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Abstract 

Recent advancements in deep learning have revolutionized the way microscopy 

images of cells are processed. Deep learning network architectures have a large 

number of parameters, thus, in order to reach high accuracy, they require massive 

amount of annotated data. A common way of improving accuracy builds on the artificial 

increase of the training set by using different augmentation techniques. A less 

common way relies on test-time augmentation (TTA) which yields transformed 

versions of the image for prediction and the results are merged. In this paper we 

describe incorporating the test-time argumentation prediction method into two major 

segmentation approaches used in the single-cell analysis of microscopy images, 

namely semantic segmentation using U-Net and instance segmentation using Mask 

R-CNN models. Our findings show that even using only simple test-time 

augmentations, such as rotation or flipping and proper merging methods, will result in 

significant improvement of prediction accuracy. We utilized images of tissue and cell 

cultures from the Data Science Bowl (DSB) 2018 nuclei segmentation competition and 

other sources. Additionally, boosting the highest-scoring method of the DSB with TTA, 

we could further improve and our method has reached an ever-best score at the DSB. 
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Introduction 

Identifying objects at the single-cell level is the starting point of most microscopy-

based quantitative cellular image analysis tasks. Precise segmentation of the cell’s 

nucleus is a major challenge here. Numerous approaches have been developed, such 

as methods using mathematical morphology1 or differential geometry2,3. More recently 

deep learning has yielded a never-seen improvement of accuracy and robustness4, 5, 

6. Remarkably, Kaggle’s Data Science Bowl 2018 (DSB)7 was dedicated to nuclei 

segmentation and gave a great momentum to this field. Deep learning-based 

approaches have proved their effectiveness: practically all the teams used some type 

of a deep architecture in the first few hundred leaderboard positions. The most popular 

architectures included U-Net4, originally designed for medical image segmentation, 

and Mask R-CNN8, used for instance segmentation of natural objects.  

Deep learning approaches for object segmentation require a large and often pixel-wise 

annotated dataset for training. This task relies on high-quality samples and domain 

experts to accurately annotate images. Besides, analysing biological images is 

challenging because of their heterogeneity and, sometimes, poorer quality compared 

to natural images. In addition, ground truth masks might be imperfect due to the 

annotator-related bias, which introduces further uncertainty. Consequently, a plethora 

of annotated samples is required, making object segmentation a laborious process. 

One of the techniques utilized to improve the model is data augmentation9 of the 

training set. Conventionally, a transformation (i.e. rotation, flipping, noise addition etc.) 

or a series of transformations are applied on the original images. Data augmentation 

has become the de facto technique in deep learning, especially in the case of 

heterogeneous or small datasets to improve the accuracy of cell-based analysis.  

To improve performance, another possibility relies on augmenting not only the training 

dataset, but also the test dataset, thus performing the prediction on the original, as 

well as on the augmented versions of the image, and merging the predictions; this 

approach is called test-time augmentation (Figure 1). This technique was 

successfully used in image classification tasks10, for aleatoric uncertainty estimation11 

and MRI slices/MRI volumes segmentation12. A theoretical formulation12 of test-time 

augmentation has been described recently, their experiments show that TTA helps to 

get rid of overconfident incorrect predictions. Additionally, a framework13 for 

quantifying the uncertainty of the DNN model for diagnosing diabetic retinopathy 

based on test-time data augmentation was proposed. Its disadvantage is the 
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increased prediction time, as it is run not only on the original image, but on all its 

augmentations as well.  

In the current paper we assess the impact and describe cases of utilizing test-time 

augmentation for deep-learning models trained on microscopy datasets. We have 

trained deep learning models for both semantic segmentation (when the network only 

distinguishes the foreground from the background, using the U-Net architecture) and 

instance segmentation (when the network assigns labels to separate objects, using 

the Mask R-CNN architecture) (Figure 1). In conclusion, test-time augmentation has 

outperformed single instance predictions at each test cases, and could further improve 

the current best result of the DSB, as demonstrated by the improved score, changing 

from 0.633 to 0.644. 

 

Figure 1. Principle of the proposed test-time augmentation techniques. Several augmented 

instances of the same test images were predicted and the results were transformed back 

and merged. In the case of U-Net, pixel-wise majority voting was applied, while for Mask R-

CNN, a combination of object matching and majority voting was used. 

Methods 

Dataset acquisition and description 

We have collected two datasets: fluorescent microscopy images (further referred to as 

‘fluorescent’ dataset) and histopathology images (further referred to as ‘tissue’ 

dataset). Most of the images have come from the stage 1 train/test data of Data 

Science Bowl 2018. We also used additional sources14,15,16,17,18,19,20 and other data 
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published in the discussion thread ‘Official External Data Thread’ 

(https://www.kaggle.com/c/data-science-bowl-2018/discussion/47572) related to DSB 

2018.  The images were labelled by experts using the annotation plugins of ImageJ/Fiji 

and Gimp. Both datasets were divided into three holdout train\test sets: approximately 

5%, 15%, 30% (further referred to as ‘5’, ‘15’ and ‘30’ in the dataset name, 

respectively) of uncropped images were held out as the test set. The test sets did not 

intersect.  

We used the same augmentations (horizontal and vertical flip, 90°, 180° and 270° 

rotations) for training both architectures. The images were cropped to the size of 

512×512 pixels. Crops from the same image were used only in either the train or test 

set. Images with a resolution lower than 512×512 were resized to that particular size. 

Sample images are shown in Figure 4. 

Deep learning models and training  

These augmented and cropped training data were used to train the models. For each 

dataset (5, 15 and 30 holdouts for both fluorescent and tissue images) separate 

models were trained. Additionally, we also trained U-Net without augmented data to 

analyse TTA performance on such a network as well. 

Mask R-CNN (implementation21) is an extension of Faster R-CNN, the architecture for 

object detection. Solutions based on Mask R-CNN outperform the COCO 2016 

challenge winners and finished at the third place in Kaggle Data Science Bowl 20187. 

The architecture of Mask R-CNN incorporates the following main stages: (1) Region 

proposal network (RPN) to propose candidate bounding boxes. It uses a  backbone: 

a convolutional neural network which serves as a feature extractor. In this 

implementation it is possible to use resnet50 or resnet101 as a backbone, we used 

resnet101. (2) Network head layers: they predict the class, box offset and an output 

binary mask for each region of interest (RoI). Masks are generated for each class 

without competition between classes. 

The network, following the strategy described by Hollandi et al.5, was trained for 3 

epochs for different layer groups: first, all network layers were trained at a learning 

rate of 10−3, then training was restricted to ResNet stage 5 (ResNet consists of 5 

stages, each with convolution and identity blocks including 3 convolutional layers per 

block) and head layers at a learning rate of 5 × 10−4, and finally only the head layers 
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were trained at a learning rate of 10−4. The model was initialized with pre-trained 

weights 

(https://github.com/matterport/Mask_RCNN/releases/download/v1.0/mask_rcnn_coc

o.h5) on the COCO dataset. The loss function of the architecture was binary cross-

entropy with ADAM22 (Adaptive Moment Estimation) solver, batch size 1, the number 

of iterations being equal to the train set size.  

U-Net (implementation23) is an architecture originally designed to process biological 

images, which proved to be efficient, even when utilizing small training datasets. U-

Net based solutions won the 2015 ISBI cell tracking challenge4 and Kaggle Data 

Science Bowl 2018. Its architecture consists of two main parts: (1) a down-sampling 

convolution network or encoder by which we obtain the feature representation of the 

input image, and (2) an up-sampling convolution network or decoder, which produces 

the segmentation from a feature representation of the input image.  

We trained U-Net for 200 epochs at a constant learning rate of 3 × 10 −4, and used 

a  binary cross-entropy loss function with ADAM solver,  batch size 1, the number of 

iterations being equal to the train set size.  

Both U-Net and Mask R-CNN implementations are based on the deep learning 

framework Keras with Tensorflow backend. The training computations were conducted 

on a PC with NVIDIA Titan Xp GPU, 32 GB RAM and Core-i7 CPU.  

Test-time augmentation 

Test-time augmentation includes four procedures: augmentation, prediction, dis-

augmentation and merging. We first apply augmentations on the test image. These 

are the same as the augmentations previously applied on the training dataset. We 

predict on both the original and the augmented images, then we revert the 

transformation on the obtained predictions; this process is referred to as dis-

augmentation. For example, when the prediction was performed on a flipped or rotated 

image, we restore the obtained prediction to its original orientation. The final merging 

step is not straightforward in case of Mask R-CNN as the architecture is instance 

aware, thus the merging method has to handle instances. We have developed an 

extended merging method inspired by one of DSB 2018 solutions24 (Figure 1, right).    

For each detected object from the original image, we find the same detected object in 

the augmented images by calculating intersection over union (IoU) between the 

masks. The minimum IoU threshold used to decide whether the objects found are the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 23, 2019. ; https://doi.org/10.1101/814962doi: bioRxiv preprint 

https://github.com/matterport/Mask_RCNN/releases/download/v1.0/mask_rcnn_coco.h5
https://github.com/matterport/Mask_RCNN/releases/download/v1.0/mask_rcnn_coco.h5
https://paperpile.com/c/mscsf9/LOfz
https://paperpile.com/c/mscsf9/1wTy
https://paperpile.com/c/mscsf9/q8Ok
https://paperpile.com/c/mscsf9/JZhd
https://doi.org/10.1101/814962
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

same is 0.5. We iterate over all detected objects to find the best match. An object 

should be present in the majority of the images to be included as a final mask. Next, 

we check the first augmented image for any remaining unused objects (a possible 

scenario when an object is not detected in the original image but is detected in any of 

the augmented ones), and look for matching unassigned objects on other 

augmentations. Next, we check the second augmented image for detected objects and 

perform the same operations. We repeat this process until the majority voting criterion 

can be theoretically satisfied (in half of the images at a maximum). An average binary 

object mask is created by majority pixel voting on paired objects.  

For U-Net the merging process is straightforward as it is not instance aware, so we 

simply sum and average all the dis-augmented probability maps. This results in a 

floating point image that needs to be converted to a binary mask. A simple element-

wise thresholding at the value of 0.5 converts the soft masks binary (Figure 1., right). 

Test-time augmentation evaluation 

We have evaluated the test-time augmentation model on our test dataset predictions 

(see the previous section for details) compared to ground truth masks using the 

following evaluation strategies. 

In case of Mask R-CNN we used the same metric as at the Data Science Bowl 2018. 

It calculates the mean average precision (mAP) at different intersection over union 

(IoU) thresholds. The thresholds (t) are in the range of [0.5, 0.95] with a step of 0.05. 

An object is considered true positive when the IoU with ground truth is greater than 

the threshold, false positive when the predicted object has no associated ground truth 

object or the overlap is smaller than the threshold and false negative when the ground 

truth object has no associated predicted object. 

𝐼𝑜𝑈(𝐴, 𝐵) =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
  

Thus, mAP for an image is calculated as follows: 

 
1

|𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠|
=  ∑

𝑇𝑃(𝑡)

𝑇𝑃(𝑡) + 𝐹𝑃(𝑡) + 𝐹𝑁(𝑡)𝑡    

Next, we calculate the average for all images in the test set. The final score is a value 

between 0 and 1.  

U-Net predictions were evaluated using the intersection over union metric, executed 

at the pixel level.  We summed up the prediction and ground truth binary masks then 
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we simply counted the pixels that are greater than one (that is the intersection) and 

divided the resulting values with the number of pixels greater than zero. The resulting 

value is a score ranging from 0 to 1. 

As described above, we have evaluated the predictions with applying TTA (𝑚𝑒𝑟𝑔𝑒𝑑) 

and without applying TTA (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙). Next, we have evaluated TTA’s performance by 

calculating the difference 𝑑𝑒𝑙𝑡𝑎 =  𝑚𝑒𝑟𝑔𝑒𝑑 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 . 

Results 

In the case of Mask R-CNN, TTA on average has provided an improved performance 

for all dataset splits and for all model checkpoints. The average mAP score delta is 

about 0.01 for all “Fluorescent” and “Tissue_5” sets and 0.02 for the other sets. In all 

scenarios, TTA has positively affected the score for most of the images (Figure 2). 

In the case of U-Net, we have evaluated the performance at each epoch during 

training. For the “Tissue” datasets TTA demonstrated a performance gain for all 

epochs. In case of the “Fluorescent” datasets, a slight decline in the performance of 

TTA was observed during early (first 30-50) epochs which has turned positive after 

further training (Figure 3, A and B). After about epoch 50, the performance without 

TTA was seen to fluctuate without a clear trend in all cases (Figure 3, C and D), while 

the performance with TTA tended to rise for almost all cases, except in the case of the 

“Tissue” dataset, where no augmentations were used for training (Figure 3 A). 

For some images TTA has changed the final prediction result in a significantly positive 

manner. Examples of such cases for both U-Net and Mask R-CNN are shown in Figure 

4. 

Applying TTA on the DSB2018 (stage2) test set of images, it was found to further 

improve performance significantly, surpassing the best performing method5 by 0.011 

(nearly 2%) in the DSB scoring metric which is identical to the mAP used in this paper 

and the output of which was instance segmented masks (Figure 5). 

Results without TTA and delta values for each set can be found in Supplementary 

(Supplementary Table 1. - U-Net when augmentations during training were used, 

Supplementary Table 2. - U-Net when augmentations during training were not used 

and Supplementary Table 3. - for Mask R-CNN). 
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Figure 2. TTA performance for Mask R-CNN 

TTA performance (𝑑𝑒𝑙𝑡𝑎 = 𝑚𝑒𝑟𝑔𝑒𝑑 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙). Each point represents an image. Dashed 

line - mean, solid line - median. A | Fluorescent set 5. B | Fluorescent set 15. C | Fluorescent 

set 30. D | Tissue set 5. E | Tissue set 15. F | Tissue set 30.  

 
 

Figure 3. Average performance for U-Net with different training and test augmentations. A | 

Average TTA performance trained without augmentations over epochs. B | Average TTA 
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performance trained with augmentations over epochs. C | Average performance without TTA  

without augmentations during training. D | Average performance without TTA with 

augmentations during training.  

 
Figure 4. Examples of predictions. A | U-Net predictions. First column - original image, second 

column - predictions without TTA compared to ground truth, third column - predictions with 

TTA compared to ground truth. Red marks indicate false negative, green marks indicate 

true positive and blue marks indicate false positive. Fourth column - averaged TTA 

predictions before thresholding, fifth column - zoomed insets from the previous column. B | 

Mask R-CNN predictions. Columns are as the first three columns in A.  

 

 
Figure 5. DSB Stage 2 scores for various methods (CellProfiler, Kaggle DSB 2018 2nd and 

1st places, Hollandi et al.5 method and the same method with TTA). The red bar shows the 

highest score. 
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Conclusions 

We have performed experiments to estimate test-time augmentation’s performance 

for two popular deep learning frameworks trained to segment nuclei in microscopy 

images. Our results indicate that on average TTA can provide higher segmentation 

accuracy compared to only predicting on original images, even though for some 

images the results might be marginally worse. 

TTA mostly affects the objects’ borders but in uncertain cases it can help to fit whole 

objects (remove false positives or add true positives, especially in case of Mask R-

CNN). In the case of U-Net, TTA has rarely had a significant effect on segmentation 

results. Overall, in most cases, TTA improves segmentation accuracy. The main use 

case of TTA is examination of uncertain regions in segmentation. However, the high 

cost of TTA, related to the fact that multiple times more predictions are required for the 

same object, is also an issue to be considered. Therefore, TTA is mainly 

recommended for use when the basic cost of prediction is low. 
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