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Abstract 28 

Head motion remains a challenging confound in functional magnetic resonance imaging (fMRI) studies 29 

of both children and adults. Most pediatric neuroimaging labs have developed experience-based, child-30 

friendly standards concerning e.g. the maximum length of a session or the date of mock scanner training. 31 

However, it is unclear which factors of child-friendly neuroimaging approaches are effective in reducing 32 

head motion. Here, we investigate three main factors including (i) time lag of mock scanner training to 33 

the actual scan, (ii) prior scan time, and (iii) task engagement in a dataset of 77 children and 64 adults 34 

using a multilevel modeling approach. In children, distributing fMRI data acquisition across multiple 35 

same-day sessions reduces head motion. Nevertheless, motion increases over the course of a study, 36 

especially in older children. In adults, splitting data acquisition into multiple days, but not same-day 37 

sessions, reduces head motion. Moreover, motion is reduced after inside-scanner breaks. In both children 38 

and adults, motion increases with run length. Our results suggest that splitting up fMRI data acquisition 39 

is an effective tool to reduce head motion in general. At the same time, different ways of splitting up 40 

data acquisition benefit children and adults.  41 

Keywords 42 

head motion, fMRI, child, movement, data quality, quality control, MRI acquisition  43 

 44 

Highlights 45 

• In children, fMRI data acquisition split into multiple sessions reduces head motion 46 

• However, children’s head motion increases over the duration of the study 47 

• In adults, fMRI data acquisition split into several days reduces head motion 48 

• Moreover, adults’ motion decreases after inside-scanner breaks 49 

• In both children and adults, motion increases with run length 50 

  51 
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1 Introduction 52 

“Please remember: Relax and try not to move. Here we go.” In functional magnetic resonance 53 

imaging (fMRI) experiments, this is often the last thing the researcher says before starting the scanner 54 

and the experiment. What is left to do is hoping for good quality data. As MRI is very susceptible to 55 

head motion during the scan (Friston et al., 1996), hoping for good quality data is often equivalent to 56 

hoping for data with low head motion. The importance of reducing head motion during data 57 

acquisition has been impressively documented in several studies showing that head motion can lead to 58 

misleading results (in some cases, even after retrospective motion correction; Power et al., 2012; 59 

Satterthwaite et al., 2012; van Dijk et al., 2012).  60 

In pediatric neuroimaging studies, the general problem of head motion is especially 61 

challenging. Despite children’s high motivation to lie still, in most studies children still move more 62 

than adults. This poses a problem for data quality in pediatric neuroimaging especially for group 63 

comparisons between children and adults. Even with retrospective head motion correction (which is 64 

limited in its ability to correct for motion Field et al., 2000; Freire and Mangin, 2001; Friston et al., 65 

1996), group differences in head motion often persist. This usually leads to the exclusion of motion-66 

affected runs or participants from data analysis (e.g. Meissner et al., 2019; Nordt et al., 2018; Walbrin 67 

et al., 2019), hence requiring additional time and research funds to achieve an adequately powered 68 

study design.  69 

To minimize motion during data acquisition, various solutions have been developed. For 70 

structural MRI scans in clinical settings, sedation is often used. However, this is not an option for 71 

fMRI studies in research settings due to the need of attentive participants as well as due to the risk of 72 

inacceptable health-related side effects (Bie et al., 2010). One set of solutions for fMRI studies aims at 73 

restraining head motion physically. Restrictive versions including bite bars (Menon et al., 1997) or 74 

thermoplastic face masks (Green et al., 1994) are considered efficient for short scan durations. 75 

However, they reduce comfort and are therefore seldomly accepted in pediatric neuroimaging. In 76 

contrast to the desired outcome, the discomfort of these methods can also lead to more fidgeting and 77 

wiggling in search of more comfort (Zeffiro, 1996). Approaches that use individually 3D-printed 78 
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styrofoam head molds are effective and said to be comfortable (Power et al., 2019), but require 79 

additional time and research funds for each participant. A less resource-intensive, yet effective and 80 

accepted solution, is to provide tactile feedback about participant’s head motion by applying a tape or 81 

ribbon across the head coil that touches the participant’s forehead (Krause et al., 2019).  82 

Aside from physical constraints, pediatric neuroimaging groups often adapt the study 83 

procedure to reduce children’s motion during data acquisition. The most prominent tool is to precede 84 

the actual MRI session(s) with a scanner training session (Raschle et al., 2009; Slifer et al., 1993). 85 

Scanner training sessions are usually performed in a mock scanner, a custom-built or purchased 86 

facsimile of a real MRI, which lacks the technical capability to acquire actual data, but can play 87 

scanner sounds and has a similar setup to the real scanner (e.g. head coil-mounted mirror, response 88 

buttons, etc.). During these sessions, behavioral training is used to teach lying still in the scanner bore 89 

and responding to the task. There is a general consensus that a scanner training session is beneficial for 90 

fMRI data acquisition as it reduces children’s anxiety (Durston et al., 2009; Raschle et al., 2009; 91 

Rosenberg et al., 1997). While a reducing effect on head motion is also assumed, the current literature 92 

has not been able to show this (due to a lack of control groups that did not receive scanner training; but 93 

see Barnea-Goraly et al., 2014; Bie et al., 2010; Epstein et al., 2007 for success rates and reduced 94 

motion after scanner training). 95 

Similarly, many pediatric neuroimaging groups have established experience-based guidelines 96 

for child-friendly study designs in terms of the scanning procedure. These usually include keeping 97 

runs short, interspersing anatomical scans as task-free inside-scanner breaks while presenting 98 

entertaining video clips, and limiting the total scanning session time. Moreover, based on findings in 99 

adults (Huijbers et al., 2017), tasks are designed in an engaging and interactive way rather than just 100 

requiring passive perception of stimuli. In consequence, a small body of literature has developed that 101 

recommends scanning procedures for pediatric neuroimaging (e.g. Greene et al., 2016; Habibi et al., 102 

2015; Raschle et al., 2009). However, as for scanner training, the contribution of presumably child-103 

friendly adaptations in scanning procedures on minimizing head motion has not been investigated so 104 

far.  105 
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The present study set out to identify which fMRI study procedures contribute to reduced head 106 

motion in fMRI studies. Our aim was to generate data-driven suggestions to optimize study procedures 107 

for children and adults separately. To this end we utilized head motion estimates derived from a 108 

standard motion correction pipeline applied to 77 children and 64 adults from three fMRI studies at 109 

two sites and notes that yielded demographic data, the date of scanner training, and the sequence of 110 

data acquisition. Using separate multilevel linear models for children and adults, we investigated the 111 

effect of splitting up data acquisition into several days or sessions, the effect of interspersing 112 

functional data acquisition with structural runs and video clip breaks, the effect of time between 113 

scanner training and the actual scan, and the effect of task engagement.  114 

  115 
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2 Methods 116 

2.1 Definition of session, run, and functional segment 117 

In this article, we make important distinctions between “session”, “run”, and “functional 118 

segment”. Session corresponds to a continuous period of time spent inside the scanner. A session 119 

begins upon entering the scanner and ends as a participant leaves the scanner. For example, if a 120 

participant enters the scanner, takes a break outside the scanner and re-enters the scanner, this would 121 

constitute two sessions. Run corresponds to a continuous image acquisition sequence. For example, a 122 

participant could complete an experiment with four fMRI runs within a single session. Functional 123 

segment corresponds to a period of perpetually consecutive acquisition of functional runs inside the 124 

scanner. For example, if a scan procedure involves an anatomical T1-scan, three fMRI runs, two 125 

diffusion-weighed imaging (DWI) sequences, and finally four more fMRI runs, this participant has 126 

completed two functional segments. 127 

2.2 Participants 128 

Our study included data from two neuroimaging centers (see 2.3, Neuroimaging) and three 129 

developmental cognitive neuroimaging studies, a total 680 runs from 77 children and 623 runs from 64 130 

adults. Some of the data has been used to answer questions concerning the neurocognitive visual and 131 

social development in children and adults previously (Meissner et al., 2019; Nordt et al., 2018; 132 

Walbrin et al., 2019). The final analyzed data set was reduced to 626 runs from 77 children and 469 133 

runs from 54 adults due to several exclusion criteria (see 2.5, Data exclusion). Children’s age ranged 134 

from 6.78 – 13.01 years (M = 9.52, SD = 1.68), adult’s age ranged from 18.41 – 35.02 years (M = 135 

21.76, SD = 2.67). All participants were healthy, had normal or corrected-to-normal vision, and had 136 

been born at term. No participant reported past or current neurological or psychiatric conditions, or 137 

had structural brain abnormalities.  138 
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2.3 Neuroimaging  139 

fMRI took place at the Neuroimaging Centre of the Research Department of Neuroscience at 140 

Ruhr University Bochum and the Bangor Imaging Centre at Bangor University. At both sites, 3.0T 141 

Achieva scanners (Philips, Amsterdam, The Netherlands) and 32-channel head coils were used 142 

(Supplementary Figure S1). For all fMRI, we used blood oxygen level dependent (BOLD) sensitive 143 

T2*-weighted sequences. Across sites and experiments, the following fMRI acquisition parameters 144 

were constant: FOV = 240 mm × 240 mm, matrix size = 80 × 80, voxel size = 3 mm × 3 mm × 3 mm, 145 

TR = 2000 ms, TE = 30 ms. However, slice gap (Bangor: 0 mm, Bochum: 0.4 mm), number of slices 146 

(Bangor: 32, Bochum: 33), slice scan order (Bangor: ascending, Bochum: ascending interleaved), and 147 

flip angle (Bangor: 83°, Bochum: 90°) differed between sites. Visual stimuli were presented via a 148 

VisuaStim Digital goggle system (FOV: 30° × 24°, 800 × 600 pixel, Resonance Technology Inc., CA, 149 

USA) in Bochum and via a MR-safe monitor and mirror system (FOV: 25.92° × 16.90°, 1920 × 1200 150 

pixel; Cambridge Research Systems, UK) in Bangor. Due to the visual isolation inherent with the 151 

goggle system, a researcher was present next to the scanner bore opening at all times for immediate 152 

verbal contact and motion feedback in Bochum, but not in Bangor.  153 

For each study, a certain number of task runs and structural scans were planned. In adults, 154 

experimenters followed this protocol, checking in with participants after the completion of each 155 

experiment (i.e. after multiple runs) to explain what would happen next and only stopped or diverted 156 

from protocol if participants actively reported feeling unwell. In contrast, in children, we checked in 157 

with participants after each run to actively inquire about their well-being. Moreover, nearing the end of 158 

a session, we also actively asked if they still felt good and ready to do another run. This was done in 159 

order to give children the opportunity to express any signs of discomfort, which to our experience 160 

children do not necessarily utter spontaneously but sometimes only after encouraging them to be open 161 

about it or giving them an explicit opportunity. Thus, we dynamically decided when to break up 162 

acquisition into sessions or days, when to intersperse tasks with a structural scan accompanied by an 163 

entertaining video, or when to end the study. 164 
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2.4 Scanner training 165 

All children underwent a scanner training in order to familiarize them with the scanner 166 

environment and achieve high-quality scans with as little motion as possible (Supplementary Figure 167 

S1). At both scanner sites, pre-recorded audio of MRI acquisition sequences was played during 168 

scanner training to simulate the real scanner environment and visual stimulation was achieved through 169 

a mirror system targeted at a monitor outside of the mock scanner bore.  170 

In other aspects, training sessions differed between sites. In Bangor, scanner training was 171 

conducted right before scanning and entailed lying inside a mock scanner with a motion sensitive 172 

electrode placed on the forehead to measure movement across three translation and three rotation axes 173 

(MoTrak Head Motion Tracking System; Psychology Software Tools, 2017). Children received visual 174 

motion feedback via an on-screen cursor that was controlled by children’s head movements. Children 175 

were instructed to lie still and keep the cursor in the middle of a target circle, whose diameter allowed 176 

for 3 mm head translations in any direction. Once children were able to keep the cursor within this 177 

target region for a timed period of 30 seconds, children watched a short animated video. When 178 

movement exceeded 3 mm translation, video playback was paused, providing immediate feedback that 179 

they had moved too much. Once children were able to watch the video for a period of 2 minutes 180 

without a video pause, scanner training was completed.  181 

In Bochum, scanner training was conducted between one to ten days before the MRI study. 182 

Training began with sitting on the extended mock scanner bed, watching a short animated video that 183 

introduced a cover-story explaining the tasks to be performed inside the scanner, and practicing these 184 

tasks (button-press). This was followed by explaining and demonstrating the procedure of entering an 185 

MRI scanner with a large puppet. Next, children entered the mock scanner bore, watched a short 186 

animated video and performed several practice trials of the tasks presented on a screen that was visible 187 

via a mirror system. The researchers gave feedback with respect to the level of movement and task 188 

performance throughout the scanner training session. It was established that a researcher would gently 189 

touch the children’s shin in case of excessive motion as a means of motion feedback. Verbal feedback 190 
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was gradually decreased throughout the session. Once the researcher decided that motion levels were 191 

acceptable and the tasks were understood, scanner training was completed. 192 

2.5 Data exclusion 193 

Our initial dataset encompassed all completed fMRI runs of two developmental cognitive 194 

neuroscience studies conducted in Bochum and one in Bangor. Aborted runs (e.g. due to technical 195 

errors) were not included, as they were not retrieved from the MRI-controlling computer and not 196 

reliably recorded in handwritten notes. To ensure that our results are valid and interpretable, we 197 

excluded data that would have biased our analyses (Figure 1).  198 

In a first step, we excluded ten participants (110 runs) from Bangor that were recorded with 199 

different acquisition parameters, i.e. with a slice thickness of 3.5 mm instead of 3.0 mm. This 200 

difference in voxel size along the z-axis would affect three out of the six motion estimation parameters 201 

(rotation around the y-axis, rotation around the x-axis, and translation along the z-axis) during motion 202 

correction, leading to systematically larger motion estimates. In a second step, we excluded 56 runs 203 

from four participants that were known to have participated in an earlier MRI study in Bochum. This 204 

was to control for possible confounding effects of prior scanning experience on motion. Implementing 205 

this control step ensured that we report on the rather typical case—at least for children—of a first-time 206 

Figure 1: Data exclusion steps and resulting sample sizes 
for children (left, dark gray) and adults (right, light gray). 
Main box widths are in relation to the original total number of 
runs. Box segmentation mirrors the relative distribution of 

adult vs. child participants or runs, respectively. 
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MRI study participant. Note that we could not rule out the possibility that participants took part in an 207 

MRI study of a different lab before, although this is highly unlikely for children and most adults at our 208 

neuroimaging centers. In a last step, we excluded 42 resting-state runs. Resting-state runs were only 209 

acquired in one of the three studies, only once per participant, and in the majority of cases the run was 210 

acquired at the end of a session. Moreover, resting-state runs were the only runs in which participants 211 

had their eyes closed during acquisition. This unique set of circumstances makes resting-state runs 212 

very likely to bias our results, as there is not enough data to efficiently model this set of circumstances, 213 

e.g. as an independent variable.  214 

2.6 Head motion estimation 215 

To estimate head motion during fMRI scans, we used the neuroimaging software package 216 

BrainVoyager (Version 20.2 for 64bit Windows, RRID: SCR_013057). First, fMRI run series in 217 

DICOM format were converted to the proprietary STC and FMR format using BrainVoyager scripts. 218 

Then, we applied BrainVoyager fMRI data preprocessing tools in their default settings. That is, for 219 

slice scan time correction, we used cubic spline interpolation. For 3D motion correction, we used a 220 

trilinear detection and sinc interpolation approach with a maximum of 100 iterations to fit a volume to 221 

the reference volume. Resulting motion log files contained six timeseries representing the estimated 222 

volume-wise instantaneous translation and rotation for axes x, y, and z in reference to the first volume 223 

of the respective experiment.  224 

For each of the six motion parameters, we calculated a timeseries of volume-to-volume 225 

motion, i.e. the difference between each volume’s motion parameter and the previous volume’s motion 226 

parameter. Rotational motion was converted from degree to millimeter by calculating displacement on 227 

the surface of a sphere of 50 mm radius (approximating the distance from the center of the head to the 228 

cortex; Power et al., 2012). The framewise displacement of the head position (FD) was calculated as 229 

the sum of the absolute volume-to-volume motion values (Power et al., 2012). FD was shown to have 230 

a strong association with motion-induced artifacts (Ciric et al., 2017). For each run, we calculated the 231 

mean FD.  232 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 23, 2019. ; https://doi.org/10.1101/816116doi: bioRxiv preprint 

https://doi.org/10.1101/816116
http://creativecommons.org/licenses/by-nc/4.0/


11 

 

Moreover, for discrete one-minute-intervals (i.e. 30 volumes) within runs, we calculated the 233 

percentage of high-motion volumes with FD above the threshold of 0.3 mm (volume-to-volume). This 234 

threshold for high-motion volumes was determined by extensive exploration of our data before any 235 

statistical analysis, as done previously (Power et al., 2019; Power et al., 2012) and resulted in plausible 236 

ratios of high-motion volumes for children (M = 12.80 %, SD = 20.89 %) and adults (M = 4.48 %, SD 237 

= 12.10 %). The two head motion measures—mean FD per run and frequency of high-motion volumes 238 

per minute of a run—were investigated in separate analyses. 239 

2.7 Predictor variables 240 

Our study did not aim to examine age group differences between children and adults, but to 241 

provide guidelines for practitioners and researchers who conduct pediatric neuroimaging examinations 242 

and/or experiments that might also include adult control groups. Thus, we report separate analyses for 243 

children and adults. This approach enabled us to include two more predictor variables (PVs) for 244 

children, as adults did not perform scanner training and we did not expect age effects in our range of 245 

18-35-year-old adults. For each age group, we assessed two head motion measures with up to eight 246 

possible predictors.  247 

2.7.1 Mean FD 248 

In our first analysis, we asked which factors would influence the mean motion during a run. 249 

Seven PVs were evaluated:  250 

• PVs 1-4) Prior scan time encoded the time in minutes that a participant had been in 251 

the scanner already. That is, the summed scan time of all functional as well as 252 

structural runs that had been administered 1) since the beginning of the functional 253 

segment, 2) since the beginning of the session, 3) since the beginning of the day, or 4) 254 

since the beginning of the study. (For definitions of session and functional segment, 255 

please refer to section 2.1, Definition of session, run, and functional segment.)  256 

For example, imagine the complex case of a participant that comes in for a second day 257 

of fMRI scanning (after 60 min. of scanning on the first day), takes a bathroom break 258 
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after the completion of the day’s first fMRI experiment (after 15 min.), re-enters the 259 

scanner, completes the second fMRI experiment (15 min.), and is now scheduled for 260 

an inside-scanner break, during which a diffusion-weighed imaging sequence is being 261 

acquired while a video clip is presented (5 min.). The next fMRI run that is acquired 262 

would have different values for each of the prior scan time variables, e.g. a) prior 263 

functional segment scan time = 0 min., b) prior session scan time = 20 min., c) prior 264 

day scan time = 35 min., and d) prior study scan time = 95 min.  265 

In general, we hypothesized that participants’ motion would increase with time spent 266 

in the scanner, but could be “reset” to lower motion by breaks. Thus, we tested the 267 

effect of four different prior scan time variables to determine which—if any—way of 268 

breaking up data acquisition reduces subsequent motion. Figure 2 visualizes the 269 

possible main effects of prior scan time variables.  270 

To determine the prior scan time variables values, we evaluated structured 271 

handwritten MRI session notes that stated the sequence of acquired functional and 272 

structural runs and breaks between sessions and days for each participant. Then, the 273 

duration of each run was retrieved from its DICOM file header. This DICOM header 274 

duration always exceeded the product of repetition time and number of volumes, i.e. it 275 

Figure 2: Visualization of the effect of prior scan time with 
hypothetical data. Each row shows the effect of a different kind 
of prior scan time. Each column shows a single session, 
consisting of four fMRI runs. The dotted vertical line and points 
on the vertical line denote inside scanner breaks during which 

structural scans were acquired and video clips were presented.  
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included scanner- and sequence-specific preparation time. We did not include 276 

potential breaks between runs that occur due to normal operation time that is required 277 

to start a new paradigm on the stimulation computer or to start the scanner, how-do-278 

you-feel-inquiries, or minor technical issues, because we did not log these events. 279 

Further, we did not include aborted runs, because we did not save this data nor took 280 

reliable notes, rendering a determination of the duration of these scans impossible.  281 

• PV 5) Age was defined in years at the first day of scanning and was only investigated 282 

for children. This variable was included to explore possible interactions with the other 283 

PVs, not for main effects of age, as main effects of age are well established in the field 284 

and would only lead to an unnecessarily complex model with less power to detect 285 

effects of interest. 286 

• PV 6) Scanner training date was recorded as the number of days that passed since the 287 

scanner training for children only. We hypothesized that a greater time interval 288 

between scanner training and actual MRI scan would result in higher motion.  289 

• PV 7) Task engagement encoded how much active engagement a given fMRI run 290 

required. We distinguished if participants just had to passively watch the display, or if 291 

participants had to perform a task that included button-pressing. We expected that an 292 

active task engagement would result in reduced motion due to enhanced attention and 293 

less awareness of a possibly uncomfortable situation, itching, or other distractions.  294 

In addition to these main effects, we investigated the possible interactions between the prior 295 

scan time variables and the other variables. Other two-way or three-way interactions were not 296 

investigated to avoid overly complex and highly computation-intensive models and as the detection of 297 

high-order effects would require a more powerful study design (Simonsohn, 2014).  298 

2.7.2 High-motion volumes 299 

In our second analysis we asked which variables would influence head motion over the course 300 

of a run. As decisions on retaining or discarding runs for further analysis are often informed by high-301 

motion volumes within a run rather than a run’s mean motion, instead of mean FD, we investigated the 302 
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percentage of high-motion volumes for each minute of a run (i.e. FDvolume > 0.3 mm; see 2.6., Head 303 

motion estimation). Consequently, eight PVs were evaluated:  304 

• PVs 1-7) All previous PVs, i.e. prior functional segment scan time, prior session scan 305 

time, prior day scan time, prior study scan time, age, scanner training date, task 306 

engagement 307 

• PV 8) Minute of run coded discrete one-minute-intervals within runs, allowing us to 308 

investigate the course of high-volume motion occurrence across the course of a run. 309 

In addition to main effects, we investigated the possible interactions between minute of run 310 

and the other variables. Again, we did not investigate other two- or three-way interactions (see 2.7.1, 311 

Mean FD) 312 

2.8 Statistical model  313 

2.8.1 Hierarchical data structure 314 

We analyzed our data using multilevel linear models (MLMs) due to the hierarchical four- or 315 

five-level grouping structure inherent in our data (cf. Engelhardt et al., 2017; Figure 3): Motion 316 

estimations for mean FD per run are nested within sessions (level 4), sessions are nested within days 317 

(level 3), days are nested within participants (level 2), and participants are nested within studies (level 318 

1). Motion estimations for percentage of high-motion volumes per minute of a run are nested within 319 

runs, establishing a fifth level. This hierarchical data structure is likely to introduce dependency of 320 

Figure 3: Hierarchical data structure with four levels. For 
visualization purposes, only one fictional subject is 

displayed for each study. 
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observations within a grouping variable. For example, motion from two randomly selected runs from 321 

the same participant is likely to be much more similar than motion from different participants. In 322 

technical terms, the residuals within a grouping variable are likely to be correlated. Thus, the 323 

assumption of independent residuals, crucial for parametric tests, is violated. While dependent 324 

observations for one level, e.g. within participants, could be handled easily by a conventional 325 

repeated-measures ANOVA, this case is a complex nested multilevel dependency structure that cannot 326 

be adequately and validly handled by a repeated-measures ANOVA—but can be by an MLM. 327 

2.8.2 MLM creation step 1: Identifying relevant grouping structures 328 

MLMs were created in a data-driven process. First, we assessed the possibility that the 329 

grouping variables would introduce dependencies in the data—and thus confirm the need for an MLM. 330 

To this end, we calculated the intraclass correlation (ICC, i.e. the proportion of the total variance that 331 

is explained by the respective grouping factor) for each grouping level of the model and liberally 332 

incorporated all grouping levels into our model that would explain at least 1% of the total variance 333 

(i.e. ICC ≥ 0.01, Supplementary Text S1). Next, we used the chi-square likelihood ratio test and 334 

Akaike’s information criterion (AIC) to test if the model that incorporated the grouping structure 335 

actually had a better fit to our data than the model without the grouping structure and included or 336 

ignored the grouping structure in all subsequent models accordingly (Supplementary Text S2).  337 

ICC analysis for mean FD over the course of a study indicated that in both children and adults, 338 

the grouping factors participant (children: 0.487, adults: 0.376) and session (children: 0.229, adults: 339 

0.021) explained a substantial amount of variance in the data, while the grouping factors study and day 340 

did not (both age groups < 0.001). In both children and adults, models that allowed random intercepts 341 

for participant and session fit the data significantly better than a model with fixed intercepts (children: 342 

Supplementary Table S3, adults: Supplementary Table S4). Thus, the MLMs were built with random 343 

intercepts for participant and session. 344 

ICCs for the percentage of high-motion volumes across the course of a run in both children 345 

and adults revealed substantial dependency within the grouping levels participant (children: 0.136, 346 

adults: 0.292), session (children: 0.275, adults: 0.037), and run (children: 0.143, adults: 0.309), but not 347 
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within the grouping levels study (both age groups: < 0.001) and day (children: < 0.001, adults: 0.004). 348 

A random intercept model for participant, session, and run fit our data better that a fixed intercept 349 

model (children: Supplementary Table S5, adults: Supplementary Table S6). Consequentially, the 350 

MLMs were built with random intercepts for participant, session and run.  351 

2.8.3 MLM creation step 2: Stepwise inclusion of relevant predictors 352 

Second, we introduced the PVs, i.e. main effects and selected interactions (fixed effects), into 353 

the model stepwise, to test if they improved the model fit significantly. The order of introduction for 354 

mean FD and high-motion volumes MLMs is listed in Supplementary Table S1 and Supplementary 355 

Table S2, respectively. If a model including a fixed predictor led to a better model fit than the previous 356 

model without it, the predictor was included in all subsequent models, otherwise it was left out of 357 

subsequent models. 358 

For children’s mean FD MLM main effects of prior functional segment time, prior session 359 

time, prior day time, and scanner training date, as well as the interaction effects of age × prior session 360 

time and age × prior study time were included in the model (Supplementary Table S3). For children’s 361 

high-motion volumes MLM, main effects of minute of run, prior segment time, prior session time, 362 

prior day time, and scanner training date were added to the model (Supplementary Table S5). For 363 

adult’s mean FD MLM, main effects of prior functional segment time, prior day time, and a prior 364 

functional segment time × task engagement interaction were added to the model (Supplementary Table 365 

S4). For adult’s high-motion volumes MLM main effects of minute of run, prior segment time, and 366 

prior session time, were added to the model (Supplementary Table S6).  367 

2.8.4 MLM creation step 3: Assessing the need for participant-specific predictor effects 368 

Third, we tested if the model fit improved further if we let the effect of each included main 369 

effect predictor vary over participants (random slopes) and added significant random effects to the 370 

model accordingly. Predictors scanner training date and age were not considered as they are constant 371 

for each participant’s run. Further, we did not fit random slopes for interaction terms as this prevented 372 

the MLMs to converge—possibly because our data did not have enough power to fit a model of such 373 

high level of complexity. 374 
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Adding random slopes across participants for all main effects further improved model fit in all 375 

MLMs and thus was incorporated in the final models (Supplementary Table S3, S4, S5, S6).  376 

2.9 Software 377 

Data handling and statistical data analysis was performed using R (version 3.6.0, RRID: 378 

SCR_001905, R Core Team, 2015) in RStudio (version 1.2.1335; RRID: SCR_000432). For MLMs, 379 

we used the nlme package (version 3.1-140, RRID:SCR_015655, Pinheiro et al., 2019). Figures were 380 

created using the ggplot2 package (version 3.2.0, RRID:SCR_014601, Wickham, 2016). Regression 381 

lines and confidence interval bands for fixed effects visualizations, i.e. predictor effect plots, were 382 

created using the effects package (version 4.1-1, Fox and Weisberg, 2018). Marginal R2 (for fixed 383 

effects) and conditional R2
 (for fixed effects and random effects combined) goodness-of-fit was 384 

estimated using the r.squaredGLMM function of the MuMIn package (version 1.43.6, Barton, 2019), 385 

which is based on methods by Nakagawa and Schielzeth, 2013, Johnson, 2014, and Nakagawa et al., 386 

2017. 387 

  388 
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3 Results 389 

We evaluated which variables would predict head motion during fMRI in children and adults. 390 

We assessed two measures of head motion in separate analyses: First, we investigated the course of 391 

head motion across an fMRI study in terms of mean framewise displacement per run. Then, we 392 

investigated the course of head motion over the course of a run in terms of the frequency of high-393 

motion volumes per minute. Each analysis was performed separately for children and adults. 394 

Regression coefficients for all main and interaction effects included in the MLMs were tested against 395 

zero using one-sample t-tests with a significance threshold of α = 0.05.  396 

3.1 Splitting up data acquisition reduces motion  397 

3.1.1 Children 398 

Evaluation of fixed effects predictors in the final mean FD MLM revealed that prior session 399 

scan time and a prior study scan time × age interaction significantly predicted FD in children (Figure 400 

4, Table 1). Children showed greater motion with ongoing session length (Figure 4, left). In addition, 401 

Figure 4: Predictor effect plots for children’s head motion across the course of a study.Thick magenta lines are 
fitted linear regression lines for the fixed effects predictors denoted on the x-axes. Shaded magenta areas show 
the 95% confidence band for the regression lines. Each gray circle represents one run. Left: Head motion across 
the course of a session. Each circle-connecting line represents a participant‘s session. Participants that were 
scanned in multiple sessions are represented by multiple lines. Right: Head motion across the course of a study 
for 6-9-year-old and 10-13-year old children. Age bins were chosen arbitrarily to visualize the age × prior study 
scan time interaction. Each circle-connecting line represents one participant. 
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motion increased with study length in older children, but not as much in younger children (Figure 4, 402 

right).  403 

Table 1. Fixed effects parameter estimates of final model for children’s mean motion across the course of a study. 

parameter β Lower 95% CI Upper 95% CI SE df t p 

Intercept 0.05193 0.01980 0.08406 0.01645 509 3.158 .002 

Prior functional segment scan time 0.00139 -0.00200 0.00478 0.00173 509 0.801 .424 

Prior session scan time 0.01412 0.00220 0.02603 0.00610 509 2.314 .021 

Prior day scan time 0.00240 -0.00026 0.00507 0.00136 509 1.761 .079 

Scanner training date 0.00532 -0.01831 0.02896 0.01210 509 0.440 .660 

Age × prior session scan time -0.00111 -0.00228 0.00005 0.00060 509 -1.864 .063 

Age × prior study scan time 0.00017 0.00005 0.00029 0.00006 509 2.785 .006 

Note: CI = confidence interval, SE = standard error, df = degrees of freedom 

3.1.2 Adults  404 

 For adults, evaluation of fixed effects predictors in the final model revealed that a prior 405 

functional segment scan time and a prior day scan time effect significantly predicted motion (Figure 5, 406 

Table 2). Adults’ motion increased with ongoing day scan time. Moreover, the longer functional scans 407 

are acquired without an inside-scanner break (e.g. through a structural scan with relaxing video), the 408 

more adults moved. Originally, we also found that a task engagement × prior functional segment scan 409 

time interaction significantly predicted motion, i.e. for passive tasks, adults showed a steeper increase 410 

in motion than for active tasks (Figure 5, middle, thick black dashed line). However, as it seemed 411 

Figure 5: Predictor effect plots for adult’s head motion across the course of a study. Thick green lines are fitted 
linear regression lines for the fixed effects predictors denoted on the x-axes. Shaded green areas show the 95% 
confidence band for the regression lines. Each gray circle represents one run. Left: Head motion across the 
course of a day. Each circle-connecting line represents a participant‘s day. Participants that were scanned on 
multiple days are represented by multiple lines. Right: Head motion across the course of a functional segment for 
passive and active fMRI tasks. Each circle-connecting line represents one participant’s functional segment data 
acquisition course. Participants that were scanned on multiple days, on multiple sessions, or with multiple 
functional segments are represented by multiple lines. Black dashed lines and squares show the participant that 
drove the task engagement x prior functional segment time interaction. 
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possible that this task engagement × prior functional segment scan time interaction was driven by an 412 

extreme increase in motion at the end of a functional segment in passive tasks in a single participant 413 

only (Figure 5, thin black dashed lines and squares), we reanalyzed the MLM without data from this 414 

participant. While all other effects remained stable (Figure 5, see overlapping green solid and black 415 

dashed lines), the task engagement × prior functional segment scan time interaction was rendered 416 

insignificant by the exclusion of the participant (Figure 5, see black dashed line outside of green 417 

confidence band, Supplementary Table S7).  418 

Table 2. Fixed effects parameter estimates of final model for adult’s mean motion across the course of a study. 

parameter β Lower 95% CI Upper 95% CI SE df t p 

Intercept 0.05055 0.03355 0.06755 0.00868 376 5.822 < .001 

Prior functional segment scan time 0.00253 0.00101 0.00405 0.00078 376 3.258 .001 

Prior day scan time 0.00086 0.00028 0.00144 0.0003 376 2.896 .004 

Task engagement × Prior functional segment 

scan time 

0.00183 -0.0006 0.00426 0.00124 376 1.476 .141 

Note: CI = confidence interval, SE = standard error, df = degrees of freedom 

3.1.3 Summary 419 

Our results demonstrate that head motion in children and adults can be reduced by splitting up 420 

data acquisition. However, depending on the age group, different strategies seem to be effective. For 421 

children, our data suggests a benefit of splitting up data acquisition into multiple, short sessions on the 422 

same day and keeping the overall study length as short as possible, especially for older children. In 423 

contrast, adults benefited from splitting up data acquisition into multiple days and interspersing 424 

experimental runs with inside-scanner breaks, especially for passive tasks. 425 
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3.2 High-motion event occurrence increases with run length 426 

3.2.1 Children  427 

Minute of run significantly predicted motion in children, i.e. children’s motion increased with 428 

increasing run length (Figure 6, Table 3). For example, in the third minute of a run, the average risk of 429 

a high-motion volume was at 16.5 %, while it increased to 18.3 % in the sixth minute of a run. Prior 430 

session scan time was also a significant predictor of motion, but its effect is not readily interpretable as 431 

for every value of prior session scan time, several values of minute of run existed. Thus, we were only 432 

interested in the main effect of minute of run and its possible interaction effects.  433 

Table 3. Fixed effects parameter estimates of final model for children’s frequency of motion peaks across the course of a run 

parameter β Lower 95% CI Upper 95% CI SE df t p 

Intercept 1.13974 -2.87403 5.1535 2.04910 2290 0.556 .578 

Minute of run 0.60064 0.15445 1.04683 0.22779 2290 2.637 .008 

Prior functional segment scan time 0.22457 -0.01326 0.4624 0.12142 2290 1.85 .064 

Prior session scan time 0.09011 -0.17798 0.3582 0.13686 2290 0.658 .510 

Prior day scan time 0.40927 0.21623 0.60231 0.09855 2290 4.153 < .001 

Scanner training date 0.79343 -0.74224 2.32909 0.78398 2290 1.012 .312 

Note: CI = confidence interval, SE = standard error, df = degrees of freedom 

Figure 6: Children’s head motion across the 
course of a run. Each gray circle represents 
one minute bin. Each circle-connecting line 
represents a participant‘s run. Participants 
that were scanned for more than one 
functional run are represented by multiple 
lines. Thick magenta line shows the fitted 
linear regression line for the minute of run 
effect. Shaded magenta area show the 95% 
confidence band for the regression line. 
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3.2.2 Adults  434 

Minute of run significantly predicted motion in adults, i.e. adult’s motion increased with 435 

increasing run length (Figure 7, Table 4). For example, in the third minute of a run, the average risk of 436 

a high-motion volume was at 5.3 %, while it increased to 6.5 % in the sixth minute of a run. Prior 437 

functional segment scan time and prior session scan time were also significant predictors of motion, 438 

but their effects are not interpretable as for each of their values, several values of minute of run 439 

existed. Thus, we were only interested in the main effect of minute of run and its possible interaction 440 

effects. 441 

Table 4. Fixed effects parameter estimates of final model for adult’s frequency of motion peaks across the course of a run 

parameter β Lower 95% CI Upper 95% CI SE df t p 

Intercept 0.76618 -1.51000 3.04235 1.16168 1638 0.660 0.510 

Minute of run 0.42857 0.10352 0.75362 0.16589 1638 2.583 0.010 

Prior functional segment scan time 0.18683 0.00786 0.36579 0.09134 1638 2.045 0.041 

Prior session scan time 0.11664 0.04528 0.18800 0.03642 1638 3.203 0.001 

Note: CI = confidence interval, SE = standard error, df = degrees of freedom 

Figure 7: Adult’s head motion across the 
course of a run. Each gray circle represents 
a one minute bin. Each circle-connecting 
line represents a participant‘s run. 
Participants that were scanned for more 
than one functional run are represented by 
multiple lines. Thick green line shows the 
fitted linear regression line for the minute of 
run effect. Shaded green area show the 
95% confidence band for the regression line. 
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3.2.3 Summary 442 

Our results indicate that long runs have a negative impact on data quality: The frequency of 443 

high-motion events increases with ongoing run length for both children and adults. 444 

  445 
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4 Discussion 446 

We identified study procedure variables, that predict participant’s head motion in three 447 

neurodevelopmental fMRI studies including data of 77 children and 64 adults. Using MLMs, we 448 

investigated the effect of scanner training date, task engagement, as well as prior scan time since the 449 

beginning of the study, day, session, or functional segment. In children, splitting fMRI data acquisition 450 

into multiple sessions reduced motion. However, motion still increased across the course of a study, 451 

especially in older children. In adults, splitting fMRI data acquisition into multiple days reduced 452 

motion. Moreover, motion was reduced after task-free inside-scanner breaks. In both children and 453 

adults, motion increased with run length. 454 

4.1 Splitting up data acquisition reduces motion 455 

4.1.1 Children 456 

Children do not seem to benefit from splitting up studies into several days, as prior study scan 457 

time predicted head motion, especially for older children, but prior day scan time did not. To speculate 458 

on possible explanations, for children, the initial excitement of participating in an fMRI study and the 459 

commitment to do everything right might be less pronounced after the first day. On the second day, 460 

they might be less motivated to lie still, e.g. due to the lacking novelty of the situation. Possibly, the 461 

similarity of visual appearance or demands of the tasks lead to boredom and more movement on the 462 

second day. In this regard, it might be interesting to investigate if a longer period between scanning 463 

days, such as four weeks instead of the usual few days, would lead to less motion on day two.  464 

Older children showed a larger increase in motion with increasing study length. Initially, this 465 

seems unexpected. Intuition would suggest that older children are better at lying still for extended 466 

periods of time. However, it seems that this age × prior study scan time interaction could be driven by 467 

a higher baseline motion of young children at the beginning of the study, which then does not change 468 

as much over time. In contrast, older children seem to be able to suppress the urge to move at the 469 

beginning of a study quite well, and then gradually relax into motion levels similar to that of younger 470 

children. 471 
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Our results indicate that pediatric neuroimaging studies may benefit from breaking up data 472 

acquisition into several sessions on the same day, as children’s head motion increases with ongoing 473 

session length. So far, no other studies have investigated motion across multiple sessions on the same 474 

day. Nevertheless, single-session studies in children have found that motion increases with increasing 475 

session length in children (Achterberg and van der Meulen, 2019; Engelhardt et al., 2017). Our study 476 

points to an important distinction regarding the kind of breaks that researchers can schedule in 477 

children’s fMRI scanning protocols. While motion can be effectively reduced by allowing children to 478 

exit the scanner, inside-scanner breaks in fMRI data acquisition during which children cannot exit the 479 

scanner, but instead watch a video while a structural scan is acquired, do not seem to reduce motion 480 

after the break. Possibly, it is important for children to be able to move freely, get face-to-face social 481 

interactions, or just relieve the desire to void their bladder, none of which are possible without exiting 482 

the scanner. Alternatively, showing a video might have effects opposite to those desired: Because the 483 

video is highly engaging, it leads to reduced motion during the break from tasks (Cantlon and Li, 484 

2013; Vanderwal et al., 2015). However, due to the high level of engagement in the video, any 485 

subsequent normal fMRI task might be perceived as boring due to a contrast effect, leading to higher 486 

motion in turn.  487 

In our study, we did not find an effect of task engagement on head motion in children. This 488 

contradicts previous findings, which showed that children show less motion in engaging tasks in 489 

contrast to less engaging tasks or resting state (Engelhardt et al., 2017). This disparity might be due to 490 

different definitions and aims of the studies. In our analysis, we defined tasks as engaging if 491 

participants had to perform a task that included button-pressing, and we defined tasks as non-engaging 492 

if participants just had to passively watch the display. We chose this definition as our aim was to 493 

identify aspects in fMRI study designs that can be actively manipulated by the researcher. Engelhardt 494 

et al. (2017) defined engaging tasks as fast-paced, cognitively demanding, or socially engaging. These 495 

aspects are usually inherent in a task and cannot be changed without changing the research question. 496 

For example, experiments on social development in children will need to have a socially engaging 497 

component and experiments on the development of working memory or response inhibition will be 498 

cognitively demanding. However, while researchers can decide if a given task will require a manual 499 
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response or not, other than providing a way to track participant’s behavior in the scanner this choice 500 

alone does not seem to make a difference in motion one might have hoped for. 501 

4.1.2 Adults 502 

For adults, it seems that breaking up data acquisition into several days is especially useful in 503 

reducing motion as we found a significant increase in motion with increasing prior day scan time, but 504 

not with increasing prior study scan time. Moreover, our results suggest that adults’ head motion 505 

remains constant across the course of a session. Thus, the observed increasing motion across the 506 

course of a day is presumably due to a higher mean motion in the second session of the day. Thus, 507 

adults seem to be able to restrain their head motion across relatively long sessions, but are more likely 508 

to increase head motion in a second session on the same day. Therefore, if lengthy studies require a 509 

break, it might be advisable to continue scanning on a different day. We are not aware of studies that 510 

investigated motion in adults across multiple sessions within the same day. However, our findings 511 

connect with the existing literature in so far as the number of completed runs in a single-session study 512 

with five runs did not have any effect on motion in a previous study (Huijbers et al., 2017).  513 

One possible reason for adult’s ability to maintain motion on a constant level within session 514 

might be the introduction of breaks from task-based fMRI with structural scans during which 515 

participants can watch a video. Although these breaks do not reduce head motion in children, these 516 

inside-scanner breaks seem to reduce motion after the break for adults, an effect that is particularly 517 

prominent for passive tasks. Thus, passive tasks in adults should be planned at the beginning of a 518 

session, or after an inside-scanner break. These findings complement previous findings that showed 519 

higher motion for passive tasks or resting state and lower motion for active tasks (Cantlon and Li, 520 

2013; Huijbers et al., 2017; Vanderwal et al., 2015). Here, our findings show that motion during 521 

passive tasks is not only higher but also increases at a steeper rate with ongoing time after any break. 522 

4.2 High-motion event occurrence increases with run length 523 

We found that the frequency of motion peaks within a run increases with run length in both 524 

children and adults. This suggests that it is preferable to plan rather short runs instead of longer ones. 525 
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Interestingly, we did not find interactions of run minute with any of the prior scan time variables. That 526 

is, a common expectation—that motion peaks are especially evident at the beginning of the first run of 527 

a study or day—does not hold up. In a previous study that investigated the association between total 528 

run length and mean run motion in up to 6-7 minute long runs, results were mixed, i.e. a positive 529 

relationship in one sample and a negative relationship in the other sample (Engelhardt et al., 2017). 530 

4.3 Limitations 531 

While our study marks an important contribution towards understanding which factors are 532 

effective in obtaining good quality data from fMRI experiments, some limitations of our methodology 533 

should be considered. Data acquisition in terms of which task was acquired when, the positions of 534 

structural scans, i.e. inside-scanner breaks, and the number of total runs was largely predetermined for 535 

each study and participant. However, of course we adapted our planning to the requirements of the 536 

given participant, for the greatest part for children only. Therefore, children were able to influence the 537 

prior study time factors and possibly their head motion. 538 

4.4 Future directions 539 

It remains unclear which contribution scanner training has on children’s head motion. 540 

Considering that a simple toy tunnel and a commercial mock scanner resulted in comparable success 541 

rates for high-quality structural images (Barnea-Goraly et al., 2014), it might be interesting to see if 542 

these results generalize onto strict motion thresholds during longer fMRI studies. Here, future studies 543 

should experimentally manipulate the kind of training for children, e.g. mock scanner training vs. toy 544 

tunnel training vs. no training. Also, these studies could investigate if short version trainings have 545 

comparable effects to extensive trainings sessions and at which age children cease to benefit from 546 

scanner training. 547 

Aside from the investigated and discussed procedures, technical solutions might help to reduce 548 

motion. Recent developments have made real-time motion detection available that can be used to 549 

provide immediate feedback to participants and researchers (Dosenbach et al., 2017). In children 550 

younger than 10 years, providing immediate feedback has been successful in reducing motion using 551 
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this technology (Greene et al., 2018). Thus, age effects in motion could occur not due to an inability to 552 

lie still in younger children, but possibly due to a lower awareness of their own movements. Even if 553 

motion is not reduced, this technology provides the possibility to adapt a common fMRI study 554 

protocol—based on average-score recommendations like those in this study—to the individual 555 

participant’s behavior. 556 

This possibility might lead to a considerable reduction in cost and improvement of data 557 

quality, as our ICC analysis showed that motion differs substantially between participants and is 558 

relatively similar within participants (despite weak groupings of sessions and runs). This finding is in 559 

line with a small body of studies (including twin-studies) finding that motion during fMRI tasks is a 560 

very stable neurobiological trait in children and adults that seems to be heritable, i.e. under strong 561 

genetic control (Achterberg and van der Meulen, 2019; Couvy-Duchesne et al., 2014; Engelhardt et 562 

al., 2017; van Dijk et al., 2012; Zeng et al., 2014). More generally, fidgeting in children, measured 563 

using a psychometric scale, seems to be under strong genetic control, while objectively-measured 564 

physical activity seems to be under strong environmental control (Fisher et al., 2010). However, as the 565 

environment of an fMRI study is highly stable, it is not surprising that genetically controlled 566 

physiological or cognitive traits (e.g. strong swallowing, restlessness) leads to stable motion within 567 

participants.  568 

4.5 Conclusion 569 

The best way of dealing with head motion in fMRI is to prevent it in the first place. Our study 570 

shows that motion can be reduced by careful planning of the data acquisition procedure. Breaking up 571 

data acquisition into several sessions with the opportunity to leave the scanner is effective in reducing 572 

motion in children, while introducing inside-scanner breaks with continued acquisition of structural 573 

data is not effective. Thus, for children, it appears feasible to acquire all fMRI data of a study on one 574 

day, with no necessity of scanning on separate days. For adults, it is best to acquire data in long 575 

sessions that might be interspersed with inside-scanner breaks during which further structural data can 576 

be acquired. Moreover, lowest motion in adults will be achieved if only one session per day is 577 

planned; i.e. data for extensive studies should be acquired on separate days. For both children and 578 
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adults, we advise to avoid long runs, as the probability for high-motion peaks increases with ongoing 579 

run length. 580 

  581 
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