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Abstract 19 

The coordination of metabolism and growth with cell division is crucial for proliferation. While it 20 
has long been known that cell metabolism regulates the cell division cycle, it is becoming 21 

increasingly clear that the cell division cycle also regulates metabolism. In budding yeast, we 22 
previously showed that over half of all measured metabolites change concentration through the 23 

cell cycle indicating that metabolic fluxes are extensively regulated during cell cycle progression. 24 
However, how this regulation is achieved still remains poorly understood. Since both the cell cycle 25 

and metabolism are regulated to a large extent by protein phosphorylation, we here decided to 26 
measure the phosphoproteome through the budding yeast cell cycle. Specifically, we chose a cell 27 
cycle synchronisation strategy that avoids stress and nutrient-related perturbations of metabolism, 28 

and we grew the yeast on ethanol minimal medium to force cells to utilize their full biosynthetic 29 

repertoire. Using a tandem-mass-tagging approach, we found over 200 sites on metabolic enzymes 30 
and transporters to be phospho-regulated. These sites were distributed among many pathways 31 
including carbohydrate catabolism, lipid metabolism and amino acid synthesis and therefore likely 32 
contribute to changing metabolic fluxes through the cell cycle. Among all one thousand sites 33 
whose phosphorylation increases through the cell cycle, the CDK consensus motif and an arginine-34 

directed motif were highly enriched. This arginine-directed R-R-x-S motif is associated with 35 

protein-kinase A, which regulates metabolism and promotes growth. Finally, we also found over 36 

one thousand sites that are dephosphorylated through the G1/S transition. We speculate that the 37 
phosphatase Glc7/ PP1, known to regulate both the cell cycle and carbon metabolism, may play 38 
an important role because its regulatory subunits are phospho-regulated in our data. In summary, 39 
our results identify extensive cell cycle dependent phosphorylation and dephosphorylation of 40 
metabolic enzymes and suggest multiple mechanisms through which the cell division cycle 41 

regulates metabolic signalling pathways to temporally coordinate biosynthesis with distinct phases 42 
of the cell division cycle.   43 
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Introduction 44 

For cells to proliferate, they need to coordinate cell growth driven by metabolism with the cell 45 
division cycle, which ensures that DNA and other crucial cellular components are duplicated and 46 
divided between two daughter cells. In budding yeast, it was viewed that cell metabolism and 47 
growth proceed largely independently of the cell cycle. This assumption comes from the 48 
observation that mutants arrested in distinct phases of the cell cycle continued to grow and became 49 

extremely large and irregularly shaped (Hartwell et al., 1974; Johnston et al., 1977; Pringle and 50 
Hartwell, 1981). This showed clearly that a cell cycle arrest does not stop metabolism and mass 51 
accumulation, which led to the text book model that in budding yeast growth controls division, but 52 
not vice versa (Morgan, 2007).  53 

While the hierarchy of metabolism driving the cell cycle was long the consensus, many studies 54 
over this past decade have challenged this view. It now seems that metabolism, growth and division 55 

are tightly and multi-directionally coordinated in all eukaryotes including yeast (Goranov and 56 
Amon, 2010; Ewald, 2018). Indeed, several core cell cycle regulators also target metabolic 57 
pathways and thereby control metabolism and growth: The most central cell cycle regulator, the 58 

cyclin-dependent kinase (CDK), has been found to directly target proteins in carbohydrate and 59 
energy metabolism in yeast (Ewald et al., 2016; Zhao et al., 2016), flies (Icreverzi et al., 2012) and 60 
mammals (Galbraith et al., 2017; Wang et al., 2017) (reviewed in (Solaki and Ewald, 2018)). 61 

Moreover, in addition to its role in mitosis, the polo kinase routes fluxes through the pentose-62 
phosphate pathway by phosphorylating glucose-6-phosphate dehydrogenase in human cancer cell 63 

lines (Ma et al., 2017), and the cell cycle regulated ubiquitin ligase APC/C (anaphase promoting 64 
complex) regulates glucose metabolism in HeLa cells (Tudzarova et al., 2011). However, while 65 
specific examples of cell cycle regulators controlling metabolic pathways are accumulating, the 66 

global scope of metabolic regulation during the cell cycle is still largely unexplored.  67 

The global regulation of metabolic processes during cell cycle progression is likely to be vast 68 

because 50% of the measured metabolites in budding yeast change concentration significantly in 69 
cells released synchronously into the cell cycle from a G1 arrest (Ewald et al., 2016). This suggests 70 
there are still many regulatory interactions coordinating metabolism and growth with cell cycle 71 

progression to be discovered. So far, we do not know which metabolic enzymes are targeted by 72 
which signalling pathways to control metabolic fluxes during the cell cycle.  73 

To begin to address cell cycle-dependent regulation of metabolism, we performed a time-resolved 74 
proteome and phospho-proteome study through the cell cycle in synchronized yeast cultures. 75 
While there have been several phospho-proteomics reports on the budding and fission yeast cell 76 
cycle (Archambault et al., 2004; Holt et al., 2009; Carpy et al., 2014; Swaffer et al., 2016; Touati 77 
et al., 2018; Touati and Uhlmann, 2018), there are two important factors that make this study 78 

unique and complementary to previous work: First, we employed a synchronization strategy that 79 
releases cells from a G1 arrest without external perturbations of metabolism such as media 80 

switches, temperature shifts, addition of toxic chemical, or physical stress (Ewald et al., 2016; 81 
Rosebrock, 2017). Second, nearly all yeast cell cycle studies are performed using cells growing on 82 
complex or synthetic complete media, while we grow cells on ethanol minimal medium to force 83 
cells to activate a much larger repertoire of biosynthetic pathways. We found that more than two 84 
hundred phosphorylation sites on metabolic enzymes and transporters change in abundance during 85 
the cell cycle. Our data further suggests that metabolic signalling pathways including PKA, Snf1, 86 
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and Glc7 are transiently regulated during cell cycle progression. Thus, we provide evidence for 87 

multiple layers of phospho-regulation that coordinate metabolism with cell cycle progression.  88 

 89 

Results 90 

In this study, we wanted to identify mechanisms coordinating metabolism with cell cycle 91 
progression. Since both the cell cycle (Morgan, 2007; Enserink and Kolodner, 2010) and metabolic 92 

fluxes (Oliveira et al., 2012; Conrad et al., 2014; Chen and Nielsen, 2016) are known to be strongly 93 
regulated by phosphorylation, we decided to perform a phospho-proteomics and total proteomics 94 
time course of cells progressing through the cell cycle. Specifically, we arrested cells growing on 95 
ethanol minimal medium in G1 using our previously described hormone-inducible-cyclin strains 96 
(Ewald et al., 2016). These cells lack endogenous G1 cyclins (cln1∆cln2cln3∆) and have an 97 

exogenous copy of CLN1 that is expressed from an estradiol-inducible promoter (LexApr-CLN1) 98 
(Ottoz et al., 2014). Importantly, this strain can be released from a G1 arrest by adding 200 nM 99 

estradiol, which induces G1 cyclin expression without any other detectable cellular perturbations. 100 
Avoiding perturbations such as media changes, physical or temperature stress during the 101 

synchronous release is crucial when aiming to study metabolism, because many metabolic 102 
pathways are regulated in response to stress (Gasch and Werner-Washburne, 2002; Brauer et al., 103 
2008). With this hormone-inducible strain, we performed two replicate experiments which showed 104 

very similar and highly synchronous budding profiles (Figure 1A-B). We note that we present data 105 
for the first two hours after the G1 release, which corresponds to most cells being in early mitosis 106 

and is before cells lose synchrony (Ewald et al., 2016).  107 

From our two cell cycle synchronized cultures, we sampled ten time points from each replicate. 108 
Cells were lysed, proteins were digested with trypsin and lysC, and phosphopeptides were enriched 109 

with TiO2 and labelled with the TMT-10 plex (Figure 1A and methods).  110 

In our total proteome cell cycle time course, we quantified over 4,000 proteins, with more than 111 
90% overlap between the replicates (Figure 1C, Supplementary Table 1). Using an MS3 approach 112 

(25) and stringent quality criteria (see methods) we quantified a total of 9,267 unique 113 
phosphopeptides across all time points. This resulted in almost 8,000 quantified phosphorylation 114 

sites with approximately half of these quantified in both replicates (Figure 1D, Supplementary 115 
Table 2). As reported in previous studies (14, 26), the overall changes in the proteome through the 116 
cell cycle are small. In contrast, approximately one third of all phospho-sites change in abundance 117 
during the cell cycle suggesting cell cycle-dependent phosphorylation of these sites (Figure 1E).  118 

Next, we sought to identify which phosphorylation sites where regulated during the cell cycle and 119 
test the quality and reproducibility of our phosphoproteome data. We first ranked the time profiles 120 

of all phosphorylation sites based on a heuristic p-value of change across the cell cycle (see 121 
methods). We then removed sites from further analysis that strongly correlated with total protein 122 
abundance, since these are unlikely to be regulated mainly by phosphorylation. We used the top 123 

third of the sites based on our ranking for further analysis (Supplementary Figure 1). To test the 124 
quality and reproducibility of our data, we correlated all ten time points of replicate 1 with all ten 125 
time points of replicate 2. Samples from corresponding times after release correlated well with p-126 
values (Pearson correlation) of 10-15 or less for each of the ten time points (Figure 2A). As 127 
expected, neighbouring time points show a higher degree of correlation than more distant data 128 
points. Moreover, a principle component analysis (PCA) separated the samples according to the 129 
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time they were taken along the first component, and replicate samples were positioned near each 130 

other in the first two PCA components (Figure 2B), an indication of the accuracy of the acquired 131 

data. To test if our data captures known cell cycle regulation, we used the DeRegNet software 132 
(Winkler et al in preparation, see methods), which identifies regulated subnetworks from large 133 
interaction networks. Here, we used the KEGG interaction network and searched for regulated 134 
subnetworks in our top-ranking phospho-sites (see methods). This approach recapitulated many 135 
aspects of the G1/S regulation (Figure 2C), indicating that our data is in good agreement with 136 

known cell cycle regulation. 137 

Having established the quality of our phosphoproteomics time course, we next investigated which 138 
metabolic enzymes were dynamically phosphorylated and possibly regulated. To analyse the 139 
trends in the data set and how they relate to metabolism, we clustered the top-ranking sites using 140 

k-means clustering into five distinct clusters (Figure 3A-B; four, six and eight clusters give 141 

qualitatively similar results as shown in Supplementary Figure 2). For each cluster, we analysed 142 

which of the phosphorylation sites were annotated to proteins listed in the yeast metabolome 143 
database (Ramirez-Gaona et al., 2017) (Figure 3A). Proteins related to metabolism were found in 144 
every cluster, and, in total 243 sites on 134 metabolic proteins were changing (Figure 3B). 145 
Interestingly, more sites on these metabolic proteins were dephosphorylated than phosphorylated 146 
(Figure 3C). To determine which metabolic pathways were most likely affected by phospho-147 
regulation, we sorted the 81 most dynamic sites on metabolic proteins from clusters 1, 2, and 5 148 
into KEGG categories. All major metabolic pathways were represented and there was no particular 149 

category enriched relative to the whole dataset. In line with our previous metabolomics data 150 
showing that over half of ~500 measured metabolites change throughout the cell cycle (Ewald et 151 

al., 2016), these phosphoproteomics data suggest that global adaptations across metabolism are 152 
occurring during the cell cycle and are at least in part regulated by phosphorylation. 153 

We next wanted to determine which of the measured changes in enzyme phosphorylation may 154 
directly contribute to changes in metabolic activity. As a rough approximation of metabolic 155 
activity we use the product-to-substrate ratios from our previous metabolomics data set (Ewald et 156 

al., 2016). A change in the product-to-substrate ratio indicates a change in the kinetics of the 157 
reaction. For 174 sites on 82 proteins in our data set we had at least one substrate and one product 158 

(not including cofactors) for the reaction catalysed by the phosphorylated enzyme. For each of 159 
these reactions we correlated the phospho-site abundance with the product-to-substrate ratio 160 
(Supplementary Table 3). We found 19 sites on 15 enzymes with an R2 of the correlation greater 161 
than 0.5 (Supplementary Figure 3). One example is an enzyme well known to be upregulated 162 
during the cell cycle: the ribonucleotide-reductase complex, which catalyzes the conversion of 163 

NTPs to dNTPs (Lowdon and Vitols, 1973). The CDK consensus site S816 on Rnr1 correlates 164 
well with the ratio of dCTP to CTP (We note that cytosine nucleotides were chosen as example 165 

since they have unique masses in our metabolome data set and they do not participate in as many 166 
other reactions as adenylate or guanylate nucleotides) (Figure 4A-C). It therefore seems likely that 167 
Rnr1 S816 contributes to activating enzyme activity. Additionally, Rnr1 is also transcriptionally 168 
upregulated, but the increase in phosphorylation on S816 greatly exceeds the increase in total 169 
protein (Supplementary Figure 4). A second example is glutamine-fructose-6-phosphate 170 

amidotransferase (Gfa1), which catalyses the first step in the chitin pathway necessary for cell wall 171 
synthesis. The site S332 on this Gfa1 is dephosphorylated during the cell cycle which anti-172 
correlates with the product to substrate ratio (Figure 4 D-F). We therefore suggest that this is an 173 

inhibitory phosphorylation which is being released during the cell cycle to increase chitin synthesis 174 
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for surface expansion and cytokinesis. Whether this dephosphorylation is directly regulated by the 175 

cell cycle machinery or whether it is a secondary effect downstream of other metabolic changes 176 

(such as trehalose and glycogen utilization (Ewald et al., 2016; Zhao et al., 2016)) remains to be 177 
investigated. The resulting slopes and R2 of all correlations that could be determined based on the 178 
two datasets are reported in Supplementary Table 3.   179 

To investigate which kinases contribute most to increasing phosphorylation in metabolic and all 180 

other proteins, we performed an unbiased motif analysis using the motif-x algorithm (Schwartz 181 
and Gygi, 2005) implemented on the Meme-suite (Bailey et al., 2009; Cheng et al., 2019). Not 182 
surprisingly, the two clusters corresponding to phosphorylation sites increasing early and late 183 
through the cell cycle were highly enriched for CDK consensus sites (S/T-P-X-K/R) and minimal 184 
CDK sites (S/T-P) sites (Figure 5A-B). However, the most enriched motif in the gradually 185 

increasing cluster 3 was RRxS/T and not proline-directed. This motif is the consensus sequence 186 

associated with the protein kinase A (PKA) and some other kinases (Ptacek et al., 2005; Mok et 187 

al., 2010). In clusters 1-3, which contained all sites increasingly phosphorylated through the cell 188 
cycle, almost half were proline directed and 15% were arginine directed (putative PKA targets) 189 
(Figure 5C). When we were only examining phosphorylation sites on metabolic proteins, we 190 
obtained a similar distribution (Figure 5D).  191 

That we identified consensus PKA phosphorylation sites as being dynamic through the cell cycle 192 

is interesting because PKA kinase is a sensor of nutrients (mainly glucose) and environmental 193 
stresses. PKA promotes cell growth and glucose repression and inhibits several stress responses 194 

(Broach, 2012; Conrad et al., 2014). Since we did not change the nutrient or stress conditions of 195 
our yeast cultures, we wanted to further investigate how putative PKA target sites could be 196 
increasingly phosphorylated during cell cycle progression. We noticed that several regulators 197 

upstream of PKA seemed to be phospho-regulated during cell cycle progression, with several 198 

phosphorylation sites either increasingly or decreasingly phosphorylated through the cell cycle 199 
(Figure 6). Many of the increasingly phosphorylated sites were proline directed (Figure 6B, D, E) 200 
and were similar to CDK consensus sites. This suggests that the Ras-branch of the PKA pathway 201 

could be activated by the cell cycle machinery to control downstream processes in metabolism and 202 
growth. 203 

In addition to examining the sites increasingly phosphorylated through the cell cycle, we also 204 
wanted to investigate the sites being dephosphorylated through the cell cycle because they could 205 

be equally important. Dephosphorylation during the cell cycle is mainly discussed in the context 206 
of phosphatases counteracting CDK phosphorylation when cells go through mitosis (Mochida and 207 
Hunt, 2012; Rogers et al., 2016; Kataria et al., 2018) and in early G1 (Godfrey et al., 2017). In our 208 
experiment, we noticed that there are at least as many dephosphorylation events as phosphorylation 209 

events during the G1/S transition and S-phase, which are cell cycle transitions typically associated 210 
with increasing kinase activity. For metabolic proteins, twice as many sites were dephosphorylated 211 
through G1 to S as phosphorylated.  212 

The prevalence of dephosphorylation through the cell cycle led us to wonder which phosphatases 213 
could be contributing, especially with regard to metabolism. In this context, we noticed that one 214 
of the top-ranking phosphorylation sites in our list was on Reg1, a regulatory subunit of the 215 
phosphatase Glc7 of the well-conserved PP1 family (Verbinnen et al., 2017). Glc7 has many 216 
targets and important functions in the cell cycle and in carbon metabolism (Cannon, 2010). Glc7 217 
obtains its specific activity through interactions with regulatory subunits like Reg1 (Figure 7B) 218 
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and has little specificity on its own. It does not seem to be regulated in abundance or in its 219 

phosphorylation state during the cell cycle (Supplementary Tables 1 and 2). Motivated by the 220 

identification of Reg1 as a dynamically phosphorylated protein, we searched our list of high-221 
ranking phosphorylation sites for other Glc7 subunits. We found regulatory subunits that are 222 
known to regulate cell cycle functions including Bni4, which regulates bud neck and septum 223 
assembly, and Gip3, which regulates chromosome segregation (Figure 7A). Additionally, several 224 
of the subunits involved in regulating metabolism including Reg1 (glucose repression) and Gac1 225 

(glycogen metabolism) were dynamically phosphorylated (Figure 7C). Although we did not find 226 
any annotated functions to these specific sites, it is tempting to speculate that these phosphorylation 227 
sites impact either binding of its targets or binding of the regulatory subunit to the catalytic subunit.  228 

To further investigate the idea that the cell division cycle drives changes in Glc7 phosphatase 229 

activity, we searched for known Glc7-Reg1 targets among our list of dephosphorylated sites. One 230 

of the most prominent targets of Glc7-Reg1 is the kinase Snf1 (homolog of mammalian AMPK 231 

(Hardie, 2011)). Snf1 is activated in the absence of glucose by phosphorylation on site T210 232 
(Conrad et al., 2014). This activating phosphorylation is counter-acted by dephosphorylation by 233 
Reg1-Glc7 (Tu and Carlson, 1995). Consistent with our model, we find that Snf1 T210 is 234 
decreasing in abundance during the G1/S transition and seems to recover later in the cycle (Figure 235 
8A). This was surprising given that Snf1 normally responds to changes in external glucose , which 236 
was constantly absent throughout our experiment. In response to glucose limitation, Snf1 regulates 237 
several aspects of carbon metabolism including the deactivation of the transcription factor Mig1. 238 

Mig1 is phosphorylated by Snf1 on at least four sites in its nuclear localization sequence and at 239 
least some of these sites are also reported to be dephosphorylated by Reg1-Glc7 (Smith et al., 240 

1999). We therefore wondered whether Mig1 was also phospho-regulated during the cell cycle. 241 
We found one site S302, which closely follows the pattern of Snf1 dephosphorylation 242 

(Supplementary Figure 5A). While this site has not been specifically reported to be either a Snf1 243 
or Reg1 target, it lies right between two Snf1 sites within the regulatory domain of Mig1 244 

(Supplementary Figure 5C). Another site, T371, also lies within the Mig1 regulatory domain and 245 
is increasingly phosphorylated through the cell cycle (Supplementary Figure 5B). Interestingly, 246 
this site contains a proline in +1, which may point to phosphorylation by CDK1 as suggested by 247 

earlier studies (Holt et al., 2009; Zhao et al., 2016). A GFP-tagged Mig1 did not change localisation 248 
during the cell cycle under our growth conditions, suggesting these phosphorylation sites regulate 249 

Mig1 in a localisation-independent way. 250 

 251 

Discussion 252 

The aim of this study was to identify mechanisms coordinating metabolism and growth with the 253 

cell division cycle in budding yeast. Since both metabolism (Conrad et al., 2014; Chen and Nielsen, 254 
2016) and the cell cycle (Morgan, 2008; Enserink and Kolodner, 2010) are extensively phospho-255 

regulated, we performed a phosphoproteomics time-course of cells released from a G1 arrest. In 256 
contrast to previous phospho-proteomics studies, our main focus was to explore the phospho-257 
regulation of metabolism through the cell cycle. We therefore took extreme care to employ a 258 
synchronisation strategy that would not lead to metabolic alterations through media changes or 259 
stress responses. To achieve this, our study was conducted with prototrophic strains growing on 260 
ethanol minimal medium, where cells grow slowly and need to activate their full biosynthetic 261 
potential. Our novel high quality dataset is therefore complementary to other phosphoproteomics 262 
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data sets on the yeast cell cycle (Archambault et al., 2004; Holt et al., 2009; Touati et al., 2018; 263 

Touati and Uhlmann, 2018).  264 

In summary, we found over 200 sites on metabolic enzymes that were either increasingly 265 
phosphorylated or dephosphorylated throughout the cell cycle. In agreement with our previous 266 
metabolomics study (Ewald et al., 2016), many different metabolic pathways were affected 267 
including carbohydrate, lipid, amino acid and nucleotide metabolism. While most of these sites 268 

still need to be functionally validated, the sheer number of phosphorylated or dephosphorylated 269 
sites suggests that phosphorylation contributes significantly to tailoring metabolic fluxes to the 270 
specific requirements of different cell cycle phases. 271 

The identification of large-scale changes in phospho-isoforms through the cell division cycle 272 
raised the question as to which signalling pathways were responsible. We and others previously 273 
showed that the cyclin-dependent kinase directly regulates the activity of several metabolic 274 

enzymes such as the trehalase Nth1 (Ewald et al., 2016; Zhao et al., 2016) and the lipase Tgl4 275 
(Kurat et al., 2009). This is unlikely to represent the full extent of metabolic regulation by CDK 276 
because previous work on rich media identified several other metabolic enzymes that were likely 277 

phosphorylated by CDK (Ubersax et al., 2003; Holt et al., 2009; Zhao et al., 2016). Using our 278 
minimal media conditions, we further expand the list of putative direct CDK targets in metabolism. 279 
However, the data also suggest that a direct regulation of enzymes by the cell cycle-dependent 280 

increase in proline directed CDK activity is not the main driver of adjusting metabolic fluxes, since 281 
many enzymes get dephosphorylated rather than phosphorylated, and only a minority of all 282 

phosphorylated sites are proline directed. We therefore suggest that a lot of the cell cycle-283 
dependent phospho-regulation controlling metabolic fluxes is not directly through CDK activity, 284 
but entails additional pathways.  285 

One such additional pathway could be the protein-kinase A signalling pathway. Our data suggests 286 
that the PKA pathway is cell cycle regulated and in turn contributes to cell cycle-dependent 287 

phosphorylation of downstream pathways. Two independent observations lead to this conclusion. 288 
First, the PKA consensus motif RRxS was found as highly enriched in one of the clusters of sites 289 
being increasingly phosphorylated through the cell cycle. Second, many of the upstream regulators 290 

in the Ras branch of the PKA pathway change in phosphorylation state during the early cell cycle. 291 
Many of these phosphorylation sites are proline directed, raising the possibility that CDK itself 292 
activates PKA signalling. If true, CDK regulation of PKA would provide a mechanistic 293 

explanation of the spikes in cyclic-AMP concentrations at the G1/S and G2/M transitions observed 294 
previously (Muller et al., 2003). Since PKA has been reported to regulate CDK activity at the G1/S 295 
transition (Tokiwa et al., 1994; Amigoni et al., 2015; Ewald, 2018), it is likely that the interplay 296 
between CDK and PKA is at the nexus coordinating metabolism, growth and division with nutrient 297 

supply.  298 

While the putative PKA and CDK sites we identified are increasingly phosphorylated through the 299 

cell cycle, for many of the sites we identified the opposite is true. We were surprised at the large 300 
amount of dephosphorylation we observed as cells pass the G1/S transition. Many of these targets 301 
were metabolic enzymes. This large-scale dephosphorylation may be in part due to changing 302 
activity of the phosphatase Glc7/PP1 together with its subunits associated with metabolism such 303 
as Reg1 and Gac1. Reg1 also targets and inactivates another important metabolic signalling 304 
pathway such as the Snf1 Kinase, a member of the highly conserved AMPK family. Snf1 has a 305 
well characterized activating site T210 that is phosphorylated by upstream sugar sensing kinases 306 
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and is dephosphorylated by Reg1. In both of our replicates, Snf1 T210 is dephosphorylated at the 307 

G1/S transition and re-phosphorylated as cells progress into mitosis consistent with the hypothesis 308 

that changing phosphatase activity may drive large-scale dephosphorylation through G1/S. 309 

The dephosphorylation of Snf1 through G1/S may be important because when Snf1 is activated 310 
(like AMPK in mammals) it acts as a “brake pedal” slowing growth and energy consuming 311 
processes (Ghillebert et al., 2011; Coccetti et al., 2018). Thus, Snf1 inactivates many processes 312 

typically activated by PKA (Nicastro et al., 2015). During entry into the cell cycle at G1/S, 313 
phosphoregulation may shift the balance between PKA and Snf1 to enhance growth promoting 314 
pathways and rewire metabolism to turn storage compounds such as trehalose, glycogen or lipid 315 
droplets into macromolecules that support cell cycle progression (Figure 8B). This fine-tuned 316 
metabolic regulation likely does not matter much under the nutrient rich growth conditions (SCD, 317 

YPD) that most cell cycle studies are conducted in, but may be crucial in nutrient poor 318 

environments such as the ethanol minimal medium we used in this work. 319 

Taken together, this and other work over the last decade (Kurat et al., 2009; Bryan et al., 2010; 320 
Goranov and Amon, 2010; Ewald et al., 2016; Zhao et al., 2016), shows that we need to revise the 321 

text book model that cell growth drives the cell cycle but not vice versa. Yeast physiology is likely 322 
determined by extensive cross talk between global regulators of metabolism, signalling pathways 323 
promoting growth, and the cell cycle control machinery (Ewald, 2018). More broadly, it seems 324 

safe to assume that all eukaryotes have extensive, multidirectional signalling mechanisms to 325 
coordinate metabolism, growth and the cell division cycle, given the many recent reports on the 326 

role of metabolism in proliferating tissues including cancer-, immune-, or stem cells (Vander 327 
Heiden and DeBerardinis, 2017; Corbet, 2018; Pearce and Pearce, 2018; Zhang et al., 2018; Dahan 328 
et al., 2019; Vaupel et al., 2019). We anticipate that over the coming decade this picture of 329 

interlinked metabolic and cell cycle control will be fleshed out as a broad array of post-translational 330 

modifications and allosteric interactions mediating cross-talk between metabolism and the cell 331 
division cycle are identified in model organisms and in humans.  332 
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Cell cultivation and synchronization 349 

Cells were grown in 1 % ethanol minimal media (1.7 g yeast nitrogen base, 5 g/L ammonium phosphate, 350 
10 ml ethanol, pH adjusted to 5 with potassium hydroxide) at 30 °C and 250 rpm orbital shaking. For cell 351 
cycle arrest strain JE 611c (Ewald et al., 2016) was grown on 10 nM estradiol to an OD of approximately 352 
0.2. Cells were filtered, resuspended in estradiol-free medium, and grown for 15 hours. These G1 arrested 353 
cells were released by addition of 200 nM estradiol (dissolved at 1 mM in 100% ethanol). Cell cycle release 354 
was monitored by manual bud counting (>200 cells per sample) at 60x magnification.  355 

Sampling, protein extraction and digestion  356 

20 ml of cell culture (OD ~0.6) were sampled into 1.5 volumes of 60% methanol and precooled to -40°C 357 
to quench metabolic activity. Cells were spun at 4000 g. The pellets were frozen in liquid nitrogen and then 358 
stored at -80°C until further use. Cells were lysed by bead beating in 8M urea, 150 mM NaCL, 5 mM DTT, 359 
50 mM HEPES pH 8 supplemented with 1x Halt™ Protease and Phosphatase Inhibitor Cocktail 360 
(ThermoFisher Scientific). The lysate was centrifuged at 13,200 rpm for 15 min and the supernatant was 361 
transferred to fresh test tubes for a second round of centrifugation. Lysates from two parallel samples were 362 
combined to increase starting material. This was followed by an alkylation step using 14 mM iodoacetamide 363 
for 45 minutes at room temperature in the dark and the reaction was then quenched with DTT. In order to 364 
clean the proteins a methanol-chloroform precipitation was performed and the protein pellet was washed 365 
twice with acetone. The pellet was re-suspended with 8M urea in 50 mM HEPES (pH 8) and the total 366 
protein concentration was determined using the Pierce™ BCA Protein Assay Kit (Pierce, Rockford, IL). 367 
Approximately 4 mg of protein of each sample were diluted to 4 M urea using 50 mM HEPES (pH8) and 368 
digested with LysC (1:100) for 4 hours at room temperature. Samples were further diluted to 1 M urea using 369 
50 mM HEPES (pH8) and trypsin (Promega, Madison, WI) was added at a ratio of 1:20 enzyme: substrate 370 
for 16 hours at 37 °C. The digestion was quenched with formic acid and the peptides desalted using a Sep-371 
Pak C18 1 cc Vac 50 mg Cartridge (Waters, Milford, MA). 5% of each sample was used for total proteome 372 
analysis and the remaining peptide was used for phosphopeptide enrichment.  373 

 374 

Phosphopeptide enrichment 375 

TiO2 powder was resuspended in 2M lactic acid/50% acetonitrile (binding solution) at a concentration of 376 
25 mg/mL. Peptides were resuspended in 400 µl of binding solution and added to 640 µl of TiO2 slurry and 377 
incubated for one hour while shaking. The samples were then spun down at 10,000 rpm for 1 min and the 378 
supernatant was removed. The TiO2 pellet was washed with binding solution twice and then 0.1% 379 
trifluoroacetic acid/50% acetonitrile three times. Phosphopeptides were eluted off TiO2 using 50 mM 380 
KH2PO4 (pH 10 adjusted with ammonium hydroxide) twice, acidified with formic acid, and desalted using 381 
a Sep-Pak C18 column as above.  382 

 383 

TMT labelling and high-pH reversed-phase fractionation  384 

The TMT labelling reagents were obtained from Pierce and the labelling was performed according to the 385 
manufactures suggested procedure and previously published protocol (Zhang and Elias, 2017). In brief, in 386 
brief, 100 μg samples were resuspended in 100 μl of 50mM Na-HEPES and then 30 μl of acetonitrile was 387 
added to each sample. A TMT-10plex kit was used and each TMT reagent (0.8 mg per vial) was 388 
reconstituted in 40 μl of acetonitrile. 10 μl of the reagent was added to the corresponding sample to incubate 389 
for 1 h. To reverse unwanted TMT labelling with tyrosine residues, the reaction was quenched with a final 390 
concentration of 0.3 % (v/v) hydroxylamine for 15 min at room temperature. Samples were acidified with 391 
formic acid to pH 2. In order to assess the labelling efficiency a ratio-check was performed by combining 392 
5 μL of each sample, desalting by StageTip and then analysing with LC-MS. Based on the result from the 393 
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ratio-check equal amounts of each individual labelled sample were then combined to deliver an overall 394 
equal amounts across all channels. The combined peptides were desalted using a Sep-Pak C18 column and 395 
then fractionated by high-pH reverse phase fractionation (Yang et al., 2012) using an 84 min gradient 396 
(buffer A: 10 mM ammonium formate, pH 10; buffer B: 10 mM ammonium formate, 90 % ACN, 10 % 397 
H2O, pH 10) on an Agilent 1200 HPLC (Agilent Technologies, Santa Clara, USA). In total 84 fractions 398 
were collected, concatenated, combined into a total of 12 fractions, and then dried down. All fractions were 399 
desalted using Sep-Pak C18 column, dried down and resuspended in 0.1% formic acid for LC-MS analysis.  400 

 401 

Mass Spectrometry Analysis  402 

Peptides were separated on a 24 cm reversed phase column (100 µm inner diameter, packed in-house with 403 
ReproSil-Pur C18-AQ 3.0 m resin, Dr. Maisch GmbH) over 180 min using a two-step linear gradient with 404 
4–25 % buffer B (0.2% (v/v) formic acid in acetonitrile) for 120 min followed by 25-45 % buffer B for 15 405 
min at a 400 nL/min flowrate on an Dionex Ultimate 3000 LC-system (Thermo Scientific, San Jose, CA). 406 
Eluted peptides were analysed with a Fusion Lumos mass spectrometry system (Thermo Scientific, San 407 
Jose, CA). Full MS scans were performed in the Orbitrap in the mass range of 400-1500 m/z and the 408 
resolution was set to 120,000. The AGC setting was 4E5 and maximum injection time for FTMS1 was 50 409 
ms. Data dependent mode was set to top speed with duty cycle of 3s. Precursor ions with charge states 2-7 410 
were selected for fragmentation using collision induced dissociation (CID) with quadrupole isolation, 411 
isolation window of 0.7 m/z, normalized collision energy of 35% and activation Q of 0.25. MS2 fragments 412 
were analysed in the ion trap mass analyzer with turbo scan rate and maximum injection time of 50ms.  Ions 413 
within a +/-10 ppm m/z window around ions selected for MS2 were excluded from further selection for 414 
fragmentation for 90 s. Following each MS2 CID, a MS3 higher-energy collisional dissociation (HCD) is 415 
performed with synchronous precursor selection enabled (the number of precursors set to 5) and collision 416 
energy of 65% (McAlister et al., 2014). HCD fragment ions were detected in the Orbitrap in the scan range 417 
of 120-500 m/z with resolution of 60,000, AGC setting of 10,000, and maximum ion time of 120 ms. The 418 
mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the 419 
PRIDE (Perez-Riverol et al., 2019) partner repository under the dataset identifier PXD015235. 420 

 421 

Data processing 422 

Protein identification and quantification 423 

Raw data were searched using SEQUEST in Proteome Discoverer 2.2 against a sequence database of yeast 424 
(strain W303, NCBI taxonomy ID 559292, downloaded on July 28, 2016).  Trypsin was selected as the 425 
enzyme with at most two missed cleavage sites.  Precursor mass tolerance was set to +/- 10 ppm and 426 
fragment mass tolerance was set to +/- 0.6 Da.  At most three dynamic modifications were allowed per 427 
peptide.  Carbamidomethylation of cysteine (+57.021 Da) and TMT-labelled N-terminus and lysine 428 
(+229.163) were set as static modifications. Oxidation of methionine (+15.995 Da) and acetylation of 429 
protein N-terminus (+42.011 Da) were set as variable modifications.  For phosphopeptides analysis 430 
phosphorylation of Serine, Tyrosine and Threonine (+79.967) were also set as differential modifications. 431 
Percolator was applied to filter incorrect identifications down to an estimated false discovery rate of 1% for 432 
both peptides and proteins. The PtmRS node was used for phosphosite assignment. For quantification, a 433 
mass tolerance of +/-20 ppm window was applied to the integration of report ions using the ‘most confident’ 434 
centroid method and S/N values were reported as reporter abundances.  For total proteome analysis, the 435 
threshold for average reporter S/N was set to 5, the threshold for co-isolation was set to 30%, and 436 
quantification results were rejected for missing channels.  The data normalization mode was set to “total 437 
peptide amount” and scaling mode was set to “on channels average”.  438 
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Phosphorylation site quantification 439 

For phosphosite analysis, PSMs were filtered to meet the following criteria: The phosphosite position 440 
confidence (ptmRS score) was set to > 75%; the threshold for average reporter S/N was set to 10; and the 441 
threshold for co-isolation was set to 30%. Only PSMs quantified in nine consecutive channels were included 442 
(so only the first or last time point were allowed to be zero). After filtering, the channels were normalized 443 
to the total intensity. PSMs were summed to unique peptides. Each phosphorylated site was then summed 444 
across all peptides containing that site. The quantification of each site was scaled by its mean before 445 
averaging the replicates. 446 

 447 

Statistical analysis 448 

Heuristic p-value and ranking 449 

To avoid any a priori assumptions of the shape of the time profiles, we ranked our time courses based on a 450 
heuristic p-value calculated in the following ways. For each phosphorylation site, we calculated a p-value 451 
from a t-test comparing the average of the first four to the last four time points. Also a regression over all 452 
timepoints as independent variables was performed to detect linear trends. Finally, we calculated the p-453 
value of linear regressions in time windows of five time points moving across the time series to detect 454 
trends which do not span the whole time span. All values were corrected for multiple hypothesis testing 455 
with the Holm-Sidak correction. The minimum p-value obtained from these tests was then used to rank the 456 
phosphorylation sites.  457 

To test whether this ranking separates changing from non-changing sites, we performed k-means clustering 458 
(see below) on sets of 1,000 sites from top to bottom rank, see Supplementary Figure 1. Based on the results 459 
from this clustering, we empirically decided to use the top third ranking phosphorylation sites for further 460 
analysis. For each site in each replicate, the correlation between the protein und phosphosite abundance 461 
was calculated. Phosphosites that correlated with Pearson’s R greater than 0.8 in either replicate were 462 
removed from downstream phosphorylation analysis. Above procedures were carried out with statsmodels 463 
(0.9.0) in Python 3.6.8. 464 

 465 

K-means Clustering 466 

k-means clustering was performed using the Matlab 2018b built-in algorithm with 1,000 iterations and 100 467 
replicates. The number of clusters was empirically set to five (see Supplementary Figure 2 for results for 4, 468 
6, and 8 clusters). 469 

Principal Component Analysis 470 

A principal component analysis was performed on the normalized abundance data using Perseus 1.6.1.3 471 
(Tyanova et al., 2016). 472 

Motif Enrichment 473 

Motif enrichment was performed using the MoMo function (Cheng et al., 2019) on the MEME suite 474 
(http://meme-suite.org/, accessed in May 2019) (Bailey et al., 2009) with the following settings: motif-x 475 
algorithm; background peptides extracted from reference sequence GeneBank Saccharomyces cerevisiae 476 
uid 128; motif width 13; central residues with same modification mass combined; p-value threshold was 477 
set to 0.0001. 478 

 479 
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Subgraph Analysis 480 

Deregulated subgraph were calculated with DeRegNet (https://github.com/sebwink/deregnet) (Winkler et 481 
al in prep, (Backes et al., 2012). DeRegNet takes a regulatory network (e.g. constructed from KEGG) and 482 
assigns a “deregulation” score to each node (protein) in the network. For every protein the minimum p-483 
value across all associated sites was taken as a basis to calculate deregulation socres. As deregulation score 484 
we used binary scores defined as 1 for p-values < 0.1 and as 0 otherwise. DeRegNet then calculated a 485 
connected subnetwork within the Yeast KEGG network with maximal average deregulation score (sum of 486 
deregulation score of nodes in subgraph divided by number of nodes in the subgraph). 487 

 488 
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 671 

 672 

 673 

Figure 1: Phospho-proteomics time course of yeast cells released synchronously from G1 on ethanol 674 
minimal medium. A. Experimental workflow for sampling, phospho-enrichment, TMT labelling and mass 675 
spectrometry analysis B. Budding index of two replicate cultures released from a G1 arrest. C. Total protein 676 
and D. phosphorylated sites quantified in the two replicate experiments.  E. Heatmap of the averaged 677 
replicates (log2 fold changes relative to t=0 min) for phosphorylated sites and quantified proteins. 678 
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 681 

 682 

Figure 2: Data overview and quality controls. A. All time points of replicate 1 were correlated with all time 683 

points from replicate 2 (based on top 3rd ranking phosphosites, see methods). Shown is a heatmap of the –684 
log10(p-value) of a Pearsson correlation for all time points of one replicate with those of the other replicate. 685 

B. Principle component analysis performed with the top 3rd of the identified phosphosites. Plotted are the 686 
ten time points of each replicate projected onto the first two principle components. C. Regulated sub-687 
network identified from the top-ranking phosphoproteome data by the DeRegNet software (see methods) 688 
based on the KEGG interaction network. The type of interaction annotated in KEGG is indicated by the 689 
colour of the arrow.   690 
 691 
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 692 

 693 

Figure 3.  A. Heatmaps of the five identified clusters based on log2 (fold change) relative to t= 0 minutes. 694 
We report the number of sites contributing to the cluster and how many of those map to proteins in the yeast 695 
metabolome database (YMDB). B. Time course of phosphosite abundance for all sites on a YMDB protein 696 
in the corresponding cluster. C. Pie chart reporting the fraction of phosphosites on YMDB metabolic 697 
proteins whose abundance is increasing or decreasing through the cell cycle. D. Pie chart reporting the 698 
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pathway assignments of most changing the phosphorylation sites whose abundance changes the most 699 
through the cell cycle. 700 

 701 

 702 

 703 

Figure 4: Identification of putative potential flux controlling phosphorylation sites based on the product to 704 
substrate ratio from published metabolomics data (6) A.-C. Example of a putative activating 705 
phosphorylation site showing the correlation of the serine 816 on ribonucleoreductase 1 (Rnr1) with the 706 
dCTP to CTP ratio, and the corresponding cell cycle time courses. D-F. Example of a putative inhibiting 707 
phosphorylation site showing anti-correlation of serine 332 of Glutamine-fructose-6-phosphate 708 
amidotransferase (Gfa1) with the ratio of its products and substrates. 709 
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 711 

Figure 5: Motifs enriched in increasing phosphorylation sites. A. Cluster averages of three increasing 712 
clusters identified by kmeans clustering. B. Enriched motifs identified in the increasing clusters using the 713 
motif-X algorithm. The two most enriched motifs for each cluster are shown (>10-fold enriched, p< 10-6). 714 
C. Pie chart depicting the sequence context of all sites in the cell cycle increasing clusters 1-3. D. Pie 715 
chart depicting the sequence context of the cell cycle increasing phosphosites on metabolic proteins. RR 716 
denotes motifs potentially recognized by PKA including RRxS, RRxxS, and RxRxS. S/T-P-x-K/R is the 717 
optimal CDK consensus site.  718 
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 721 

 722 

Figure 6: The protein kinase A pathway is phospho-regulated through the cell cycle. A. Map of the Ras-723 
branch of the PKA pathway. Circles indicate sites whose phosphorylation increases (green, clusters 1-3) or 724 
decreases (red, clusters 4-5) through the cell cycle. Only sites found in both replicates are reported. S/TP 725 
sites, possibly phosphorylated by cyclin-dependent kinases, are denoted by their residue numbers adjacent 726 
to the phosphorylation site. B-E. Examples of dynamic phosphorylation of sites on different upstream 727 
regulators of PKA through the cell cycle. Residues associated with consensus cyclin-dependent kinase sites 728 
are underlined and the phosphorylated residue is shown in bold.  729 
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 731 

Figure 7: Glc7 (PP1) may regulate metabolism through the cell cycle. A. Cell cycle-dependent 732 
phosphorylation of the Glc7 subunits, Bni4 and Gip3, which are known to contribute to cell cycle 733 
regulation. B. Schematic showing regulatory subunits of the phosphatase Glc7 and their annotated 734 
functions. C. Cell cycle time courses of phosphorylation of the Glc7 subunits Reg1 and Gac1, which are 735 
known to contribute to metabolic regulation. Time courses from both replicates are shown.   736 
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 738 

Figure 8: A. The well conserved activating site T210 on Snf1 is dephosphorylated during the G1-S- 739 
transition (average of both replicates) B. Model for global metabolic regulation during cell cycle 740 
progression on ethanol minimal medium. Red: low activity; green: higher activity; dotted lines: indirect or 741 
putative regulatory interactions; solid line: direct regulatory interaction 742 
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