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Abstract. The mesh-based Monte Carlo (MMC)
algorithm is increasingly used as the gold-standard for
developing new biophotonics modeling techniques in
3-D complex tissues, including both diffusion-based
and various Monte Carlo (MC) based methods. Com-
pared to multi-layered and voxel-based MCs, MMC can
utilize tetrahedral meshes to gain improved anatomical
accuracy, but also results in higher computational and
memory demands. Previous attempts of accelerating
MMC using graphics processing units (GPUs) have
yielded limited performance improvement and are not
publicly available. Here we report a highly efficient
MMC – MMCL – using the OpenCL heterogeneous
computing framework, and demonstrate a speedup
ratio up to 420x compared to state-of-the-art single-
threaded CPU simulations. The MMCL simulator
supports almost all advanced features found in our
widely disseminated MMC software, such as support
for a dozen of complex source forms, wide-field de-
tectors, boundary reflection, photon replay and storing
a rich set of detected photon information. Furthermore,
this tool supports a wide range of GPUs/CPUs across
vendors and is freely available with full source codes
and benchmark suites at http://mcx.space/#mmc. c©
2019. DOI: 10.0000/XXXX
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1 Introduction

Modeling photon-tissue interactions accurately and effi-
ciently is essential for an array of emerging biophotonics
applications, such as diffuse optical tomography (DOT),
fluorescence molecular tomography (FMT) and functional
near-infrared spectroscopy (fNIRS). Due to the complex
nature of photon-tissue interactions, significant effort has
been dedicated towards developing computationally effi-
cient methods that not only properly consider the underlying
physical processes, such as light scattering, absorption and
emission, but also accurately model the complex-shaped
anatomical boundaries that delineate tissues.

Over the past decade, Monte Carlo (MC) based modeling
has seen increasing use, thanks to two recent breakthroughs
in MC algorithm development. The first breakthrough takes
advantage of the parallel computing capability of modern
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graphics processing units (GPUs) and dramatically shortens
the computational time by 2 to 3 orders of magnitude.1, 2

The second breakthrough allows MC to model complex tis-
sue boundaries using increasingly sophisticated representa-
tions, such as 3-D voxels,1, 3 non-uniform grids, and triangu-
lar4 and tetrahedral meshes.5, 6 Combined with the generality
and intuitive domain settings, these new advances has made
MC not only a choice for gold-standard solutions, but also a
powerful research tool increasingly involved in routine opt-
ical data processing and instrument parameter optimizations.

Nearly a decade ago, our group proposed one of the first
mesh-based MC (MMC) methods.6 Compared with the tra-
ditional voxel-based MC, MMC reports better accuracy be-
cause meshes are more anatomically accurate in modeling
arbitrarily-shaped 3-D tissues, which are often delineated by
curved boundaries. Since then, a number of works have been
published to further extend MMC for faster and more accu-
rate simulations. In several works,7, 8 the ray-tracing calcu-
lation and random number generation were vectorized and
ported to single-instruction multiple-data (SIMD). This data
level parallelism significantly improves the simulation speed
on modern CPUs. Yao et al.9 reported a generalized MMC
to efficiently support wide-field illumination and camera-
based detection. In Yan et al.,10 a dual-grid MMC, where
a coarsely tessellated mesh and a fine grid are used for ray-
tracing and output storage, respectively, managed to enhance
both performance and solution accuracy. Leino et al.11 de-
veloped an open-source MMC software which incorporates
MATLAB interface for improved usability.

Despite the steadily growing user community, a highly
efficient GPU-accelerated MMC implementation remains
missing. While there has been a number of attempts to
accelerate MMC using GPU computing, only limited
success has been reported. For example, Powell et al.12

reported a CUDA-based GPU-MMC for acoustic-optics
(AO) modeling. The authors reported that, in the context
of different application focuses, an ∼8x speedup was
achieved when comparing their GPU algorith with our
single-threaded MMC simulation. In another work,13

Zoller et al. reported a GPU-based MMC (MCtet) to
model anisotropic light propagation in aligned structures.
Unfortunately, the software codes in both works are not
publicly available to allow further testing or comparison.
While these results are encouraging, compared to highly
accelerated voxel-based MC,1, 14 the lower magnitude in
speedup presents an opportunity for further improvement.

The difficulties of accelerating MMC in modern GPU
processors are associated with both the computation and
memory characteristics of MMC photon modeling. Com-
pared to voxel- and layer-based MC algorithms, MMC
requires more geometric data (mesh nodes, elements, and
surfaces) to advance a photon per propagation step. Because
GPUs typically have scarce high-speed shared memory
and constant memory,15, 16 the memory latency becomes
a major barrier towards allowing MMC to benefit from
the parallel hardware. Also, the ray-tracing calculations in
MMC involve more complex tests to calculate ray-triangle
intersections within the enclosing tetrahedra. This imposes
higher computational demands compared to MC models
that only handle simple geometries.

Here, we report a highly accelerated MMC imple-
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mentation, MMCL, developed using the Open Computing
Language (OpenCL) framework. MMCL supports almost all
advanced simulation features seen in our open-source CPU
MMC, such as the support of wide-field complex sources
and detectors,9 photon replay,17 dual-grid simulations10

and storage capabilities for rich sets of detected photon
data. Thanks to the excellent portability of OpenCL, the
MMCL is capable of running on a wide range of commodity
GPUs. From our tests, MMCL has shown about 2 orders
of magnitude speedup compared to our highly optimized
single-thread CPU implementation. Although we recognize
the 2- to 5-fold speed disadvantage for OpenCL compared
to CUDA on NVIDIA hardware, as shown in our previous
study,14 in this work, our decision of prioritizing the devel-
opment of OpenCL MMC is largely motivated by 1) the
open-source ecosystem of OpenCL allowing the developed
software to be rapidly and widely disseminated through
public software repositories, and 2) the upcoming high-
performance GPUs from Intel and AMD being expected to
attract more development attention to OpenCL libraries and
drivers, likely resulting in boosts in performance.

In the following sections, we will first discuss the key al-
gorithm steps and optimizations that enable high-throughput
MC simulations, and then report our validation and speed
benchmarks using simulation domains covering a wide range
of complexities and optical properties. Finally, we discuss
our plans to further develop this technique.

2 Methods

2.1 GPU-accelerated photon propagation in tetrahe-
dral meshes

As we discussed previously,7 at the core of MC light trans-
port modeling is a ray-tracing algorithm that propagates
photons through complex media. In our publicly available
MMC software,6 we have implemented 4 different ray-
tracers to advance photons from one tetrahedron to the next.
These ray-tracers are based on 1) the Plücker coordinates,6
2) a fast SIMD based ray-tracer,7 3) a Badouel ray-tracing
algorithm,5, 18 and 4) an SIMD-based branchless-Badouel
ray-tracer.19 As we demonstrated before,7 the branchless-
Badouel ray-tracing algorithm reported the best performance
among the above methods; it also requires the least amount
of memory and computing resources. For these reasons, we
specifically choose the branchless-Badouel ray-tracer in this
work.

In our CPU based MMC software, we explored SIMD par-
allelism using SIMD Extensions 4 (SSE4).7 In this work, we
ported our manually tuned SSE4 computation to OpenCL,
resulting in both improved code-readability and efficiency.
The ray-tracing calculation in our GPU MMC algorithm can
be represented by the below 5-step 4-component-vector op-
erations:

~S = vx ·~Nx + vy ·~Ny + vz ·~Nz (1)
~T = ~D− (px ·~Nx + py ·~Ny + pz ·~Nz) (2)
~T = max(~T ,~0)/~S (3)
~T = (~S >~0)×~T +(~S≤~0)×∞ (4)

t = hmin(~T ) (5)

where ×, /, max are element-wise multiplication, division

and maximum value, respectively; ~v = {vx,vy,vz} and ~p =
{px, py, pz} are the current photon direction and position, re-
spectively; ~Nx,y,z denotes the x/y/z components (4 elements
in each vector) of the surface normal vectors ~Ni (i= 1,2,3,4)
at the 4 facets of the current tetrahedron; ~D = {di}i=1,2,3,4 is
computed by di = ~P0

i ·~Ni, where the 3-D position ~P0
i can be

any node of the i-th face as the dot product with ~Ni is a con-
stant per face;18~0 is an all-zero vector; and hmin performs
the “horizontal” minimum to extract the lowest value from
the ~T vector. Both ~Nx,y,z and ~D are pre-computed. Vectors
~T and ~S in Eqs. 1 to 4 are intermediate variables, and ~T in
Eq. 5 denotes the distances from ~p to the intersection points
of the 4 facets of the current tetrahedron (intersections in the
−~v direction are ignored). The index in ~T where the distance
has the lowest value, i.e. t in Eq. 5, indicates the triangle that
the ray intersects first. Notice that above calculations con-
sist of only short-vector (3 or 4 elements) operations with no
branching. Such calculations can be efficiently optimized on
the modern GPUs or CPUs, resulting in high computational
throughput.
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Fig. 1 Illustration of a ray-tetrahedron intersection testing using the
branchless Badouel algorithm. ~T = {ti}i=1,2,3,4 records the signed dis-
tances from the current position ~p to the 4 facets of the tetrahedron
along the current direction~v. A negative distance means intersecting
in the −~v direction (such as t2 and t3).

The above vectored formulation is also illustrated in Fig.1.
The “photon ray” with origin ~p and direction ~v intersects
with the 4 facets at 4 distances, ti: a positive distance indi-
cates intersection in the forward direction and a negative dis-
tance indicates an intersection in the −~v direction. The task
of finding the intersection point becomes finding the mini-
mum positive distance in ~T = {ti}i=1,2,3,4. This is efficiently
achieved by first replacing all negative values in ~T by +∞ in
Eq. 4 and then taking a horizontal minimum in Eq. 5.

The above MMCL algorithm readily supports a variety of
wide-field sources and detectors via our mesh retesselation
approach.9 By storing various photon-packet related param-
eters, such as partial-pathlength, scattering event count, mo-
mentum transfer etc, MMCL is also capable of exporting a
rich set of detected photon information, similar to its CPU
counterpart. Our previously developed “photon replay” ap-
proach17 for constructing the Jacobian matrix is also imple-
mented in this OpenCL code.

2.2 Dual-grid MMC GPU optimization

Recently, we reported a significantly improved MMC
algorithm, the dual-grid MMC or DMMC,10 combining
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the strengths of both voxel- and mesh-based simulations. It
reduces the ray-tracing overhead significantly by utilizing
a coarse tessellation of the surface nodes without losing
anatomical accuracy while a dense voxelated storage grid
provides higher spatial resolution and lower discretization
error. In this work, we have successfully ported the DMMC
algorithm from SIMD to an OpenCL-based computing
model. The outputs are written in a voxelated grid in the
GPU/CPU, similar to our voxel-based MC methods.14 To
reduce global memory operations, we only write to memory
when a photon packet attempts to move out of a voxel in the
output grid.

2.3 GPU memory characterization and optimization

Compared to voxel-based Monte Carlo algorithms, MMC
has different memory characteristics. These can greatly
impact the computational efficiency on GPUs because high
speed memory is limited on GPUs. To advance a photon
packet by one step in a tetrahedral mesh, MMC requires
reading more geometric data, including node coordinates,
node indices of the current element, normal vectors of the
tetrahedron facets etc. Although most of these data can be
pre-computed on the host (CPU) and copied to the GPU,
such data are too big to be stored into the high-speed shared
or constant memory. Therefore, one has to store the bulk
of the mesh data in the “global memory” which is known
to have high latency (roughly 100x slower than the shared
memory).16 It is important to minimize such latency for an
efficient GPU MMC implementation.

The key to overcoming this memory latency issue on the
GPU is to launch a large number of threads and ensure that
the GPU streaming multi-processors (SM) have abundant ac-
tive thread-blocks (divided into “warps” in the NVIDIA lit-
erature and “wavefronts” in OpenCL literature). Therefore,
while some of the threads wait for data from the global mem-
ory, the GPU scheduler can switch on other threads and keep
the SMs busy. When there are sufficient wavefronts in the
waiting queue, the global memory latency can be effectively
hidden. Typically, a minimum of 10-20 wavefronts per SM is
required15, 16 to effectively hide the memory latency on the
NVIDIA and AMD GPUs. However, the maximum wave-
fronts per SM is strongly dependent on how the kernel is
programmed, especially in regards to the number of regis-
ters and size of shared memory as SMs have only limited
resources and must share them among all active wavefronts.
As a result, the key to accelerate the GPU based MMC is
to 1) launch a large number of threads that produce suffi-
ciently large waiting queues per SM, and 2) minimize the
register/shared memory needs per thread so that many wave-
fronts can simultaneously run on the SM. Following these
insights, we are able to dramatically improve the simulation
speed on tested GPU devices, independent of its vendors.

2.4 Simulations on heterogeneous computing plat-
forms

As discussed in our previous investigation,14 the high
scalability of OpenCL permits simultaneous use of multiple
computing devices. This includes both simultaneous use of
different generations of GPU architecture and mix between
GPUs and CPUs. In such a heterogeneous computing

environment, it is crucial to ensure that the simulation
algorithm has a flexible workload distribution strategy to
assign appropriate workloads to each GPU device according
to their capabilities.

Several device-level load-balancing strategies have been
implemented in this work. A manual workload distribution
can be specified by a user. The manual workload partition
can be guided using relative speeds obtained from a small
workload running on each device. In addition, we also pro-
vide a heuristic method to automatically determine an ef-
fective workload partition according to the persistent thread
(PT)20 count on each invoked device. The PT count is deter-
mined by the number of threads that can “fully occupy” all
SMs on the device. For example, for an Intel GPU, the PT
count is computed by block size×7×#EU (execution unit,
1 EU can run 7 threads21); for AMD GPUs, we estimate PT
count by block size×40×#CU (compute unit, 1 CU can run
40 active wavefronts16).

3 Results

In this section, we first validate our massively parallel
MMCL algorithm using standard benchmarks and then sys-
tematically characterize and compare speedup ratios over a
range of CPU/GPU devices using single- and multi-threaded
MMC on CPUs as references. The simulation speeds are
reported for both conventional single-grid and dual-grid
MMC (DMMC). For all simulations, 108 photons are
simulated with atomic operations1 enabled. All benchmarks
were performed on Ubuntu Linux 16.04 with the latest
stable GPU drivers. All simulation input data and scripts
are provided in our open-source code repository on Github
(http://github.com/fangq/mmc) for reproducibility and
future comparisons.

In the first set of benchmarks, we focus on validating the
accuracy of MMCL in two simple geometries: B1 (cube60)
– a cubic homogeneous domain (see Fig. 2 in Ref.6) and B2
(sphshells) – a heterogeneous domain made of multi-layered
spherical shells (Fig. 1c in Ref.10).

Briefly, the B1 benchmark contains a 60× 60× 60 mm3

homogeneous domain with an absorption coefficient µa =
0.005 mm−1, scattering coefficient µs = 1 mm−1, anisotropy
g = 0.01, and refractive index n = 1.0. The medium outside
of the cubic domain is considered as air. In the B2 bench-
mark, the optical properties and dimensions of each layer are
described previously.10 In both cases, a pencil beam source
injects photons at [30, 30, 0] mm, with the initial direction
pointing along the +z-axis. Boundary reflection is consid-
ered in B2 but not in B1.

Both MMC and MMCL share the same tetrahedral mesh
for each simulation. For B1 and B2, two mesh densities
were created to separately compare MMC and MMCL in
the single-grid and dual-grid10 (denoted as B1D and B2D)
simulation methods. The node and element numbers for
the generated meshes along with the pre-accelerated MMC
simulation speeds are summarized in Table 1. We want to
mention that MMC simulation speed is correlated more
strongly with the mesh density (normalized by the local
scattering coefficient) within the high-fluence regions than
the total mesh element/node sizes. For a fixed domain, how-
ever, increased mesh density results in higher element/node
numbers.
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Benchmark B1 B1D B2 B2D B3 B4
(cube60) (d-cube60) (sphshells) (d-sphshells) (colin27) (skin-vessel)

Node# 29,791 8 604,297 3,723 70,226 76,450
Elem.# 135,000 6 3,733,387 21,256 423,375 483,128
MMC-1 67.25 100.06 5.73 10.39 12.34 36.72
MMC-8 351.26 568.06 26.43 57.49 67.43 150.42

Tab. 1 Summary of the meshes and baseline simulation speeds (in photon/ms, the higher the faster) for the selected benchmarks. The baseline
speeds were measured using a single-thread (MMC-1) or 8-thread (MMC-8) SSE4-enabled MMC on an i7-7700K CPU.

In Fig. 2(a), we show the cross-sectional contour plots
of the fluence distributions (mm−2) in log10-scale using
the fine-mesh model along the plane y = 30.5 mm. We
also overlap the result from the DMMC output with those
from MMCL to show the agreements between different MC
methods.

In the 2nd set of tests, we expand our comparisons to more
challenging cases involving realistic complex domains. Two
simulations are compared: B3 (colin27) – simulations on a
complex brain atlas - Colin27 (Fig. 4 in6), and B4 (skin-
vessel) – the skin-vessel benchmark.22 Briefly, the B3 bench-
mark contains a 4-layer brain mesh model derived from an
atlas;6 B4 contains a 3-layer skin-model with an embedded
vessel. The generated meshes for the two complex examples
are also summarized in Table 1. The optical properties for
B3 are described in Ref.,6 and those for B4 are described in
Ref.22
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Fig. 2 Fluence (mm−2, in log10-scale) contour plots of MMC and
MMCL in various benchmarks: (a) B1/B1D, (b) B2/B2D, (c) B3 and
(d) B4. In (b), we also include a voxel-based MC (MCX-CL) output
for comparison. Black-dashed-lines mark tissue boundaries.

In Fig. 2(c-d), we show the cross-sectional contour plots
from the two complex cases. For B3, we show the sagittal
slice along the source plane; for the B4 benchmark, the
cross-section is perpendicular to the y-axis aligned vessel.
The curved tissue boundaries are shown as black-dashed
lines.

Next, our focus is to benchmark the simulation speeds
across a wide range of CPU/GPU processors using MMCL,
and compare those with the baseline, i.e. single-threaded
(“MMC-1” in Table 1) or multi-threaded (“MMC-8” in
Table 1) SSE4-enabled MMC on the CPU. The branch-
less Badouel ray-tracing algorithm7, 19 and a parallel
xorshift128+23 random number generator are used
across all MMC and MMCL simulations.

In Fig. 3(a), we plot the speedup ratios over single-
threaded MMC (MMC-1) across a list of benchmarks and
processors. In Fig. 3(b), we also included a comparison to
MCX-CL14 – a voxel-based MC software using OpenCL.
The voxelated simulation domain in MCX-CL matches
the DMMC output grid of the corresponding MMCL
simulations. The simulation speed numbers (in photon/ms)
corresponding to Fig. 3(a) are also summarized in Table 2.

In addition, we also test MMCL using multiple GPU de-
vices simultaneously. Two AMD GPUs of different comput-
ing capabilities – Vega10 (Vega64) and Vega20 (Vega II) –
are used. When running the B1D test on both GPUs, we
distributed the workload based on the ratio between their
single-GPU speeds. When using both Vega GPUs, we have
obtained a speed of 4,583 photon/ms in the B1D benchmark;
the speeds using Vega10 and Vega20 alone are 2,171 and
2,580 (in photon/ms), respectively.

3.1 Discussions and Conclusion

As expected, the contour plots generated from MMC and
MMCL are nearly indistinguishable from each other in all
four tested cases in Fig. 2. Similarly, in Figs. 2(a-b), the dual-
grid MMC (DMMC) and MMCL (D-MMCL) outputs also
excellently match the single-grid outputs. In Fig. 2(b), The
previously observed fluence differences inside the spheri-
cal shell between mesh-based simulations and voxel-based
MC simulations (MCX-CL)10 are also reproduced in MMCL
outputs, emphasizing the importance of using mesh models
when simulating domains with curved boundaries and high-
contrast heterogeneities.

Many observations can be made from the speed results
reported in Fig. 3(a). First, the high scalability of our GPU
accelerated MMC algorithm is indicated by the increasing
speedups obtained from more recent and capable GPUs. The
simulation speed achieved on the NVIDIA Titan V GPU is
117x to 421x higher than that of the CPU-based MMC on a
single thread; the highest acceleration on AMD GPUs is ach-
ieved on the Vega20 GPU, reporting a 20x to 77x speedup.
Moreover, the high portability of the algorithm is evident
by the wide range of NVIDIA/AMD/Intel CPUs and GPUs
tested, owing to OpenCL’s wide support. There is a steady
and significant increase in computing speed between differ-
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Fig. 3 Speeds of MMCL in 6 benchmarks (B1-B4: single-grid; B1D/B2D: dual-grid): (a) speedup ratios over a single-threaded (on i7-7700K)
SSE4 MMC, and (b) speeds in dual-grid simulations compared to MCX-CL. In (a), we also report the speed (photon/ms, light-blue) and speedups
over the single- (red) and multi-threaded (green) MMC in the labels for Benchmark-B3 (Colin27).

Device B1 B2 B3 B4 B1D B2D B1D (MCXCL) B2D (MCXCL)
NVIDIA Titan V 7874.02 899.25 5198.05 8829.24 23359.03 3709.20 37835.79 9353.66
NVIDIA RTX 2080 7319.04 465.62 3930.20 4147.83 22202.49 3295.87 43917.44 10095.91
NVIDIA GTX 1080Ti 2959.81 357.89 1008.48 2721.38 6079.03 924.16 20648.36 3826.14
NVIDIA GTX 1080 2642.92 318.22 843.28 1759.82 4547.73 665.72 15351.55 2796.73
NVIDIA GTX 980Ti 2254.44 295.36 663.21 2925.43 3872.37 542.73 12211.50 2319.06
AMD Vega 20 1315.62 189.17 424.07 2839.54 2579.51 378.00 29577.05 7105.30
AMD Vega 10 1086.45 161.42 326.89 2444.87 2170.52 302.46 25680.53 5865.45
Dual Xeon E5-2658v3 708.19 103.86 265.00 756.74 1405.90 167.69 1127.86 181.83
Intel i7-8700K 538.80 49.29 126.80 313.77 670.12 80.92 597.07 89.02
Intel i7-7700K 434.86 35.41 103.64 188.83 522.77 67.28 397.16 58.96

Tab. 2 Simulation speed (in photon/ms, the higher the faster) of MMCL in 6 benchmarks (B1-B4: single grid; B1D and B2D: dual-grid); we
also report the voxel-based MCX-CL speed in benchmarks B1D and B2D. The master script to reproduce the above results can be found in the
“mmc/examples/mmclbench/” folder of our software.

ent generations of GPUs made by these vendors, similar to
our previous findings in the voxel-based MC algorithm.14

Before comparing the speed differences in mesh and
voxel-based simulations, as shown in Fig. 3(b), one must
be aware that these two algorithms result in differing levels
of accuracy, as suggested in Fig. 2(b), even when using the
same grid space for output. Nevertheless, several interesting
findings can be drawn from this figure. In all NVIDIA
GPUs, MMCL is about 30% to 50% of the speed compared
to voxel-based MCX-CL.14 On AMD GPUs, MMCL is only
∼8% of MCX-CL’s speed. However, Intel CPUs show an
opposite result – MMCL is about 12% to 31% faster than
MCX-CL in B1D. The sub-optimal speed on AMD GPUs
is also noticeable in Fig. 3(a), where the speedup from
Vega20 is only a fraction of the speedup from NVIDIA
RTX2080, despite the former having 30% higher theoretical
throughput.

To understand this issue further, we performed a profil-
ing analysis and discovered that the sub-optimal speed on
AMD GPUs results from extensive register allocation by the
compiler – the AMD compiler produces ∼200 vector reg-
isters compared to only 69 by the NVIDIA compiler. The
high register count limits the total active blocks to only 4 on
Vega20 compared to 28 on NVIDIA GPUs, making it ex-
tremely difficult for the GPU to “hide” memory latency.16

We are currently collaborating with AMD to investigate this
issue.

Moreover, based on our previous observations in voxel-

based MC using OpenCL and CUDA on NVIDIA devices,14

we noticed that CUDA-based MC simulation is about 2-to-
5-fold faster than the OpenCL implementation due to driver
support differences. As a result, we anticipate that if we fur-
ther port MMCL to the CUDA programming language, one
may achieve further speed improvement, with the resulting
software limited to NVIDIA GPUs only.

In summary, we report a massively-parallel mesh-based
Monte Carlo algorithm that offers a combination of both
high speed and accuracy. The OpenCL implementation
allows one to run high-throughput MC photon simulations
on a wide range of CPUs and GPUs, showing excellent
scalability to accommodate increasingly more powerful
GPU architectures. We describe the insights that we have
learned regarding GPU memory utilization and vendor dif-
ferences. In addition, we provide speed benchmarks ranging
from simple homogeneous domains to highly sophisticated
real-world models. We report the speed comparisons be-
tween CPUs and GPUs made by AMD, NVIDIA and Intel,
and show excellent portability between different devices
and architectures. Our accelerated open-source software,
including MATLAB/Octave support, is freely available at
http://mcx.space/#mmc.
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