure 1: Data exclusion steps and resulting sample sizes 
for children (left, dark gray) and adults (right, light gray). 
Main box widths are in relation to the original total number of 
runs. Box segmentation mirrors the relative distribution of 
adult vs. child participants or runs, respectively. 
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different acquisition parameters, i.e. with a slice thickness of 3.5 mm instead of 3.0 mm. This 205 

difference in voxel size along the z-axis would affect three out of the six motion estimation parameters 206 

(rotation around the y-axis, rotation around the x-axis, and translation along the z-axis) during motion 207 

correction, leading to systematically larger motion estimates. In a second step, we excluded 56 runs 208 

that did not reflect first-time fMRI experience. Four participants had participated in both Bochum 209 

fMRI studies that are included in our analysis. Participation in both studies was separated by 2-18 210 

months. To control for possible confounding effects of prior scanning experience on motion, we 211 

excluded all runs of their second fMRI study participation. Implementing this control step ensured that 212 

we report on the rather typical case—at least for children—of a first-time MRI study participant. Note 213 

that we could not rule out the possibility that participants took part in an MRI study of a different lab 214 

before, although this is highly unlikely for children and most adults at our neuroimaging centers. In a 215 

last step, we excluded 42 resting-state runs. Resting-state runs were only acquired in one of the three 216 

studies, only once per participant, and in the majority of cases the run was acquired at the end of a 217 

session. Moreover, resting-state runs were the only runs in which participants had their eyes closed 218 

during acquisition. This unique set of circumstances makes resting-state runs very likely to bias our 219 

results, as there is not enough data to efficiently model this set of circumstances, e.g. as an 220 

independent variable.  221 

2.6 Head motion estimation 222 

To estimate head motion during fMRI scans, we used the neuroimaging software package 223 

BrainVoyager (Version 20.2 for 64bit Windows, RRID: SCR_013057). First, fMRI run series in 224 

DICOM format were converted to the proprietary STC and FMR format using BrainVoyager scripts. 225 

Then, we applied BrainVoyager fMRI data preprocessing tools in their default settings. That is, for 226 

slice scan time correction, we used cubic spline interpolation. For 3D motion correction, we used a 227 

trilinear detection and sinc interpolation approach with a maximum of 100 iterations to fit a volume to 228 

the reference volume. Resulting motion log files contained six timeseries representing the estimated 229 

volume-wise instantaneous translation and rotation for axes x, y, and z in reference to the first volume 230 

of the respective experiment.  231 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 4, 2020. ; https://doi.org/10.1101/816116doi: bioRxiv preprint 

https://doi.org/10.1101/816116
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

For each of the six motion parameters, we calculated a timeseries of volume-to-volume 232 

motion, i.e. the difference between each volume’s motion parameter and the previous volume’s motion 233 

parameter. Rotational motion was converted from degree to millimeter by calculating displacement on 234 

the surface of a sphere of 50 mm radius (approximating the distance from the center of the head to the 235 

cortex; Power et al., 2012). The framewise displacement of the head position (FD) was calculated as 236 

the sum of the absolute volume-to-volume motion values (Power et al., 2012). FD was shown to have 237 

a strong association with motion-induced artifacts (Ciric et al., 2017). For each run, we calculated the 238 

mean FD.  239 

Moreover, for discrete one-minute-intervals (i.e. 30 volumes) within runs, we calculated the 240 

percentage of high-motion volumes with FD above the threshold of 0.3 mm (volume-to-volume). This 241 

threshold for high-motion volumes was determined by extensive exploration of our data before any 242 

statistical analysis, and aimed at capturing motion “spikes” without impacting the motion “floor” 243 

volumes as done previously (Power et al., 2019; Power et al., 2012) and resulted in plausible ratios of 244 

high-motion volumes for children (M = 12.80 %, SD = 20.89 %) and adults (M = 4.48 %, SD = 12.10 245 

%). For a visualization of the high-motion volume threshold, see Figure 2. The two head motion 246 

measures—mean FD per run and frequency of high-motion volumes per minute of a run—were 247 

investigated in separate analyses. 248 

Figure 2: Framewise displacement (FD) of the head in mm 
in three example children and  adults (gray writing = 
participant IDs). For each participants, one representative 
run was chosen to show the high-motion volume threshold 
(red horizontal dashed line). Gray vertical lines indicate the 
one-minute-intervals, for which the percentage of high-
motion-volumes was calculated. 
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2.7 Predictor variables 249 

Our study did not aim to examine age group differences between children and adults, but to 250 

provide guidelines for practitioners and researchers who conduct pediatric neuroimaging examinations 251 

and/or experiments that might also include adult control groups. Thus, we report separate analyses for 252 

children and adults. This approach enabled us to include two more predictor variables (PVs) for 253 

children, as adults did not perform scanner training and we did not expect age effects in our range of 254 

18-35-year-old adults. For each age group, we assessed two head motion measures with up to eight 255 

possible predictors.  256 

2.7.1 Mean FD 257 

In our first analysis, we asked which factors would influence the mean motion during a run. 258 

Seven PVs were evaluated:  259 

• PVs 1-4) Prior scan time encoded the time in minutes that a participant had been in 260 

the scanner already. That is, the summed scan time of all functional as well as 261 

structural runs that had been administered 1) since the beginning of the functional 262 

segment, 2) since the beginning of the session, 3) since the beginning of the day, or 4) 263 

since the beginning of the study. For definitions of session and functional segment, 264 

please refer to section 2.1, Definition of session, run, and functional segment. Note 265 

that prior scan time since the beginning of the day was only analyzed in children, 266 

because while children were scanned on either one (n = 45), two (n = 31) or three days 267 

(n = 1), only 2 out of 54 adults were scanned on multiple (here: two) days. Therefore, 268 

our adult data did not have the required distribution to allow any inferences on 269 

breaking up fMRI data acquisition between days in adults.  270 

For example, imagine the complex case of a participant that comes in for a second day 271 

of fMRI scanning (after 60 min. of scanning on the first day), takes a bathroom break 272 

after the completion of the day’s first fMRI experiment (after 15 min.), re-enters the 273 

scanner, completes the second fMRI experiment (15 min.), and is now scheduled for 274 

an inside-scanner break, during which a diffusion-weighed imaging sequence is being 275 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 4, 2020. ; https://doi.org/10.1101/816116doi: bioRxiv preprint 

https://doi.org/10.1101/816116
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

acquired while a video clip is presented (5 min.). The next fMRI run that is acquired 276 

would have different values for each of the prior scan time variables, e.g. a) prior 277 

functional segment scan time = 0 min., b) prior session scan time = 20 min., c) prior 278 

day scan time = 35 min., and d) prior study scan time = 95 min.  279 

In general, we hypothesized that participants’ motion would increase with time spent 280 

in the scanner, but could be “reset” to lower motion by breaks. Thus, we tested the 281 

effect of four different prior scan time variables to determine which—if any—way of 282 

breaking up data acquisition reduces subsequent motion. Figure 3 visualizes the 283 

possible main effects of prior scan time variables.  284 

To determine the prior scan time variables values, we evaluated structured 285 

handwritten MRI session notes that stated the sequence of acquired functional and 286 

structural runs and breaks between sessions and days for each participant. Then, the 287 

duration of each run was retrieved from its DICOM file header. This DICOM header 288 

duration always exceeded the product of repetition time and number of volumes, i.e. it 289 

included scanner- and sequence-specific preparation time. We did not include 290 

potential breaks between runs that occur due to normal operation time that is required 291 

Figure 3: Visualization of the effect of prior scan time with 
hypothetical data. Each row shows the effect of a different kind 
of prior scan time. Each column shows a single session, 
consisting of four fMRI runs. The dotted vertical line and points 
on the vertical line denote inside scanner breaks during which 
structural scans were acquired and video clips were presented.  
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to start a new paradigm on the stimulation computer or to start the scanner, how-do-292 

you-feel-inquiries, or minor technical issues, because we did not log these events. 293 

Further, we did not include aborted runs, because we did not save this data nor took 294 

reliable notes, rendering a determination of the duration of these scans impossible.  295 

• PV 5) Age was defined in years at the first day of scanning and was only investigated 296 

for children. This variable was included to explore possible interactions with the other 297 

PVs, not for main effects of age, as main effects of age are well established in the field 298 

and would only lead to an unnecessarily complex model with less power to detect 299 

effects of interest. 300 

• PV 6) Scanner training date was recorded as the number of days that passed since the 301 

scanner training for children only. We hypothesized that a greater time interval 302 

between scanner training and actual MRI scan would result in higher motion.  303 

• PV 7) Task engagement encoded how much active engagement a given fMRI run 304 

required. We distinguished if participants just had to passively watch the display, or if 305 

participants had to perform a task that included button-pressing. We expected that an 306 

active task engagement would result in reduced motion due to enhanced attention and 307 

less awareness of a possibly uncomfortable situation, itching, or other distractions.  308 

In addition to these main effects, we investigated the possible interactions between the prior 309 

scan time variables and the other variables. Other two-way or three-way interactions were not 310 

investigated to avoid overly complex and highly computation-intensive models and as the detection of 311 

high-order effects would require a more powerful study design (Simonsohn, 2014).  312 

2.7.2 High-motion volumes 313 

In our second analysis we asked which variables would influence head motion over the course 314 

of a run. As decisions on retaining or discarding runs for further analysis are often informed by high-315 

motion volumes within a run rather than a run’s mean motion, instead of mean FD, we investigated the 316 

percentage of high-motion volumes for each minute of a run (i.e. FDvolume > 0.3 mm; see 2.6, Head 317 

motion estimation). Consequently, eight PVs were evaluated:  318 
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• PVs 1-7) All previous PVs, i.e. prior functional segment scan time, prior session scan 319 

time, prior day scan time, prior study scan time, age, scanner training date, task 320 

engagement 321 

• PV 8) Minute of run coded discrete one-minute-intervals within runs, allowing us to 322 

investigate the course of high-volume motion occurrence across the course of a run. 323 

In addition to main effects, we investigated the possible interactions between minute of run 324 

and the other variables. Again, we did not investigate other two- or three-way interactions (see 2.7.1, 325 

Mean FD) 326 

2.8 Statistical model  327 

2.8.1 Hierarchical data structure 328 

We analyzed our data using multilevel linear models (MLMs) due to the hierarchical four- or 329 

five-level grouping structure inherent in our data (cf. Engelhardt et al., 2017; Figure 4): Motion 330 

estimations for mean FD per run are nested within sessions (level 4), sessions are nested within days 331 

(level 3), days are nested within participants (level 2), and participants are nested within studies (level 332 

1). Motion estimations for percentage of high-motion volumes per minute of a run are nested within 333 

runs, establishing a fifth level. This hierarchical data structure is likely to introduce dependency of 334 

observations within a grouping variable. For example, motion from two randomly selected runs from 335 

the same participant is likely to be much more similar than motion from different participants. In 336 

Figure 4: Hierarchical data structure with four levels. For 
visualization purposes, only one fictional subject is 

displayed for each study. 
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technical terms, the residuals within a grouping variable are likely to be correlated. Thus, the 337 

assumption of independent residuals, crucial for parametric tests, is violated. While dependent 338 

observations for one level, e.g. within participants, could be handled easily by a conventional 339 

repeated-measures ANOVA, this case is a complex nested multilevel dependency structure that cannot 340 

be adequately and validly handled by a repeated-measures ANOVA—but can be by an MLM. 341 

2.8.2 MLM creation step 1: Identifying relevant grouping structures 342 

MLMs were created in a data-driven process. First, we assessed the possibility that the 343 

grouping variables would introduce dependencies in the data—and thus confirm the need for an MLM. 344 

To this end, we calculated the intraclass correlation (ICC, i.e. the proportion of the total variance that 345 

is explained by the respective grouping factor) for each grouping level of the model and liberally 346 

incorporated all grouping levels into our model that would explain at least 1% of the total variance 347 

(i.e. ICC ≥ 0.01, Supplementary Text S2). Next, we used the chi-square likelihood ratio test and 348 

Akaike’s information criterion (AIC) to test if the model that incorporated the grouping structure 349 

actually had a better fit to our data than the model without the grouping structure and included or 350 

ignored the grouping structure in all subsequent models accordingly (Supplementary Text S3).  351 

ICC analysis for mean FD over the course of a study indicated that in both children and adults, 352 

the grouping factors participant (children: 0.487, adults: 0.376) and session (children: 0.229, adults: 353 

0.021) explained a substantial amount of variance in the data, while the grouping factors study and day 354 

did not (both age groups < 0.001). In both children and adults, models that allowed random intercepts 355 

for participant and session fit the data significantly better than a model with fixed intercepts (children: 356 

Supplementary Table S4, adults: Supplementary Table S5). Thus, the MLMs were built with random 357 

intercepts for participant and session. 358 

ICCs for the percentage of high-motion volumes across the course of a run in both children 359 

and adults revealed substantial dependency within the grouping levels participant (children: 0.136, 360 

adults: 0.292), session (children: 0.275, adults: 0.037), and run (children: 0.143, adults: 0.309), but not 361 

within the grouping levels study (both age groups: < 0.001) and day (children: < 0.001, adults: 0.004). 362 

A random intercept model for participant, session, and run fit our data better that a fixed intercept 363 
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model (children: Supplementary Table S6, adults: Supplementary Table S7). Consequentially, the 364 

MLMs were built with random intercepts for participant, session and run.  365 

2.8.3 MLM creation step 2: Stepwise inclusion of relevant predictors 366 

Second, we introduced the PVs, i.e. main effects and selected interactions (fixed effects), into 367 

the model stepwise, to test if they improved the model fit significantly. The order of introduction for 368 

mean FD and high-motion volumes MLMs is listed in Supplementary Table S2 and Supplementary 369 

Table S3, respectively. If a model including a fixed predictor led to a better model fit than the previous 370 

model without it, the predictor was included in all subsequent models, otherwise it was left out of 371 

subsequent models. 372 

For children’s mean FD MLM main effects of prior functional segment time, prior session 373 

time, prior day time, and scanner training date, as well as the interaction effects of age × prior session 374 

time and age × prior study time were included in the model (Supplementary Table S4). For children’s 375 

high-motion volumes MLM, main effects of minute of run, prior segment time, prior session time, 376 

prior day time, and scanner training date were added to the model (Supplementary Table S6). For 377 

adult’s mean FD MLM, main effects of prior functional segment time, prior study time, and a prior 378 

functional segment time × task engagement interaction were added to the model (Supplementary Table 379 

S5). For adult’s high-motion volumes MLM main effects of minute of run, prior segment time, and 380 

prior session time, were added to the model (Supplementary Table S7).  381 

2.8.4 MLM creation step 3: Assessing the need for participant-specific predictor effects 382 

Third, we tested if the model fit improved further if we let the effect of each included main 383 

effect predictor vary over participants (random slopes) and added significant random effects to the 384 

model accordingly. Predictors scanner training date and age were not considered as they are constant 385 

for each participant’s run. Further, we did not fit random slopes for interaction terms as this prevented 386 

the MLMs to converge—possibly because our data did not have enough power to fit a model of such 387 

high level of complexity. 388 

Adding random slopes across participants for all main effects further improved model fit in all 389 
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MLMs and thus was incorporated in the final models (Supplementary Table S4, S5, S6, S7).  390 

2.9 Software 391 

Data handling and statistical data analysis was performed using R (version 3.6.0, RRID: 392 

SCR_001905, R Core Team, 2015) in RStudio (version 1.2.1335; RRID: SCR_000432). For MLMs, 393 

we used the nlme package (version 3.1-140, RRID:SCR_015655, Pinheiro et al., 2019). Figures were 394 

created using the ggplot2 package (version 3.2.0, RRID:SCR_014601, Wickham, 2016). Regression 395 

lines and confidence interval bands for fixed effects visualizations, i.e. predictor effect plots, were 396 

created using the effects package (version 4.1-1, Fox and Weisberg, 2018). Marginal R2 (for fixed 397 

effects) and conditional R2
 (for fixed effects and random effects combined) goodness-of-fit was 398 

estimated using the r.squaredGLMM function of the MuMIn package (version 1.43.6, Barton, 2019), 399 

which is based on methods by Nakagawa and Schielzeth, 2013, Johnson, 2014, and Nakagawa et al., 400 

2017. 401 

  402 
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3 Results 403 

We evaluated which variables would predict head motion during fMRI in children and adults. 404 

We assessed two measures of head motion in separate analyses: First, we investigated the course of 405 

head motion across an fMRI study in terms of mean framewise displacement per run. Then, we 406 

investigated the course of head motion over the course of a run in terms of the frequency of high-407 

motion volumes per minute. Each analysis was performed separately for children and adults. 408 

Regression coefficients for all main and interaction effects included in the MLMs were tested against 409 

zero using one-sample t-tests with a significance threshold of α = 0.05.  410 

3.1 Splitting up data acquisition reduces motion  411 

3.1.1 Children 412 

Evaluation of fixed effects predictors in the final mean FD MLM revealed that prior session 413 

scan time and a prior study scan time × age interaction significantly predicted FD in children (Figure 414 

5, Table 1). Children showed greater motion with ongoing session length (Figure 5, left). Note that the 415 

total number of sessions in children ranged from 1 – 4 (16 children did only one session, 55 children 416 

did two sessions, four children did three sessions, and two children did four sessions). In addition, 417 

Figure 5: Predictor effect plots for children’s head motion across the course of a study.Thick magenta lines are 
fitted linear regression lines for the fixed effects predictors denoted on the x-axes. Shaded magenta areas show 
the 95% confidence band for the regression lines. Each gray circle represents one run. Left: Head motion across 
the course of a session. Each circle-connecting line represents a participant‘s session. Participants that were 
scanned in multiple sessions are represented by multiple lines. Right: Head motion across the course of a study 
for 6-9-year-old and 10-13-year old children. Age bins were chosen arbitrarily to visualize the age × prior study 
scan time interaction. Each circle-connecting line represents one participant. 
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motion increased with study length in older children, but not as much in younger children (Figure 5, 418 

right). As our data in children shows one obvious outlier, a participant whose mean FD is around 2 419 

mm or all of her/his five runs, we tested if this case would influence the observed effects. However, a 420 

reanalysis without this participant only slightly increased the effect of prior session scan time and did 421 

not change the age × prior study scan time interaction notably. Thus, here, we report the full data set.  422 

Table 1. Fixed effects parameter estimates of final model for children’s mean motion across the course of a study. 

parameter β Lower 95% CI Upper 95% CI SE df t p 

Intercept 0.04895 0.01800 0.07990 0.01584 509 3.090 0.002 

Prior functional segment scan time 0.00147 -0.00170 0.00464 0.00162 509 0.904 0.366 

Prior session scan time 0.01564 0.00307 0.02821 0.00644 509 2.430 0.015 

Prior day scan time 0.00212 -0.00043 0.00467 0.00130 509 1.627 0.104 

Scanner training date 0.00560 -0.01790 0.02909 0.01203 509 0.465 0.642 

Age × prior session scan time -0.00121 -0.00245 0.00003 0.00063 509 -1.905 0.057 

Age × prior study scan time 0.00016 0.00005 0.00028 0.00006 509 2.721 0.007 

Note: CI = confidence interval, SE = standard error, df = degrees of freedom 

3.1.2 Adults  423 

For adults, evaluation of fixed effects predictors in the final model revealed that prior 424 

functional segment scan time and prior study scan time significantly predicted motion (Figure 6, Table 425 

2). Adults’ motion increased with ongoing study scan time (note that in 52/54 adults study scan time is 426 

equal to day scan time). Moreover, the longer functional scans are acquired without an inside-scanner 427 

break (e.g. through a structural scan with relaxing video), the more adults moved. Originally, we also 428 

Figure 6: Predictor effect plots for adult’s head motion across the course of a study. Thick green lines are fitted 
linear regression lines for the fixed effects predictors denoted on the x-axes. Shaded green areas show the 95% 
confidence band for the regression lines. Each gray circle represents one run. Left: Head motion across the 
course of a study. Each circle-connecting line represents a participant‘s study. Right: Head motion across the 
course of a functional segment for passive and active fMRI tasks. Each circle-connecting line represents one 
participant’s functional segment data acquisition course. Participants that were scanned on multiple days, on 
multiple sessions, or with multiple functional segments are represented by multiple lines. Black dashed lines and 
squares show the participant that drove the task engagement × prior functional segment time interaction. 
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found that a task engagement × prior functional segment scan time interaction significantly predicted 429 

motion, i.e. for passive tasks, adults showed a steeper increase in motion than for active tasks (Figure 430 

6, middle, thick black dashed line). However, as it seemed possible that this task engagement × prior 431 

functional segment scan time interaction was driven by an extreme increase in motion at the end of a 432 

functional segment in passive tasks in a single participant only (Figure 6, thin black dashed lines and 433 

squares), we reanalyzed the MLM without data from this participant. While all other effects remained 434 

stable (Figure 6, see overlapping green solid and black dashed lines), the task engagement × prior 435 

functional segment scan time interaction was rendered insignificant by the exclusion of the participant 436 

(Figure 6, see black dashed line outside of green confidence band, Supplementary Table S8).  437 

Table 2. Fixed effects parameter estimates of final model for adult’s mean motion across the course of a study. 

parameter β Lower 95% CI Upper 95% CI SE df t p 

Intercept 0.05030 0.03328 0.06732 0.00869 377 5.787 < .001 

Prior functional segment scan time 0.00250 0.00098 0.00401 0.00077 377 3.230 0.001 

Prior study scan time 0.00087 0.00030 0.00144 0.00029 377 2.990 0.003 

Task engagement × Prior functional segment 

scan time 

0.00185 -0.00058 0.00428 0.00124 377 1.491 0.137 

Note: CI = confidence interval, SE = standard error, df = degrees of freedom 

3.1.3 Summary 438 

Our results demonstrate that head motion in children and adults can be reduced by splitting up 439 

data acquisition. However, depending on the age group, different strategies seem to be effective. For 440 

children, our data suggests a benefit of splitting up data acquisition into multiple, short sessions on the 441 

same day and keeping the overall study length as short as possible. In contrast, adults benefited from 442 

interspersing experimental runs with inside-scanner breaks. 443 
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3.2 High-motion event occurrence increases with run length 444 

3.2.1 Children  445 

Minute of run significantly predicted motion in children, i.e. children’s motion increased with 446 

increasing run length (Figure 7, Table 3). For example, in the third minute of a run, the average risk of 447 

a high-motion volume was at 16.5 %, while it increased to 18.3 % in the sixth minute of a run. Prior 448 

day scan time was also a significant predictor of motion. However, each value of this run-wise 449 

predictor affects each minute of a run equally and therefore does not contribute to explaining how 450 

motion develops over the course of a run. For example, minute of run 1, 2, and 3 always have the same 451 

values of prior day time. Thus, as the run-wise prior day scan time did not interact with minute of run, 452 

its effect is not of interest in this analysis.  453 

Table 3. Fixed effects parameter estimates of final model for children’s frequency of motion peaks across the course of a run 

parameter β Lower 95% CI Upper 95% CI SE df t p 

Intercept 1.12857 -2.87326 5.13041 2.04301 2290 0.552 0.581 

Minute of run 0.60187 0.15491 1.04884 0.22818 2290 2.638 0.008 

Prior functional segment scan time 0.22521 -0.01436 0.46478 0.12231 2290 1.841 0.066 

Prior session scan time 0.08717 -0.18705 0.36138 0.13999 2290 0.623 0.534 

Prior day scan time 0.41294 0.22250 0.60339 0.09722 2290 4.247 < .001 

Scanner training date 0.81829 -0.71812 2.35470 0.78436 2290 1.043 0.297 

Note: CI = confidence interval, SE = standard error, df = degrees of freedom 

Figure 7: Children’s head 
motion across the course of 
a run. Each gray circle 
represents one minute bin. 
Each circle-connecting line 
represents a participant‘s 
run. Participants that were 
scanned for more than one 
functional run are 
represented by multiple 
lines. Thick magenta line 
shows the fitted linear 
regression line for the 
minute of run effect. Shaded 
magenta area show the 
95% confidence band for 
the regression line. 
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3.2.2 Adults  454 

Minute of run significantly predicted motion in adults, i.e. adult’s motion increased with 455 

increasing run length (Figure 8, Table 4). For example, in the third minute of a run, the average risk of 456 

a high-motion volume was at 5.3 %, while it increased to 6.5 % in the sixth minute of a run. Prior 457 

functional segment scan time and prior session scan time were also significant predictors of motion. 458 

However, as in children, these run-wise predictors did not contribute to explaining how motion 459 

develops over the course of a run as they did not interact with minute of run and thus are not of interest 460 

in this analysis. 461 

Table 4. Fixed effects parameter estimates of final model for adult’s frequency of motion peaks across the course of a run 

parameter β Lower 95% CI Upper 95% CI SE df t p 

Intercept 0.80019 -1.46836 3.06874 1.15779 1642 0.691 0.490 

Minute of run 0.42562 0.10116 0.75008 0.16559 1642 2.570 0.010 

Prior functional segment scan time 0.18341 0.00516 0.36165 0.09097 1642 2.016 0.044 

Prior session scan time 0.11631 0.04504 0.18757 0.03637 1642 3.198 0.001 

Note: CI = confidence interval, SE = standard error, df = degrees of freedom 

3.2.3 Summary 462 

Our results indicate that long runs have a negative impact on data quality: The frequency of 463 

high-motion events increases with ongoing run length for both children and adults. 464 

Figure 8: Adult’s head 
motion across the course of 
a run. Each gray circle 
represents a one minute bin. 
Each circle-connecting line 
represents a participant‘s 
run. Participants that were 
scanned for more than one 
functional run are 
represented by multiple 
lines. Thick green line 
shows the fitted linear 
regression line for the 
minute of run effect. Shaded 
green area show the 95% 
confidence band for the 
regression line. 
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3.3 Control analysis: Age—but not motion—influenced the data acquisition 465 

procedure in children 466 

Data acquisition in terms of which task was acquired when, the positions of structural scans, 467 

i.e. inside-scanner breaks, and the number of total runs was largely predetermined for each study and 468 

participant. However, we adapted our planning to the requirements of the given participant—mainly 469 

for children and only seldomly for adults. Specifically, participants were able to terminate the study, 470 

day or session at any moment. Most of the time, termination of a session was done after active 471 

inquiring about the well-being by the researchers. Here, children’s age might have influenced 472 

researchers’ sensitivity towards well-being reports and researchers’ decision to terminate. Crucially, 473 

subjective well-being (or boredom) might be associated with motion in the scanner. Thus, irrespective 474 

of reported well-being of the child, observed motion by the researchers (visible from the control room 475 

in Bangor and from standing next to the scanner bore in Bochum) might have influenced the decision 476 

to terminate the study, day, session, or functional segment early.  477 

To investigate the possible effect of age and motion on the procedure, we ran separate multiple 478 

regression analyses for the total study length as well as the total number of acquired runs, sessions, 479 

and days using participants’ age and their mean percentage of high-motion-volumes as predictors. We 480 

chose the latter predictor over mean FD because only high-motion events would be visible for the 481 

researcher and act as a possible indicator to change the predefined study protocol.  482 

The number of completed runs, sessions, or days was neither significantly predicted by age, 483 

nor by high-motion volumes (all ps for age > .0664; all ps for high-motion volumes > .1676). 484 

However, age—but not the mean percentage of high-motion volumes—was a significant predictor of 485 

total study length (age: β (SE) = 2.91 (1.29), t = 2.26, p = .027; high-motion volumes: β (SE) = -0.17 486 

(0.16), t = -1.10, p = .275). Thus, it is unlikely that observable motion during fMRI scans was factored 487 

into the decision to deviate from our predefined study protocol, while young age might have been a 488 

factor.   489 
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4 Discussion 490 

We identified factors that predict participant’s head motion in three neurodevelopmental fMRI 491 

studies including data of 77 children and 64 adults. Using MLMs, we investigated the effect of scanner 492 

training date, task engagement, as well as prior scan time since the beginning of the study, day, 493 

session, or functional segment. In children, splitting fMRI data acquisition into multiple sessions 494 

reduced motion. However, motion still increased across the course of a study, especially in older 495 

children. In adults, motion was reduced after task-free inside-scanner breaks but—as in children— 496 

motion still increased across the course of a study. In both children and adults, motion increased with 497 

run length. 498 

4.1 Splitting up data acquisition reduces motion 499 

4.1.1 Children 500 

Children’s head motion seems to increase across the course of a study, as prior study scan 501 

time predicted head motion, especially for older children. At the same time, we did not find that prior 502 

day scan time predicted head motion, suggesting that children do not seem to benefit from splitting up 503 

studies into several days. Alternatively, a possible effect of splitting up studies into several days was 504 

too small to be detected with the power of our study. To speculate on possible explanations, for 505 

children, the initial excitement of participating in an fMRI study and the commitment to do everything 506 

right might be less pronounced after the first day. On the second day, they might be less motivated to 507 

lie still, e.g. due to the lacking novelty of the situation (similar visual appearance or task demands).  508 

Older children showed a larger increase in motion with increasing study length. Initially, this 509 

seems unexpected. Intuition would suggest that older children are better at lying still for extended 510 

periods of time. However, it seems that this age × prior study scan time interaction could be driven by 511 

a higher baseline motion of young children at the beginning of the study, which then does not change 512 

as much over time. In contrast, older children seem to be able to suppress the urge to move at the 513 

beginning of a study quite well, and then gradually relax into motion levels similar to that of younger 514 

children. Thus, we caution against overinterpreting this interaction as a cause to plan shorter studies 515 
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just because older children are scanned, as predicted motion values at maximum study length were 516 

comparable and few studies will plan studies with more than 80 minutes of pure scan time.  517 

Our results indicate that pediatric neuroimaging studies may benefit from breaking up data 518 

acquisition into several sessions on the same day, as children’s head motion increases with ongoing 519 

session length. So far, no other studies have investigated motion across multiple sessions on the same 520 

day. Nevertheless, single-session studies in children have found that motion increases with increasing 521 

session length in children (Achterberg and van der Meulen, 2019; Engelhardt et al., 2017). Our study 522 

points to an important distinction regarding the kind of breaks that researchers can schedule in 523 

children’s fMRI scanning protocols. While motion can be effectively reduced by allowing children to 524 

exit the scanner, inside-scanner breaks in fMRI data acquisition during which children cannot exit the 525 

scanner, but instead watch a video while a structural scan is acquired, do not seem to reduce motion 526 

after the break. Possibly, it is important for children to be able to move freely, get face-to-face social 527 

interactions, or just relieve the desire to void their bladder—none of which are possible without exiting 528 

the scanner. Alternatively, showing a video might have effects opposite to those desired: Because the 529 

video is highly engaging, it may lead to reduced motion during the break (Cantlon and Li, 2013; 530 

Vanderwal et al., 2015), but any subsequent normal fMRI task might be perceived as boring due to a 531 

contrast effect, leading to higher motion in turn.  532 

In our experience, implementing outside-scanner breaks (i.e. splitting data acquisition into 533 

multiple sessions) is very feasible. In our three studies, breaks were designed to last 5 minutes outside 534 

of the scanner and we did not experience any problems with upholding this time limit. If a cover story 535 

for children is used, the break can be incorporated in that story (e.g. in a space journey theme there 536 

might be limited time for a space walk, maintenance, planet visit, etc.). Our 5-minute breaks usually 537 

prolonged the total study by 15 minutes due to getting participants out of and back inside the scanner, 538 

and running another survey scan. In contrast to longer breaks, such as 20 minutes or 2 hours, these 539 

short breaks limit the additional scanner costs and avoid both unfeasible study date arrangements with 540 

participants and parents as well as complicated scanner reservation arrangements. Thus, for studies 541 

with more than 30 minutes of total raw scan time, implementing a split into two sessions seems to be a 542 
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feasible and effective way of reducing motion in children. Another approach is to schedule two or 543 

more children back to back, who then take turns in being in the scanner and taking breaks. It should be 544 

noted though that this approach might require additional staff to supervise children during scanning 545 

and breaks in parallel. 546 

In our study, we did not find an effect of task engagement on head motion in children. This 547 

contradicts previous findings, which showed that children show less motion in engaging tasks in 548 

contrast to less engaging tasks or resting state (Engelhardt et al., 2017). This disparity might be due to 549 

different definitions and aims of the studies. In our analysis, we defined tasks as engaging if 550 

participants had to perform a task that included button-pressing, and we defined tasks as non-engaging 551 

if participants just had to passively watch the display. We chose this definition as our aim was to 552 

identify aspects in fMRI study designs that can be actively manipulated by the researcher. Engelhardt 553 

et al. (2017) defined engaging tasks as fast-paced, cognitively demanding, or socially engaging. These 554 

aspects are often inherent in a task and cannot be changed without changing the research question. For 555 

example, experiments on social development in children will need to have a socially engaging 556 

component. However, while researchers can decide if a given task will require a manual response or 557 

not, this choice alone does not seem to affect head motion. Possibly, motion-reducing effects due to 558 

engaging tasks that require button-pressing or high attention are also cancelled out by motion-559 

increasing effects due to excitement or button-press-related motion. 560 

The time between scanner training and the actual scan does not seem to be a major influence 561 

on children’s head motion during fMRI scans. Although scanner training timing improved (and thus 562 

was added to) the MLM, it did not emerge as a significant predictor in the final model. This 563 

assumption fits with the observed intraclass correlation for the grouping factor study. As all children in 564 

study C were trained on the same day as the actual fMRI scan but all children (except for one) in study 565 

A and B were trained between 1 and 28 (mean = 4.30) days before the actual fMRI scans, a high 566 

intraclass correlation for the grouping factor study would have indicated differences between studies 567 

(and thus sites) such as the scanner training procedure or the scanner training date. However, we 568 

observed an extremely low interclass correlation for the grouping factor study. Thus, planning scanner 569 
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training as close to the actual scan as possible for strong recency effects, or planning scanner training 570 

some days before the actual scan to let it “sink in” seem to be equally effective (but also see 4.4, 571 

Future directions). 572 

4.1.2 Adults 573 

For adults, we found that head motion seems to increase across the course of a study, as prior 574 

study scan time predicted head motion. While this result seems to mirror our findings in children, note 575 

that all but two adults were scanned on one day only—thus prior study scan time is equivalent to prior 576 

day scan time and our study cannot inform about possible benefits of splitting up data acquisition 577 

across days in adults. Interestingly, prior functional segment scan time predicted head motion in 578 

adults, while the prior session scan time did not contribute enough to the MLM to be included in the 579 

analysis. As motion across the day/study increased, this suggests that motion was reduced by inside-580 

scanner breaks and that motion was seemingly constant across sessions. Consequently, the observed 581 

increasing motion across the course of a day is presumably due to a higher mean motion for the second 582 

session of the day. Thus, adults seem to be able to restrain their head motion across relatively long 583 

sessions, but are more likely to increase head motion in a second session on the same day. Therefore, 584 

in contrast to children, long studies in adults might best be acquired in one long session interspersed 585 

with inside-scanner breaks (possibly with short videos during anatomical scans). We are not aware of 586 

studies that investigated motion in adults across multiple sessions within the same day. However, our 587 

findings connect with the existing literature in so far as the number of completed runs in a single-588 

session study with five runs did not have any effect on motion (Huijbers et al., 2017).  589 

Regarding task engagement, we only found a very unstable interaction with prior functional 590 

segment scan time that was driven by on extreme outlier. Thus, it is doubtful that motion during 591 

passive tasks increased at a steeper rate with ongoing time after breaks. Moreover, we cannot 592 

complement previous findings that showed higher motion for passive tasks or resting state and lower 593 

motion for active tasks (Cantlon and Li, 2013; Huijbers et al., 2017; Vanderwal et al., 2015).  594 
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4.2 High-motion event occurrence increases with run length 595 

We found that the frequency of motion peaks within a run increases with run length in both 596 

children and adults. This suggests that in general, it is preferable to plan rather short runs instead of 597 

longer runs. However, aside from statistically significance, our data also show that the increase per 598 

minute is moderate (0.60 % for children and 0.43 % for adults). Consequently, high-motion volumes 599 

do not just start to occur after a certain amount of time—they already occur in the first minute of the 600 

scan. In addition, most experimental paradigms will require a minimum duration of some sorts, e.g. to 601 

acquire a necessary number of volumes in order to have sufficient detection power or to have enough 602 

time for the hemodynamic response function to fully unfold a certain number of times (e.g. localizers), 603 

to achieve sufficient reliability (e.g. resting-state), or to map brain responses to stimuli of a certain 604 

length (movie segments). Thus, keeping runs as short as possible and acquiring high quality fMRI data 605 

should not compromise the quality of the experimental design. However, researchers are often free to 606 

choose if they plan to acquire the desired amount of data in a few long runs or in many short runs. For 607 

example, if 18 minutes of data should be acquired, instead of planning three 6-minute runs, we would 608 

suggest to plan five 3.6-minute runs. Based on our experience, while run durations around three 609 

minutes are still practicable in terms of scanner and experimental paradigm operation, we would not 610 

encourage run durations below 2 minutes. 611 

Interestingly, we did not find interactions of run minute with any of the prior scan time 612 

variables. So, a common expectation—that motion peaks are especially evident at the beginning of the 613 

first run of a study or day—cannot be confirmed by our data. In a previous study that investigated the 614 

association between total run length and mean run motion in up to 6-7 minute long runs, results were 615 

mixed, i.e. a positive relationship in one sample and a negative relationship in the other sample 616 

(Engelhardt et al., 2017). 617 

4.3 Limitations 618 

While our study marks an important contribution towards understanding which factors are 619 

effective in obtaining good quality data from fMRI experiments, some limitations of our methodology 620 
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should be considered. While the data acquisition procedure was predetermined for each study, 621 

participants were able to influence the prior study time factors and their head motion. Consider a child 622 

that shows increasingly observable motion and whose well-being reports indicate an increasing lack of 623 

interest after short periods of time. In consequence, we might have decided to implement more 624 

outside-scanner breaks than usual. This reaction would increase the number of sessions in this child 625 

and would also drive the effect of prior session scan time on motion.  626 

However, our control analyses showed that observable motion during scans or children’s age 627 

did not influence the total number of completed runs, sessions, or days in children. Thus, while 628 

participants might have had influence on the exact timing of inside- or outside scanner breaks or the 629 

termination of a session, or day, the overall numbers of breaks was not biased. The only possible bias 630 

that our control analysis was able to reveal was that we might have been more attentive to the 631 

subjective well-being reports of younger children, more inclined to terminate young children’s studies’ 632 

early, or that younger children might have uttered the desire to terminate the study earlier, as age was a 633 

significant predictor of total study length.  634 

With 626 runs from 77 children and 469 runs from 54 adults, our sample size is substantial. 635 

However, recent collaborative efforts such as the NCANDA, PING, or ABCD studies (Brown et al., 636 

2015; Casey et al., 2018; Jernigan et al., 2016) have made larger pediatric neuroimaging datasets 637 

available. If detailed notes on inside- vs outside-scanner breaks are available in digital form, large 638 

open datasets could provide a powerful way of answering questions on how to prevent head motion. 639 

However, one downside of the highly standardized scanning protocols usually used in these large-640 

scale multi-site studies is the lack of variability in scanning procedures (timing of breaks, number of 641 

runs, etc.) and the limited amount of fMRI data collected (if any non-resting-state data is collected at 642 

all). 643 

4.4 Future directions 644 

It remains unclear which contribution scanner training has on children’s head motion. 645 

Considering that a simple toy tunnel and a commercial mock scanner resulted in comparable success 646 
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rates for high-quality structural images (Barnea-Goraly et al., 2014), it might be interesting to see if 647 

these results generalize onto strict motion thresholds during longer fMRI studies. Here, future studies 648 

should experimentally manipulate the kind of training for children, e.g. mock scanner training vs. toy 649 

tunnel training vs. no training. Also, these studies could investigate if short version trainings have 650 

comparable effects to extensive trainings sessions and at which age children cease to benefit from 651 

scanner training. 652 

Aside from the investigated and discussed procedures, technical solutions might help to reduce 653 

motion. Recent developments have made real-time motion detection available that can be used to 654 

provide immediate feedback to participants and researchers (Dosenbach et al., 2017). In children 655 

younger than 10 years, providing immediate feedback has been successful in reducing motion using 656 

this technology (Greene et al., 2018). Thus, age effects in motion could occur not due to an inability to 657 

lie still in younger children, but possibly due to a lower awareness of their own movements. Even if 658 

motion is not reduced, this technology provides the possibility to adapt a common fMRI study 659 

protocol—based on group-average recommendations like those in this study—to the individual 660 

participant’s behavior. 661 

This possibility might lead to a considerable reduction in cost and improvement of data 662 

quality, as our ICC analysis showed that motion differs substantially between participants and is 663 

relatively similar within participants. This finding agrees a previous studies finding that motion during 664 

fMRI tasks is a very stable neurobiological trait in children and adults that seems to be heritable, i.e. 665 

under strong genetic control (Achterberg and van der Meulen, 2019; Couvy-Duchesne et al., 2014; 666 

Engelhardt et al., 2017; van Dijk et al., 2012; Zeng et al., 2014).  667 

4.5 Conclusion 668 

The best way of dealing with head motion in fMRI is to prevent it in the first place. Our study 669 

shows that motion can be reduced by careful planning of the data acquisition procedure. Breaking up 670 

data acquisition into several sessions with the opportunity to leave the scanner is effective in reducing 671 

motion in children, while introducing inside-scanner breaks with continued acquisition of structural 672 
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data is not effective. For adults, inside-scanner breaks during which further structural data can be 673 

acquired are a useful tool for preventing motion. Both children and adults benefit from short runs. To 674 

corroborate our findings of how study design can reduce and prevent motion in children and adults, 675 

future studies with an experimental approach are needed. 676 

  677 
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