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ABSTRACT 

Premise of the study: X-ray microcomputed tomography (microCT) can be used to measure 3D 

leaf internal anatomy, providing a holistic view of tissue organisation. Previously, the substantial 

time needed for segmenting multiple tissues limited this technique to small datasets, restricting 

its utility for phenotyping experiments and limiting our confidence in the conclusion of these 

studies due to low replication numbers.  

Methods and Results: We present a Python codebase for random-forest machine learning 

segmentation and 3D leaf anatomical traits quantification which dramatically reduces the time 

required to process leaf microCT scans. By training the model on 6 hand segmented image 

slices out of >1500 in the full dataset, it achieves >90% accuracy in background and tissue 

segmentation, including veins and bundle sheaths grouped together, but not when taken 

separately. 

Conclusion: Overall, this 3D segmentation and quantification pipeline can reduce one of the 

major barriers to using microCT imaging in high-throughput plant phenotyping. 

 

KEY WORDS (3-6): plant leaf anatomy, plant phenotyping, random-forest classification, 

microCT, image segmentation   
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INTRODUCTION 

Leaves are complex and highly sophisticated 3D geometries optimized over the course 

of evolutionary time to balance water distribution, photosynthesis, and structural integrity, 

among many other biological functions. Yet only recently has imaging technology enabled a 

clear view and, more importantly, the capacity to digitally represent leaf 3D anatomy (Théroux-

Rancourt et al., 2017). Today, 3D imaging permits precise spatial measurement and biophysical 

modeling of leaf internal geometry that can deliver novel insights about basic leaf function, such 

as CO2 transport (Ho et al., 2016; Lehmeier et al., 2017; Earles et al., 2018, 2019; Lundgren et 

al., 2019), H2O transport (Scoffoni et al., 2017), and mechanical structure (Pierantoni et al., 

2019). Embracing the 3D complexity of leaf geometry permits us to understand when 

dimensionality reduction is tolerable and will ultimately guide more precise mechanistic scaling 

from tissue to crop/ecosystem.  

Computationally, 3D imaging often produces large datasets (>20 Gb) with hundreds to 

thousands of digital cross sections that do not immediately yield biologically relevant 

information. Image-based sensors measure the spatial distribution of energy intensity across 

some range of the electromagnetic spectrum, such as gamma, X-ray or visible light. Regardless 

of the imaging modality, 3D images must be subsequently processed to extract biologically 

relevant information, such as tissue type, chemical composition, and material type. In the case 

of X-ray micro-computed tomography (microCT) applied to plant leaves, this has led to the 3D 

description of the complex organization of the mesophyll cells and their surface area (Ho et al., 

2016; Théroux-Rancourt et al., 2017), and the description of novel anatomical traits related to 

the intercellular airspace (Lehmeier et al., 2017; Earles et al., 2018). Tissue segmentation can 

be done quickly using both proprietary and open source software via 3D thresholding based on 

pixel intensity values. However, in the case of leaf microCT scans, pixel intensity can primarily, 

and most often solely, distinguish between water-filled cells and air-filled void areas. As such, 
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quick segmentations can generally only label cells and airspace, especially when using phase 

contrast reconstruction (Théroux-Rancourt et al., 2017), such that the different tissues of a leaf, 

e.g. the epidermis, the bundle sheaths, and the veins, are grouped together. Using this method, 

there is not a clear distinction between the background and the intercellular airspace, and thus 

is limited to segmentation to small leaf volumes consisting solely of mesophyll cells and 

airspace to estimate leaf porosity and cell surface area, traits commonly measured when related 

to photosynthetic efficiency (e.g. Ho et al., 2016). However, such small volumes can not 

necessarily represent the whole leaf, and as such larger volume including veins are needed to 

avoid sampling bias. To separate the leaf from the background and segment the different 

tissues within the leaf, current applications generally rely on the onerous process of hand-

segmentation, i.e. drawing with a mouse or a graphic tablet over single slices of a microCT scan 

to delimit and assign a unique value to each of the different tissues, either slice-by-slice or 

through the interpolation between different delimited regions throughout the scan (Théroux-

Rancourt et al., 2017). As a result, studies incorporating 3D microCT datasets have been limited 

to smaller scanning endeavors, and the low replicability of these studies limits the impact of 

conclusions therein. Hand segmentation, as described above, can take up to one day of work 

for a coarse scale segmentation of tissues other than mesophyll cells and airspace. Further, to 

highlight natural variations in size and curvature of the various tissues can substantially increase 

hand segmentation time (see for example Harwood et al. (2019) on a similar issue using serial 

block face scanning electron microscopy). Hence, segmentation is currently a major bottleneck 

in the use of this technology. 

Machine learning (ML) presents an opportunity to substantially accelerate the image 

segmentation process for plant biological applications. Conventional computer vision techniques 

rely on a human to engineer and select visual features, such as shape, pixel intensity, and 

texture, that ultimately guide the underlying segmentation process. On the other hand, ML-
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based image processing allows the machine to directly select visual features in the case of 

random forest, k-nearest neighbors, support vector machines, for instance, and even engineer 

the features in the case of convolution neural networks (e.g. Çiçek et al. 2016). ML-based image 

processing techniques fall along a continuum of unsupervised to supervised learning, which 

defines the degree to which the machine uses ground-truth data for guiding its optimization 

function. Given the large number of images generated during an X-ray microCT scan, ML-based 

image processing could lead to major efficiency gains in terms of human effort, enabling higher 

sample throughput and more complete data utilization as outlined above. In this study, we 

present a random forest ML technique for image segmentation, test model performance on an 

X-ray microCT image of a leaf, and demonstrate how the rich 3D output can be used to extract 

biologically meaningful metrics from these segmented images. 

 

METHODS AND RESULTS 

Random forest segmentation and leaf traits analysis pipeline 

The following pipeline was built for our projects using X-ray synchrotron-based microCT 

imaging and uses freely available and open source software ImageJ (Schneider et al., 2012) 

and the Python programming language for machine-learning segmentation and for image 

analysis. Synchrotron-based imaging allows reconstruction of scans using both gridrec (Dowd et 

al., 1999) and phase contrast, also known as paganin reconstruction (Paganin et al., 2002), 

both of which were at the base of our previous method (Théroux-Rancourt et al., 2017). In its 

current state, the program needs the gridrec and phase contrast reconstructions, both in 8-bit 

depth. To prepare for model training and automated segmentation, one needs to prepare hand 

labelled slices. Using ImageJ, we first binarize, i.e. convert to black and white, the two 

reconstructions by applying a threshold, where grayscale values below are considered air and 

above are considered cells. Those two binary stacks are combined together as in Théroux-
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Rancourt et al. (2017). Hand labelling is then done directly in ImageJ by drawing around each 

other tissue, repeating the tissue labelling over the desired number of slices. In this case tissues 

used include both epidermises, bundle sheaths, and veins, and a custom ImageJ macro is 

applied to create a hand labelled stack, also included the background as a segmented element. 

For a detailed methodology on preparing hand labelled slices, including ImageJ macros, please 

refer to the repository of this program (github.com/plant-microct-tools/leaf-traits-microct). 

 

 
Figure 1. Schematic of the segmentation and analysis pipeline. Reconstructed microCT scans 
are manually thresholded to find the best value to segment the airspace of the leaf (as in Théroux-
Rancourt et al. 2017). Using this binary stack, a local thickness stack is created, which identifies 
for each pixel the diameter of the largest sphere contained in that area (lighter pixel values mean 
larger diameters). These inputs stacks are used to generate the feature layers arrays needed, 
along with the hand labelled slices, for the random forest classification model training. With the 
trained model, the complete stack of images is predicted, and from this predicted stack the image 
is post-processed to remove false classifications, and leaf traits are analyzed. Note that all images 
are from the same position within the stack (i.e. same slice) except for the segmented image: the 
same slice as was hand labelled provides identical segmentation. 
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The random-forest classification model can then be trained using the hand labelled 

slices. We used a custom Python 3.7 program using numpy (Oliphant, 2006) for data structure, 

scikit-image (van der Walt et al., 2014) for image processing, and scikit-learn (Pedregosa et al., 

2011) for random-forest machine learning functions. The image processing and random-forest 

classification is summarized in Figure 1. First, the software requires the gridrec and phase 

contrast stacks as inputs images. It then creates a binary image (as defined above) using the 

threshold values for both stacks as input variables in order to create a local thickness map, 

which identifies for each pixel the diameter of the largest sphere contained in that area to 

provide additional information for model training. Feature layer arrays for each slice that have 

been hand labelled are then built by applying a gaussian blur or a variance filter, both of 

different diameters, to the gridrec and phase contrast slices, as well as to sobel filtered gridrec 

and phase contrast slices for edge detection, and to a distance map. These feature layer arrays 

are then used, along with the hand labelled slices, to train the random-forest classification 

model, and this model is used to predict each slice, generally > 1500, of the microCT scan. The 

full stack prediction can be then passed on to the leaf traits analysis pipeline. A first step is to 

identify all tissues and apply post-prediction correction to remove false predictions, such as 

identifying the two largest epidermis structures of similar volumes for a laminar leaf, and 

removing volumes of vein and bundle sheaths below a certain volume. From this corrected 

stack, biological metrics are computed, including thickness measured at each point along the 

leaf surface (e.g. whole leaf, abaxial and adaxial epidermis separately, whole mesophyll (leaf 

without the epidermis), all including standard deviation), volumes of all segmented tissues (i.e. 

voxel count), and surface area of the mesophyll cells connected to the airspace (through a 

marching cube algorithm). Further analysis of the airspace can be made to compute tortuosity 

and path lengthening using a python-version of Earles et al. (2018) methods, which are not 

included in the current methods analysis.  
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Testing the segmentation program 

To test the performance of the segmentation program, we use the microCT scan of a 

‘Cabernet sauvignon’ grapevine (Vitis vinifera L.) leaf acquired at the TOMCAT tomographic 

beamline of the Swiss Light Source (SLS) at the Paul Scherrer Institute in Villigen, Switzerland. 

Samples were prepared for microCT scanning as in Théroux-Rancourt et al. (2017), and the 

sample was mounted between pieces of polyimide tape and fixed upright in a styrofoam holder. 

Using the CT mode, 1801 projections of 100 ms were acquired at 21 keV over 180° total 

rotation using a 40x objective, yielding a final pixel size of 0.1625 µm. The scans were 

reconstructed using gridrec and paganin algorithms using the reconstruction pipeline at the 

TOMCAT beamline. Twenty-four slices spread evenly across the full 1920 slices stack were 

hand labelled for epidermis, background, veins, and bundle sheaths, mesophyll cells, and 

intercellular airspace as briefly described above. To facilitate the testing, the x and y dimensions 

were halved, yielding a pixel size of 0.325 µm in those dimensions, but keeping the original 

dimensions in the depth (z) dimension, hence reducing the file size by four down to 1.5 Gb, a 

size easily handled by the program (hereafter called 20x magnification). The file was resized 

again and halved a second time in the x and y dimensions (pixel size of 0.650 µm, hereafter 

called 10x magnification) to evaluate how a lower number of pixels affect model predictions. 

This latter pixel size is commonly used in leaf microCT scans done at the Advanced Light 

Source at the Lawrence Berkeley National Lab (e.g. Scoffoni et al., 2017; Théroux-Rancourt et 

al., 2017; Earles et al., 2018), while the 20x magnification is our current standard for scans done 

at the SLS. To understand the impact of training a model on different numbers of manually 

segmented slices, we tested the software using one to 12 training slices (with an equal number 

of testing slices), repeating training 30 times at each training level using randomly selected 

slices, and repeating that for the 20x and 10x stacks. Each prediction test consisted of 

segmenting all of the 24 slices that were hand labelled. Confusion matrices were created for 
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each prediction test, removing the slices that were used in the model training. Note that no post-

prediction corrections were applied and as such the results below present the raw predictions. 

From each confusion matrix, we evaluated precision and recall for each biological class 

(Figure 2). In the context of automated information retrieval for microCT image segmentation, 

recall may be interpreted as the sensitivity of the trained model to a given pixel class, i.e. the 

portion of correctly identified pixels in a given class, relative to all pixels belonging to this class. 

On the other hand, precision represents the positive predictive value of the model within a given 

pixel class, i.e. the number of pixels correctly identified as belonging to a given class, divided by 

this value plus the number of pixels falsely identified. It can be logically deduced why some 

people refer to recall as quantity of positive identification, and precision as the quality of positive 

identification. 

In the mesophyll cell class, recall was generally > 90% even when training on < 3 

manually segmented slices, meaning that > 90% of all mesophyll cell pixels were correctly 

identified as cells, suggesting the trained random forest model is highly sensitive to cells. The 

same can be said for the airspace and background classes, which plateau at about 95% recall 

using >1 training slice. The trained models do not appear to be as sensitive to pixels of the 

epidermis class. Indeed, we observed a minimum of 4 training slices required to drive epidermis 

class recall into the 90%+ range. With vein and bundle sheath considered together as one 

class, at least 4 training slices were required to reach a maximum recall value of ~80%; the 

remaining 20% were false negatives, i.e. identified as other classes. Interestingly, when 

separating bundle sheath and vein into distinct classes, the bundle sheath class also reaches a 

maximum recall value of ~75% using >4 training slices. Isolating the vein class from bundle 

sheath, greatly impacts the trained model’s sensitivity to detection of vein. Recall was not 

observed above 55%, and generally stayed under 40% unless the model was trained on > 8 

manually segmented slices. 
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Figure 2. Recall (left) and precision (right) as a function of the number of training slices used to 
predict tissue classes in a microCT leaf scan of 20x magnification (pixel size: 0.325 µm; 762 999 
pixels per slice to predict). Solid lines represent the median value of 30 prediction per amount of 
training slices, and gray ribbons represents the 25th and 75th quantiles. Dashed lines present the 
median value of 30 predictions done on the same leaf scan, but with size divided in half so that 
each class as approximately four times less pixels (pixel size: 0.65 µm; representing a 10x 
magnification). Precision and recall differences between magnifications are presented in 
Supplemental Figure S1. 
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To achieve precision > 90% in the airspace, background, and epidermis tissue classes a 

minimum of 2 training slices should be used. Interestingly, training on > 2 slices did not seem to 

translate to a substantial improvement in precision for these classes. However, observed 

precision for the mesophyll cell tissue class did not plateau until training on > 3 slices. While the 

maximum precision for mesophyll cells was stably > 90%, the lower precision values 

consistently observed when training on 1 or 2 slices, as low as 60%, suggest the software is not 

as reliable for this tissue class. So, it is important to train on > 3 slices if mesophyll cell traits are 

of importance. In the vein class, the software was observed to positively identify pixels at a rate 

of about 80% when trained on > 2 slices. In other words, even though the software is not very 

sensitive to the vein class, it is quite reliable when it does make a positive identification in the 

vein class.  

To evaluate how the number of training slices affected the measurement of biological 

traits, a subset of at least five predictions from the 20x magnification were segmented over the 

full stack. These full stack predictions were then passed through the leaf traits analysis program 

to extract relevant leaf anatomical traits. Anatomical measures were the least constant between 

prediction when using one training slice (Figure 3). The most variable were the epidermises 

thickness estimates, with values near 0 µm for the abaxial epidermis, or close to 30 µm in the 

adaxial epidermis, meaning that false segmentations of epidermis occurred between both 

epidermises such that they were connected and could not be automatically distinguished from 

one another as happened from 3 training slices onward. This false segmentation of the 

epidermis led to a highly variable whole mesophyll thickness (i.e. the leaf without the epidermis), 

which became less variable (< 5%) when using at least 3 training slices. However, the overall 

leaf thickness was the least variable, with less than ~1.5 µm variation (~1% total thickness) 

when using 3 or more training slices, a variation we consider equal or even lower than manual 

measures. This technique benefits greatly from measuring over each point, or voxel column, of 
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the leaf area, allowing for the integration of millions of thickness measures, thus buffering local 

errors due to false segmentation. Volumetric anatomical traits became constant in variation and 

values at a minimum of 5 training slices for the bundle sheath, mesophyll cells, and the 

airspace. As with precision and recall, vein volume substantially varied until about 7 training 

slices, where values and variation plateaued. Volumes of the leaf, the whole mesophyll and 

epidermises exhibited similar results as for their thickness.  

 

How many slices should be hand labeled? 

In the test presented above, the greater the number of total pixels represented by any 

class, the fewer training slices required to reach maximum sensitivity (i.e. recall). For example, 

the air, cells, and background classes are the most common pixel types and clearly show >90% 

sensitivity (recall) training on as few as 2 manually segmented slices (Figure 2), and with 4 

slices different models generated similar biological traits (Figure 3). Veins and bundle sheaths 

are difficult to segment as they generally present very low contrast between each other and as 

such are difficult to distinguish computationally. In the usage we have made of the program, we 

are generally interested in defining where the vasculature (veins and bundle sheath together) is 

rather than extracting traits of those two tissues, and as such 6 slices seem appropriate to get a 

reliable prediction of the volume of those two tissues (Figures 2 and 3). Further, the number of 

testing slices do not influence precision or recall (Supplemental Figure S3), and hence about 

three supplementary testing slices should be enough for testing the model as it is trained and for 

the user’s own testing of precision and recall. More problematic is when a class is represented 

by a smaller number of pixels, the number of training slices required to reach maximum 

sensitivity in this class increases (Figure 2). Thinner tissues, like the epidermis, require a 

minimum of 5 training slices to reach constant precision, recall, and biological traits. However, if 

magnification is decreased to 10x (~4x fewer pixels in all classes), about 8 training slices are 
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needed to reach a plateau in precision and recall (Figure S1). Hence, care should be taken 

when planning a scanning endeavor to have the right magnification to have enough pixels per 

tissue of interest in order to facilitate subsequent segmentation. Using the number of slices 

testing above on previous scans could help guide microCT setup. 

 
Figure 3. Variation in the measured tissue thicknesses and volumes based on the number of 
training slices used. False classification of inner leaf pixels as epidermis occurs more with one or 
two training slices, which resulted in the two epidermis being connected together, hence making 
the individual thickness estimates wrong. Standard deviations of the thickness estimates are 
presented in Supplemental Figure S2. 
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CONCLUSION 

We present here a tool using open source software to automatically segment image 

stacks of microCT scans consisting of thousand of single images and requiring only a few hand 

labeled single slices. This segmentation and analysis pipeline has been successfully used on a 

variety of species and leaf forms (e.g. deciduous and evergreen laminar leaves, C3 grass 

leaves, conifer needles), and is not limited to the tissues extracted above (Figure 4). We are 

confident it can be used on other plant material, such as different types of seeds, fruits, stems, 

and roots, to produce high quality segmentations. However, certain tissues are not evenly 

segmented, and do not present the expected biological pattern. For example, veins and bundle 

sheath present local volume errors, constricting and expanding where they should be even from 

slice to slice. Using a slice-by-slice, 2D model training and segmentation approach can enhance 

this, and other machine learning methods can probably perform better on this front (e.g. Çiçek 

et al., 2016). However, we provide a simple tool that can be run on a regular workstation, 

without the requirement of special infrastructure such as a GPU cluster, for example. This 

tradeoff was acceptable for the majority of our work. Further, models are currently generated for 

single scans and have yielded poor results when applied to other scans even of the same 

scanning sessions and the same species (i.e. similar settings and material). Again, this was an 

acceptable tradeoff as it significantly speeded up the processing of microCT scans, which was 

the aim for the tool. Future milestone would be to implement 3D learning to better account for 

continuous and regular tissues, and make the trained model usable for similar scans (e.g. same 

sessions, species, and material). 

To conclude, this segmentation tool generates a considerable amount of segmented 

leaves over a wide array of species, and empowers researchers to broaden sampling, to ask 

new questions about the 3D structure of leaves, and derive new and meaningful metrics for 

biological structures. 
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Figure 4. Random-forest segmentation examples (a) for a grapevine leaf, a grass, and a pine 
needle, and common segmentation issues (b). Gridrec reconstructions on the same slices are 
shown on the left to compare with the predicted tissues based on random-forest models trained 
on hand-labelled slices. One of the main segmentation issues is the local volume problem, caused 
by 2D rather than 3D segmentation, where for example veins are labelled on one slice and not on 
the other (black areas in between grey-labelled veins). Another issue is having the epidermis 
connected throughout the leaf at small number of model training slices, here highlighted in red, 
where a volume might appear disconnected in 2D but is connected in 3D. 
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SUPPLEMENTAL MATERIAL

 
Figure S1. Difference between the number of pixels per class and prediction/recall. At 20x 
magnification (gray, left of boxplot pairs), there is approximately four times more pixels per class 
than at 10x magnification (white, right of boxplot pair). While 10x and 20x perform similarly for 
tissues with large volume and reach a precision plateau at a similar slice, for thin tissues like the 
epidermis, more pixels per class allow to reach a precision plateau about 2 slices earlier (~8 slices 
at 20x, ~ 10 slices at 10x). Axis zoomed in on the precision and recall values to better show the 
variation between magnifications. Note that models with only one training slice are not shown. 
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Figure S2. Standard deviation of thickness estimates presented in Figure 2. 
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Figure S3. Recall (left) and precision (right) using 6 training slices and a variable number of 
testing slices to predict tissue classes in a microCT leaf scan of 20x magnification (pixel size: 
0.325 µm; 762 999 pixels per slice to predict). Precision and recall range and variation remained 
constant using one to ten testing slices. 
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