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ABSTRACT 

During development individuals undergo protracted changes in cortical morphology, which coincide 

with changes in cognition.  A number of studies have measured the association between brain 

structure and cognition in children, however these frequently rely on mass univariate statistics or 

ROI-based comparisons and do not always measure cortical morphology relative to global brain 

measures.  After controlling for global brain measures, we can see a residual regionalisation pattern 

indicating the size or thickness of different regions relative to the total cortical surface area or mean 

thickness.  Individual variability in this regionalisation may be important for predicting between 

subject variability in cognitive performance.  Here we sought to determine whether the relative 

configuration of cortical architecture across the whole cortex was associated with cognition using a 

novel multivariate omnibus statistical test (MOSTest).  This method is optimally powered to detect 

associations that are widely distributed across the cortex.  We then used the Polyvertex score (PVS) 

to quantify the magnitude of the association between vertex-wise cortical morphology and cognitive 

performance.  We have determined that the relative pattern of cortical architecture, after removing 

the variance associated with global brain measures, predicted unique variance associated with 

cognition across different modalities. 
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INTRODUCTION 

During development there are protracted increases in cortical surface area (which peaks at 9 and 10 

years of age) and independent monotonic decreases in cortical thickness (Brown & Jernigan, 2012; 

Jernigan & Tallal, 1990; Jernigan, Trauner, Hesselink, & Tallal, 1991; Lyall et al., 2015; Wierenga, 

Langen, Oranje, & Durston, 2014) that coincide with rapid cognitive development.  However, the 

relationship between these distinct neuroanatomical trajectories and cognition is not well 

understood in late childhood.  This is in part due to methodological differences, which conflate these 

independent morphometrics (Brown & Jernigan, 2012).  Many studies have looked at regional 

associations between brain structure and cognition; however, these do not always partition out the 

variance associated with modality-specific global brain measures.  However, regional differences in 

cortical morphology relative to total cortical surface area (CSA) or mean cortical thickness (CTH) also 

appear to be important for predicting behaviour (Curley et al., 2018; Fjell et al., 2012; Newman, 

Jernigan, et al., 2016; Newman, Thompson, et al., 2016; Vuoksimaa et al., 2016).  This suggests that 

individual differences in the regionalisation of the cortex (relative to global brain measures) may be 

important for understanding individual variability in cognition.  However, previous studies have been 

underpowered to detect significant effects of relative cortical configuration across the whole cortex 

particularly when using univariate statistics with stringent control for multiple comparisons 

(Vuoksimaa et al., 2016). 

Brain-behaviour relationships are likely to represent weak diffuse effects across the brain, which are 

difficult to detect with small sample sizes.  A recent study has highlighted how stringent thresholding 

procedures used in neuroimaging can produce variability among study replications and mask small, 

but true effects (Cremers, Wager, & Yarkoni, 2017).  From genetics research we have discovered that 

complex behavioural traits are polygenic and the additive effect of many small effects across the 

genome is more predictive of behavioural phenotypes than the effect of stringently thresholded 

genome-wide significant single nucleotide polymorphisms (SNPs).  The same appears to be true of 

the brain.  We have recently demonstrated that we can predict more variance in behaviour by taking 

into account effect sizes across the whole cortex using novel analysis methods adapted from 

genetics research (Zhao et al, in prep).  The polyvertex score (PVS), like the polygenic risk score, 

allows us to aggregate vertex-wise (or voxel-wise) effects across the cortex to predict behaviour.  

Based on this previous research and our understanding of how regionalisation occurs during 

development, we may assume that the association between cortical morphology and cognition is 

more likely to be widely distributed across the cortex. 

In the current study, we hypothesised that the relative configuration of brain morphology 

(controlling for global measures) across the whole cortex could explain individual differences in 

cognitive task performance.  To test this we are using a novel multivariate omnibus statistical test 

(MOSTest) for determining an association between vertex-wise imaging data and behaviour.  The 

MOSTest aggregates effects across the cortex and is therefore optimally powered to detect 

distributed associations.  This is in contrast to a traditional neuroimaging omnibus test based on the 

most significant vertex or voxel, which is alternatively optimally powered for sparse, localised effects 

of interest.  The MOSTest has three main steps: 1) calculate a multivariate statistic by calculating the 

multivariate norm (Mahalanobis distance) across the cortex using the decorrelated mass univariate z 

statistics; 2) estimate the distribution of the test statistic under the null hypothesis using an 

appropriate permutation scheme and determine statistical significance controlling for a family-wise 

error rate at 5%; and 3) fit a gamma cumulative density function to the tail of the permuted 

distribution in order to extrapolate a MOSTest theoretical p-value that has greater precision and 

reduces the need for a high number of permutations.  Van der Meer et al (in prep) have recently 
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validated this method in a different context and demonstrated the increased power of the MOSTest 

for detecting genome-wide associations with regional imaging phenotypes in UK Biobank.  Here we 

demonstrate an application of the MOSTest for improving the discoverability of vertex-wise brain-

behaviour associations in the Adolescent Brain and Cognitive Development (ABCD) study. 

The large-scale ABCD study uses neuroimaging, genetics and a multi-dimensional battery of 

behavioural assessments to investigate the role of biological, environmental, and behavioural factors 

on brain, cognitive, and social/emotional development.  The baseline data for this longitudinal study 

includes 11,875 nine and ten year old children, which allows us to generate a comprehensive cross-

sectional understanding of the relationship between brain structure and cognition.  Using the 

complete baseline data (release 2.0.1), we determined whether there was an association between 

performance on the thirteen cognitive tasks in the neurocognitive battery and the regionalisation of 

CSA (controlling for total CSA) and CTH (controlling for mean CTH) using the MOSTest.  We then 

quantified the magnitude of these relationships using the PVS.  We hypothesised that individual 

variability in the relative regionalisation of cortical morphology would explain cognitive task 

performance above and beyond that predicted by global brain measures. 

 

METHOD 

Sample 

The ABCD study is a longitudinal study across 21 data acquisition sites following 11,875 children 

starting at 9 and 10 years old.  This paper analysed the full baseline sample from release 2.0.1 (NDAR 

DOI: 10.15154/1504041).  The study used specific recruitment strategies to create a population-

based, demographically diverse sample, however it is not necessarily representative of the U.S. 

national population (Compton, Dowling, & Garavan, 2019; Garavan et al., 2018).  Due to the 

inclusion of a wide range of individuals across different races, ethnicities and socioeconomic 

backgrounds, it is important to control for effects of self-declared race and ethnicity, household 

income and parental education when using this dataset due to potential confounding associations 

between these demographic variables and our effects of interest.  Sex and age were also used as 

covariates in all analyses.  Embedded within the sample is a large twin cohort and many siblings, 

therefore family relatedness was also controlled for as a random effect in all analyses for using a 

restricted exchangeability permutation scheme (see Statistical Analysis 1). 

Only subjects who had complete data across all of the measures analysed were included in the 

neuroimaging analyses.  There was a large number of subjects with missing income data (n=1018), 

therefore missing values were imputed by taking the median income value across participants from 

the same testing site.  The sources of missing data were as follows: incomplete across all 

demographic variables (n=189), incomplete across all cognitive measures (n=944), unavailable T1-

weighted MRI scan for reasons outlined in the ABCD release notes (e.g. did not get scanned, motion 

artefacts) (n=339) and imaging data that was made available but did not pass the free-surfer QC flag 

(n=462).  These missing data values are not mutually exclusive.  The permutation testing used in this 

study was dependent on having multiple families with the same number of children, therefore the 

single family with 5 children was excluded from these analyses.  This resulted in a final sample of 

10,145 subjects.  Supplementary Table 1 outlines the names of each variable used in these analyses 

from data release 2.0.1 in accordance with the NDA data dictionary.   
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Neurocognitive assessment 

NIH Toolbox 

The NIH Toolbox Cognition Battery (NTCB) is a widely used battery of cognitive tests that measures a 

range of different cognitive domains.  All of the tasks within the NTCB were administered using an 

iPad with support or scoring from a research assistant where needed.  Below is a brief description of 

each task. 

The Toolbox Oral Reading Recognition Task (TORRT) measured language decoding and reading.  

Children were asked to read aloud single letters or words presented in the center of an iPad screen.  

The research assistant marked pronunciations as correct or incorrect.  Extensive training was given 

prior to administering the test battery.  Item difficulty was modulated using computerised adaptive 

testing (CAT). 

The Toolbox Picture Vocabulary Task (TPVT), a variant of the Peabody Picture Vocabulary Test 

(PPTV), measured language and vocabulary comprehension.  Four pictures were presented on an 

iPad screen as a word was played through the iPad speaker.  The child was instructed to point to the 

picture, which represented the concept, idea or object name heard.  CAT was implemented to 

control for item difficulty and avoid floor or ceiling effects. 

The Toolbox Pattern Comparison Processing Speed Test (TPCPST) measured processing speed.  

Children were shown two images and asked to determine if they were identical or different by 

touching the appropriate response button on the screen.  This test score is the sum of the number of 

items completed correctly in the time given. 

The Toolbox List Sorting Working Memory Test (TLSWMT) measured working memory.  Children 

heard a list of words alongside pictures of each word and were instructed to repeat the list back in 

order of their actual size from smallest to largest.  The list started with only 2 items and a single 

category (e.g. animals).  The number of items increased with each correct answer to a maximum of 

seven.  The child then progressed to the next stage in which two different categories were 

interleaved.  At this stage children were required to report the items back in size order from the first 

category followed by the second category.  Children were always given two opportunities to repeat 

the list correctly before the experimenter scored the trial as incorrect. 

The Toolbox Picture Sequence Memory Test (TPSMT) measured episodic memory.  On each trial, 

children were shown a series of fifteen pictures in a particular sequence.  The pictures illustrated 

activities or events within a particular setting (e.g. going to the park).  Participants were instructed to 

touch the pictures in the original sequence in which they were shown.  The Rey-Auditory Verbal 

Learning Task (RAVLT) was also included in the ABCD neurocognition battery as a more 

comprehensive measure of episodic memory. 

The Toolbox Flanker Task (TFT) measured executive function, attentional and inhibitory control.  

This adaptation of the Eriksen Flanker task (Eriksen & Eriksen, 1974) captures how readily a 

participant is influenced by the congruency of stimuli surrounding a target.  On each trial a target 

arrow was presented in the center of the iPad screen facing to the left or right and was flanked by 

two additional arrows on both sides.  The surrounding arrows were either facing in the same 

(congruent) or different (incongruent) direction to the central target arrow.  The participant was 

instructed to push a response button to indicate the direction of the central target arrow.  Accuracy 

and reaction time scores were combined to produce a total score of executive attention, such that 
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higher scores indicate a greater ability to attend to relevant information and inhibit incorrect 

responses. 

The Toolbox Dimensional Change Card Sort Task (TDCCS) measured executive function and 

cognitive flexibility.  On each trial, the participant was presented with two objects at the bottom of 

the iPad screen and a third object in the middle.  The participant was asked to sort the third object 

by matching it to one of the bottom two objects based on either colour or shape.  In the first block 

participants matched based on one dimension and in the second block they switched to the other 

dimension.  In the final block, the sorting dimension alternated between trials pseudorandomly.  The 

total score was calculated based on speed and accuracy. 

In the current study, the uncorrected scores for each task were used for statistical analyses.  

Composite scores of crystallised intelligence (mean of TPVT and TORRT), fluid intelligence (mean of 

TPCPST, TLSWMT, TPSMT, TFT and TDCCS) and total score (mean of all tasks) were also analysed.  

These measures are highly correlated with ‘gold standard’ measures of intelligence in adults (Heaton 

et al., 2014) and children (Akshoomoff et al., 2013). 

 

Rey-Auditory Verbal Learning Task (RAVLT) 

This task measures auditory learning, recall and recognition.  Participants listened to a list of 15 

unrelated words and were asked to immediately recall these after each of five learning trials.  A 

second unrelated list was then presented and participants were asked to recall as many words as 

possible from the second list and then recall words again from the initial list.  Following a delay of 30 

minutes (during which other non-verbal tasks from the cognitive battery are administered), longer-

term retention was measured using recall and recognition.  This task was administered via an iPad 

using the Q-interactive platform of Pearson assessments (Daniel, Wahlstrom, & Zhang, 2014).  In the 

current study, the total number of items correctly recalled across the five learning trials was 

summed to produce a measure of auditory verbal learning. 

 

Little Man Task (LMT) 

This task measures visuospatial processing involving mental rotation with varying degrees of 

difficulty (Acker, 1982).  A rudimentary male figure holding a briefcase in one hand was presented on 

an iPad screen.  The figure could appear in one of four positions: right side up vs upside down and 

either facing the participant or with his back to the participant.  The briefcase could be in either 

hand.  Participants indicated which hand the briefcase was in using one of two buttons.  

Performance across the 32 trials was measured by the percentage of trials in which the child 

responded correctly.  This was divided by the average reaction time to complete the task (in 

seconds) to produce a measure of efficiency of visuospatial processing.  This was the dependent 

variable analysed in this study. 

 

Matrix reasoning 

Nonverbal reasoning was measured using an automated version of the Matrix Reasoning subtest 

from the Weschler Intelligence Test for Children-V (WISC-V; Weschler, 2014).  On each trial the 

participant was presented with a series of visuospatial stimuli, which was incomplete.  The 

participant was instructed to select the next stimulus in the sequence from four alternatives.  There 
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were 32 possible trials and testing ended when the participant failed three consecutive trials.  The 

total raw score, used in the current study, was the total number of trials completed correctly. 

 

Imaging acquisition 

The ABCD MRI data were collected across 21 research sites using Siemens Prisma, GE 750 and Philips 

3T scanners.  Scanning protocols were harmonised across sites.  The T1w acquisition (1 mm 

isotropic) was a 3D T1w inversion prepared RF-spoiled gradient echo scan using prospective motion 

correction, when available (Tisdall et al., 2012; White et al., 2010) (echo time = 2.88 ms, repetition 

time = 2500 ms, inversion time = 1060 ms, flip angle = 8°, FOV = 256x256, FOV phase = 100%, slices = 

176).  Only the T1w scans were analysed in this paper. Full details of all the imaging acquisition 

protocols used in ABCD are outlined by Casey et al (Casey et al., 2018).  Scanner ID was included in 

all analyses to control for any differences in image acquisition across sites and scanners. 

 

Imaging pre-processing 

Pre-processing of all MRI data for ABCD was conducted using in-house software at the Center for 

Multimodal Imaging and Genetics (CMIG) at University of California San Diego (UCSD) as outlined in 

Hagler et al (Hagler et al., 2019).  Manual quality control was performed prior to the full image pre-

processing and structural scans with poor image quality as well as those that did not pass FreeSurfer 

QC were excluded from all analyses.  Brain segmentation and cortical surface reconstruction were 

completed using FreeSurfer v5.3.0 (Dale, Fischl, & Sereno, 1999; Bruce Fischl, Sereno, & Dale, 1999). 

T1-weighted structural images were corrected for distortions caused by gradient nonlinearities, 

coregistered, averaged, and rigidly resampled into alignment with an atlas brain.  See previous 

publications for details of the surface based cortical reconstruction segmentation procedures (Dale 

et al., 1999; B Fischl & Dale, 2000; Bruce Fischl et al., 2004, 1999; Jovicich et al., 2006).  In brief, a 3D 

model of the cortical surface was constructed for each subject.  This included segmentation of the 

white matter (WM), tessellation of the gray matter (GM)/WM boundary, inflation of the folded, 

tessellated surface, and correction of topological defects. 

Measures of cortical thickness at each vertex were calculated as the shortest distance between the 

reconstructed GM/WM and pial surfaces (B Fischl & Dale, 2000).  To calculate cortical surface area, a 

standardised tessellation was mapped to the native space of each subject using a spherical atlas 

registration, which matched the cortical folding patterns across subjects.  Surface area of each point 

in atlas space was calculated as the area of each triangle.  This generated a continuous vertex-wise 

measure of relative areal expansion or contraction.  Cortical maps were smoothed using a Gaussian 

kernel of 20 mm full-width half maximum (FWHM) and mapped into standardised spherical atlas 

space.  Vertex-wise data for all subjects for each morphometric measurement were concatenated 

into matrices in MATLAB R2017a and entered into general linear models for statistical analysis using 

custom written code. 
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Statistical Analysis 1: determining the association between relative brain structure and 

cognition using the MOSTest 

In order to determine whether there was a significant association between relative, vertex-wise 

cortical morphology and cognitive task performance, we employed the MOSTest.  We applied a 

general linear model (GLM) associating a given behaviour 𝑦  from a set of covariates 𝑊 and the 

vertex-wise morphology data, 𝑋.  𝑊 represents a standardized 𝑁 by 𝑚 matrix of covariates of no 

interest where 𝑁 represents the number of subjects and 𝑚 the number of covariates.  𝑋 denotes the 

standardised 𝑁 by 𝑉 matrix of vertex-wise imaging data where 𝑉 denotes the number of vertices. 𝑦 

represents an 𝑁 by 1 vector of a behavioural phenotype. 𝛽 and α are the 𝑉 by 1 and 𝑚 by 1 vectors 

of parameters of interest and no interest respectively (Eq 1). 

(1) 𝑦 =  𝛼0 + 𝑾𝛼 + 𝑿𝛽 + ε  

Using this linear model, we evaluated whether the vertex-wise data could predict the behaviour of 

interest, while controlling for a set of covariates, and obtained the least-squares estimate for each 𝛽𝑗 

from the GLM.  This was used to compute the multivariate vector of association Wald statistics 𝒛 =

(𝑧, … , 𝑧𝑉)′ across the whole cortex.  The multivariate statistic was calculated as the Mahalanobis 

norm, 𝜒   𝑀𝑂𝑆𝑇
2  (Eq 2).  This is an approximation of the multivariate normal cumulative distribution 

with known variance-covariance matrix, given by 𝑹.  The correlation matrix was estimated from the 

𝑃 by 𝑉 matrix of permuted z statistics, 𝒁𝒑𝒆𝒓𝒎, where 𝑝 = 1,…,𝑃 denotes permutations.  This was 

then regularised using a Tikhonov regularization to ensure the correlation matrix was invertible (Eq 

3).  The magnitude of regularisation dictated by the penalty factor 𝜆 was optimised based on the 

negative log likelihood of the fit of the gamma cumulative density function to the permuted 

distribution of 𝜒   𝑀𝑂𝑆𝑇
2  (see supplementary figure 3).   

(2) 𝜒   𝑀𝑂𝑆𝑇
2 = 𝑧′�̂�−1𝑧 

(3) �̂� = 𝑐𝑜𝑣(𝒁𝒑𝒆𝒓𝒎)(1 − 𝜆) +  𝜆𝑰  

A permutation test was used to determine the distribution of  𝜒   𝑀𝑂𝑆𝑇
2  under the null hypothesis H0.  

We rejected H0 if 𝜒   𝑀𝑂𝑆𝑇
2  was greater than the permutation distribution more than 99.62% of the 

time (alpha level of 95% Bonferroni corrected for 13 tests).  Theoretical p-values for 𝜒   𝑀𝑂𝑆𝑇
2   were 

calculated by fitting a gamma cumulative density function to the permuted scores and estimating 

the likelihood of the observed omnibus test statistic given this permuted distribution.  

Supplementary figures 4A & 5A show the fit of the gamma distribution to the permuted data.  All 

analyses were also conducted using the most significant vertex, 𝑧  𝑀𝐼𝑁𝑃
2  , as the omnibus statistic (Eq 

4).  Theoretical p-values for these permutation tests were generated by fitting a beta cumulative 

density function to the permuted data.  This estimates the likelihood of these observations using a 

Sidak correction.  The fits of these data are shown in supplementary figures 4B & 5B. 

(4) 𝑧𝑀𝐼𝑁𝑃 = max (𝑧2)  

To correctly estimate the null distribution from permutations, subject labels were shuffled according 

to exchangeability blocks (EBs) defined based on the family structure within ABCD (Winkler, 

Webster, Vidaurre, Nichols, & Smith, 2015).  Families with the same number of siblings were allowed 

to be shuffled as a whole and siblings within a family were allowed to be shuffled with each other.  

This was necessary to account for the joint distribution of the observed data due to the relatedness 

of the ABCD sample.  Permutations that adhered to this shuffling scheme were generated using the 
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PALM toolbox (Winkler, Ridgway, Webster, Smith, & Nichols, 2014).  All statistical imaging analyses 

were conducted using custom code written in Matlab R2017a. 

All imaging analyses included sex, self-declared race and ethnicity, household income, parental 

education and scanner as categorical fixed covariates and age as a standardised (z-scored) 

continuous fixed covariate.  For vertex-wise cortical thickness analyses, standardised global mean 

thickness was included as a covariate, and for vertex-wise cortical surface area analyses, 

standardised total surface area was included. 

 

Statistical Analysis 2: quantifying the magnitude of the association between brain 

structure and cognition using the PVS 

The PVS was calculated for each cognitive task to determine the behavioural variance explained by 

the vertex-wise cortical morphology.  All behavioural and imaging data were pre-residualised using 

the covariates of no interest prior to calculation of the PVS.  For the imaging data, the global CSA and 

CTH measures specific to each modality were also included in this.  This allowed us to determine the 

unique association between relative cortical morphology and cognition and compare this to the 

predictive power of brain structure without controlling for global measures.  The method used here 

is outlined in detail in Zhao et al (in prep).  The association between each imaging phenotype and 

each cognitive task was modelled using the mass univariate approach such that the behaviour of 

interest was modelled independently at each vertex using a general linear model (GLM).  In the 

equations described below, 𝑿 denotes a standardized 𝑁 by 𝑉 matrix of a given imaging phenotype 

where 𝑁 and 𝑉 denotes the number of subjects and vertices respectively. 𝑦 represents an 𝑁 by 1 

vector of a behavioural phenotype, and 𝛽 is the 𝑉 by 1 vector of parameters of interest. 

Parameter estimation 

Across subjects, the imaging data and the behaviour were modelled as a linear combination of the 

imaging data at each vertex plus measurement error (Eq 5).  This is used to generate mass univariate 

beta estimates, 𝛽�̂�, based on the assumption that each vertex is independent (Eq 6). 

(5) y =  𝑿𝛽 + ε 

(6) 𝛽�̂� = 𝐼𝑿′𝑦  

However, the assumption that the signal at each vertex is independent is not correct.  We therefore 

used a Bayesian parameter estimation procedure adapted from the LDpred framework used to 

improve accuracy for polygenic risk scores(Vilhjálmsson et al., 2015).  Full details of this procedure 

are outlined in Zhao et al (in prep) where the authors applied this method to imaging data and show 

improvements in prediction performance.  This Bayesian parameter estimation procedure calculates 

the posterior mean effect size at each vertex using the mass univariate beta estimates, the observed 

correlation structure of the brain structure, 𝐷, the estimated signal-to-noise ratio (SNR) of the 

imaging phenotype, 𝑆  , (computed using the GWASH framework(Schwartzman, Schork, Zablocki, & 

Thompson, 2017)), the number of vertices, 𝑉, and sample size, 𝑁 (Eq 7). 

(7) 𝐸(𝛽𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛 | �̂�𝑈, 𝑫) = (  
𝑉

𝑁𝑆
+  𝑫)−1�̂�𝑈 

The Bayesian parameter estimation procedure takes into account the correlation structure of the 

brain providing a more valid estimate of the association between the brain and behaviour. 

Furthermore, by incorporating an estimate of the SNR of the imaging phenotype we can reduce the 
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variance in prediction error, which leads to better predictive performance. We note that this method 

explicitly assumes a prior that all vertices have true associations with behaviour.  

Behavioural prediction 

The estimated beta parameters were then used to predict the behavioural phenotype and thus 

produce the PVS for each subject.  The PVS was calculated by aggregating the Bayesian parameter 

estimates across all of the vertices (Eq 8).  This measure harnesses the explanatory power of all of 

the vertices on behaviour.  The PVS can then be compared with the observed behaviour in order to 

provide an estimate for how much variance in the observed behaviour can be predicted using the 

vertex-wise imaging phenotype. 

(8) �̂�𝑃𝑉𝑆−𝐵 =  ∑ 𝑋𝑗
𝑉
𝑗 �̂�𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛,𝑗 

In order to generate an unbiased PVS for every subject we used a leave-one-out 10 fold cross-

validation procedure.  The Bayesian parameters were estimated in the training set (90% of full 

sample) and multiplied with the imaging phenotype of participants in the test set (10% of full 

sample).  This was repeated 10 times for each fold until a PVS was calculated for every participant in 

the full sample.  The subjects in each fold were randomly selected based on unique family IDs, such 

that subjects within the same family were always within the same fold.  The association between the 

imaging phenotype and behaviour across the whole sample was calculated as the squared 

correlation (R2) between the observed behaviour and the predicted behaviour (the PVS).  This 

process was repeated for four imaging phenotypes: CSA, relative CSA (controlling for total CSA), CTH. 

relative CTH (controlling for mean CTH). 

 

RESULTS 

 

Determining the association between relative cortical morphology and cognition 

In order to test the association between the regionalisation of cortical morphology across the whole 

cortical surface and cognition in this study, we employed the MOSTest.  The multivariate statistic 

was calculated and used within a permutation test for each cognitive task and cortical morphology 

measure independently.  

Relative CSA 

For each cognitive task, our multivariate statistic, 𝜒   𝑀𝑂𝑆𝑇
2 , was calculated for each permutation 

(n=10,000) for statistical inference.  In figure 1, we have plotted the distribution of 𝜒   𝑀𝑂𝑆𝑇
2  across 

permutations and superimposed the observed (non-permuted) statistic (green) to demonstrate the 

likelihood of observing the non-permuted statistic by chance.  The Bonferroni corrected alpha 

threshold (0.05/13=0.0038) is overlaid (red) on each plot in order to demonstrate the significance of 

the permutation test.  The MOSTest showed a significant association between relative cortical 

configuration of CSA (controlling for total CSA) and cognition for all of the cognitive performance 

measures.  We also conducted the same permutation test using the most significant vertex (𝑧  𝑀𝐼𝑁𝑃
2 ) 

as the test statistic for comparison.  The results are shown in supplementary figure 1.  Here we can 

see that using the same threshold for significance the flanker task, pattern speed, picture 

sequencing, LMT and RAVLT did not show significant associations.   
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Relative CTH 

In figure 2, we show the permuted and non-permuted statistics for the association between 

cognitive performance and the relative cortical configuration of CTH (controlling for mean CTH).  The 

relative cortical configuration of CTH was significantly associated with all of the cognitive measures 

at the Bonferroni corrected alpha level (p<0.0038) according to the MOSTest.  The same 

permutation test was carried out using the most significant vertex, 𝑧  𝑀𝐼𝑁𝑃
2  , and the results are 

shown in supplementary figure 2.  According to this analysis, for comparison, the following measures 

would not have been considered to show a significant association with relative CSA: picture 

vocabulary, flanker, pattern speed, LMT and RAVLT. 

Across both relative CSA and CTH, the p-values for the MOSTest associations were magnitudes 

smaller than for the min-p associations (supplementary table 2).  The increased power of the 

MOSTest is likely due to the distributed nature of the associations between cognition and relative 

cortical morphology.  This can clearly be seen in the surface maps of the unthresholded mass 

univariate effect sizes for relative CSA and CTH predicting the total composite score from the NIH 

Toolbox (Figure 3).  

 

Quantifying the association between brain structure and cognition 

Having established there was a significant association between relative cortical configuration and 

cognition across tasks, we aimed to quantify the unique proportion of individual variability in each 

behaviour predicted by the relative cortical configuration.  To do this we used the PVS in order to 

provide a conservative, out-of-sample estimate of the variance in each behaviour predicted by the 

relative vertex-wise imaging data.  Each PVS was orthogonal to the modality specific global imaging 

measures (total CSA and mean CTH respectively) as all imaging data were pre-residualised using 

these measures (and the additional covariates of no interest) prior to calculating the PVS.  We then 

used a linear model to determine the unique contribution of each PVS (relative CSA and relative 

CTH) to cognitive task performance and compared to this to the independent contribution of the 

global imaging measures.  Figure 4 shows the variance (%R2) in each cognitive task performance 

explained by total CSA (dark blue), relative CSA (light blue), mean CTH (dark pink) and relative CTH 

(light pink). 

Total CSA predicted more variance in cognitive performance compared to relative CSA for the 

crystallised measures (reading recognition, picture vocabulary, crystallised composite score and the 

total composite score); however, this relationship was not always true for the other cognitive 

measures.  Indeed, for the fluid composite score, total and relative CSA predicted a similar 

proportion of variance.  This suggests that brain size is more predictive of crystallised compared to 

fluid cognitive measures.  Mean CTH was not predictive of cognitive performance across any 

domains, however, relative CTH was predictive across cognitive domains.  In general, the variance in 

behaviour explained by these morphology measures was very low with the largest association at 

1.45%R2; however, in this analysis we have residualised for a wide range of confounding 

demographic variables (race and ethnicity, household income and parental education), which 

removes a large portion of shared variance amongst these variables, brain structure and cognition.  

These estimates of R2 therefore provide a conservative lower bound of the contribution of cortical 

morphology to cognition that is not attributable to confounding variables. 
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DISCUSSION 

In this study, we have used a novel multivariate omnibus statistical test, the MOSTest, to 

demonstrate that individual differences in the regionalisation of cortical morphology can predict 

cognitive performance across multiple domains in a large sample of 9 and 10 year old children.  This 

method aggregates many small effects across the cortical surface to improve our power for 

discovering distributed brain-behaviour associations.  The MOSTest has allowed us to uncover 

patterns of association across the cortical surface between the regionalisation of cortical 

morphology and cognition that have not previously been detected.  We then used the PVS to 

quantify the effect size of these discovered associations.  The regionalisation of CSA and CTH 

predicted unique variance in cognition beyond that predicted by global brain measures, however the 

relative contribution of arealisation and total CSA to predicting behaviour differed depending on the 

cognitive modality being measured.  These results highlight the importance of studying the 

configuration of brain structure relative to global brain measures.  Individual differences in these 

regionalisation patterns may uncover important mechanisms underlying the development of 

cognitive processes. 

A novel multivariate vertex-wise statistical inference tool 

In order to make a statistical inference about the association between cortical configuration and 

cognition in this study we developed the MOSTest.  This test uses a statistic that aggregates effects 

of interest across the cortex; therefore, it is optimally powered to detect effects that are distributed 

across the cortical surface.  Traditionally, neuroimaging analysis methods assume neuroimaging 

effects are sparse and localised, therefore adopt the most significant vertex or voxel as an omnibus 

test statistic.  However, this can lead to reduced statistical power and an increase in Type II errors 

(Cremers et al., 2017) particularly if the association between the brain and behaviour is continuous 

and distributed across the cortex.  The continuous distribution of brain-behaviour associations has 

recently been highlighted across modalities using large samples such as the ABCD study.  Indeed, a 

recent paper introducing the PVS, demonstrated that aggregating information across the cortex 

could produce greater out-of-sample prediction performance of task fMRI-behaviour associations 

than thresholding based on significance level (Zhao et al, in prep).  This mirrors findings from 

genetics, which demonstrate that many complex behavioural phenotypes are polygenic: genome-

wide significant single nucleotide polymorphisms (SNPs) only predict a very small proportion of the 

variance in complex behavioural phenotypes, however collating effects across the entire genome 

increases the variance explained.  Zhao and colleagues have shown that the same is true when 

integrating effects across the cortex.  

In this study, the MOSTest detected a greater number of significant associations compared to using 

the most significant vertex as an omnibus test, which demonstrates the increased power of this test 

for the discovery of vertex-wise associations with behaviour.  Van der Meer and colleagues have 

applied the MOSTest to detect significant genome-wide associations with regional neuroimaging 

phenotypes using UK Biobank data and demonstrated a 3-fold increase in statistical power using this 

method compared to standard univariate analyses (Meer et al., 2019).   This method improves 

power by capitalising on the shared variance across vertices and by negating the need to use 

stringent vertex-wise correction for multiple comparisons across the cortical surface; but 

importantly it does not inflate the type-1 error rate due to the use of a permutation test for 

statistical inference.  Additionally, the MOSTest test statistic takes into account the correlation 

structure of the data across vertices rather than using the smoothness of the imaging measure to 

estimate an effective degrees of freedom for multiple comparison correction of the univariate test 
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statistics.  The multivariate test statistic, the Mahalanobis norm, represents the sum of squared 

deviations of the vector of decorrelated mass univariate z statistics.  This is a generalisation of 

measuring the Euclidean distance across a decorrelated multidimensional space.  Using this 

multivariate method we can readily test for associations between the brain and behaviour using 

information across the entire cortex with increased statistical power.  Although it is clear that not all 

behaviours will be associated with widespread cortical activity or brain structure, these data suggest 

that we should not assume sparseness of neuroimaging associations. 

Relative cortical configuration is important for cognition 

Global brain measures have been previously associated with cognition; however, there are many 

examples where there are differences in global brain measures, such as brain size between men and 

women, which do not correspond with differences in cognition.  When measuring regional 

associations with behaviour it is therefore essential to control for these global measures in order to 

uncover specific relationships between regionalisation and behaviour.  Indeed, a number of studies 

have highlighted associations between regional differences in cortical morphology and cognition; 

however, they have lacked the power and multivariate methods to measure associations specifically 

based on the entire configuration of cortical morphology.  Importantly, the regionalisation of CSA 

and CTH has been associated with distinct, continuous gradients of genetic influences across the 

cortex (C.-H. Chen et al., 2013; C. Chen et al., 2013; Chi-Hua Chen et al., 2011) that coincide with the 

gene expression patterns that dictate specialisation of the neocortex during embryonic 

development.  Individual differences in this molecular signalling could therefore lead to subtle 

alterations in this cortical configuration, which could lead to variability in behaviour.  It is therefore 

important to use a statistical test that captures the graded and distributed nature of the biology of 

regionalisation, such as the MOSTest. 

Here we have shown that performance across multiple cognitive tasks was associated with the 

regionalisation of cortical morphology across the whole cortex.  The presence of negative and 

positive associations across the cortical surface suggests that it is the patterning of cortical 

morphology that may be important for supporting cognitive function.  Indeed, the regionalisation of 

CSA predicted additional unique variance in cognition not explained by total CSA.  This allows us to 

partition the variance associated with cortical morphology in order determine the relative 

importance of these components of CSA for cognition.  This appeared to differ depending on the 

cognitive task, with more crystallised measures having a greater association with total CSA 

compared to the regionalisation of CSA.  Comparatively the proportion of variance in behaviour 

explained by regional CTH was relatively similar for fluid and crystallised measures.  Mean CTH did 

not predict cognitive performance across any measures; however this may be due to the 

developmental stage of this sample.  These results support the independence of CSA and CTH and 

suggest they may have differential influences across different cognitive domains. 

It is important to note that the effect sizes reported between brain structure and cognition in this 

study are relatively small (~1% R2).  This is important because we have used a very conservative, out-

of-sample effect size estimate and have residualised for a number of confounding demographic 

variables, which are highly collinear with these measures.  We are therefore providing the lower 

bound for the estimated effect size between regionalisation and cognition, which is not influenced 

by any confounding measures.  Nevertheless, cognitive processing is highly complex, therefore we 

are unlikely to explain large proportions of individual variability using single neuroimaging 

modalities.  Future work combining imaging measures within multi-modal predictive models will 

likely uncover larger associations between brain phenotypes and cognition. 
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Conclusions 

With the availability of large multi-dimensional datasets such as the ABCD study, we can now begin 

developing more advanced predictive models of behaviour, which will allow for more model 

complexity whilst still remaining interpretable.  It is essential that we generate models that can be 

used to understand how stable individual differences in complex behaviours relate to individual 

differences in brain phenotypes and their development.  Future work will aim to understand how 

these structural associations change over time with longitudinal assessments in ABCD.  Moreover, 

we aim to further elucidate the heterogeneity in the pattern of associations between cortical 

morphology and cognition across subjects and across cognitive tasks. 
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FIGURES 

 

Figure 1.  Multivariate omnibus permutation test for each cognitive task and relative CSA.  The multivariate 

test statistic (𝜒   𝑀𝑂𝑆𝑇
2 ) was calculated as the Mahalanobis norm of the decorrelated mass univariate z statistics 

for the association between relative CSA and each of the cognitive tasks.  All of the left side plots show the 

permuted null distribution of this statistic for each cognitive task.  The observed, non-permuted test statistic is 

shown in green and the Bonferroni corrected alpha level in red.  All of the right side plots show the likelihood 

values for the permuted observations after fitting a gamma cumulative density function to the tail of the null 

distribution.  This can be used to approximate a theoretical p-value for the observed statistic.   
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Figure 2.  Multivariate omnibus permutation test for each cognitive task and relative CTH.  The multivariate 

test statistic (𝜒   𝑀𝑂𝑆𝑇
2 ) was calculated as the Mahalanobis norm of the decorrelated mass univariate z statistics 

for the association between relative CTH and each of the cognitive tasks.  All of the left side plots show the 

permuted null distribution of this statistic for each cognitive task.  The observed, non-permuted test statistic is 

shown in green and the Bonferroni corrected alpha level in red.  All of the right side plots show the likelihood 

values for the permuted observations after fitting a gamma cumulative density function to the tail of the null 

distribution.  This can be used to approximate a theoretical p-value for the observed statistic.  
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Figure 3.  Surface maps showing the mass univariate standardised beta coefficients for the association 

between the NIH Toolbox Total Composite score and (A) relative CSA and (B) relative CTH.  These 

unthresholded effect size maps show the continuously distributed associations across the cortical surface.  

These distributed patterns of association support the need to use a multivariate statistic that incorporates this 

entire pattern to determine the relationship between relative cortical morphology and cognition.   
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Figure 4. Percent behavioural variance explained across cognitive tasks by CSA and CTH.  Variance explained 

was calculated by correlating each PVS with the observed behaviour for each cognitive task to generate a %R2 

value.  Each PVS was generated by aggregating the Bayesian estimated effect sizes across the whole cortex 

from the association between the imaging data and behaviour.  The composite scores, which represent 

averages of single task performance, are highlighted in bold.  The percent variance explained for each 

cognitive measure was determined for the following imaging phenotypes: CSA (dark blue), relative CSA 

(controlling for total CSA; light blue), CTH (dark pink), relative CTH (controlling for mean CTH; light pink). 
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