1			
	7		
	-	l	

1	Biosynthesis of β -(1 \rightarrow 5)-Galactofuranosyl Chains of Fungal-Type and O-Mannose-Type

- 2 Galactomannans within the Invasive Pathogen Aspergillus fumigatus
- 3 Yuria Chihara^a, Yutaka Tanaka^b, Minoru Izumi^c, Daisuke Hagiwara^d, Akira Watanabe^d,
- 4 Kaoru Takegawa^e, Katsuhiko Kamei^d, Nobuyuki Shibata^b, Kazuyoshi Ohta^a and Takuji

5 Oka^{a#}

- ⁶ ^aDepartment of Applied Microbial Technology, Faculty of Biotechnology and Life Science,
- 7 Sojo University, Kumamoto, Japan
- ⁸ ^bDepartment of Infection and Host Defense, Tohoku Medical and Pharmaceutical University,
- 9 Sendai, Japan
- 10 ^cGraduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- ¹¹ ^dMedical Mycology Research Center, Chiba University, Chiba, Japan
- ¹² ^eDepartment of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University,
- 13 Fukuoka, Japan
- 14 Y.C. and Y.T. contributed equally to this work.
- 15 [#]To whom correspondence should be addressed: Takuji Oka
- 16 Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science,
- 17 Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
- 18 Tel: +81 96 326 3986; Fax: +81 96 323 1330
- 19 E-mail: oka@bio.sojo-u.ac.jp

- 20 Running title: β -(1 \rightarrow 5)-Galactofuranosyl Residues in *Aspergillus*
- 21 Keywords: Aspergillus fumigatus, cell wall, glycosyltransferase, galactomannan,
- 22 galactofuranose, glycosylation

3

24 ABSTRACT

25	The pathogenic fungus Aspergillus fumigatus contains galactomannans localized
26	on the surface layer of its cell walls, which are involved in various biological processes.
27	Galactomannans comprise α -(1 \rightarrow 2)-/ α -(1 \rightarrow 6)-mannan and
28	β -(1 \rightarrow 5)-/ β -(1 \rightarrow 6)-galactofuranosyl chains. We previously revealed that GfsA is a
29	β -galactofuranoside β -(1 \rightarrow 5)-galactofuranosyltransferase involved in the biosynthesis of
30	β -(1 \rightarrow 5)-galactofuranosyl chains. Here, we clarified the entire biosynthesis of
31	β -(1 \rightarrow 5)-galactofuranosyl chains in <i>A. fumigatgus</i> . Two paralogs exist within <i>A. fumigatus</i> :
32	GfsB and GfsC. We show that GfsB and GfsC, in addition to GfsA, are β -galactofuranoside
33	β -(1 \rightarrow 5)-galactofuranosyltransferases by biochemical and genetic analyses. GfsA, GfsB,
34	and GfsC can synthesize β -(1 \rightarrow 5)-galactofuranosyl oligomers up to lengths of 7, 3, and 5
35	galactofuranoses within an established in vitro highly efficient assay of
36	galactofuranosyltransferase activity. Structural analyses of galactomannans extracted from
37	the strains $\Delta gfsB$, $\Delta gfsC$, $\Delta gfsAC$, and $\Delta gfsABC$ revealed that GfsA and GfsC synthesized all
38	β -(1 \rightarrow 5)-galactofuranosyl residues of fungal-type and O-mannose-type galactomannans,

39	and GfsB	exhibited	limited	function	in A.	fumigatus.	The l	loss of	δ-([1→5)-galact	tofuranos	yl
----	----------	-----------	---------	----------	-------	------------	-------	---------	-----	------	----------	-----------	----

- 40 residues decreased the hyphal growth rate and conidia formation ability as well as increased
- 41 the abnormal hyphal branching structure and cell surface hydrophobicity, but this loss is
- 42 dispensable for sensitivity to antifungal agents and virulence toward immune-compromised
- 43 mice.
- 44

IMPORTANCE

46	β -(1 \rightarrow 5)-galactofuranosyl residues are widely distributed in the subphylum
47	Pezisomycotina of the phylum Ascomycota. Pezizomycotina includes many plant and animal
48	pathogens. Although the structure of β -(1 \rightarrow 5)-galactofuranosyl residues of galactomannans
49	in filamentous fungi was discovered long ago, it remains unclear which enzyme is
50	responsible for biosynthesis of this glycan. Fungal cell wall formation processes are
51	complicated, and information concerning glycosyltransferases is essential for their
52	understanding. In this study, we show that GfsA and GfsC are responsible for the
53	biosynthesis of all β -(1 \rightarrow 5)-galactofuranosyl residues of fungal-type and O-mannose-type
54	galactomannans. The data presented here indicates that β -(1 \rightarrow 5)-galactofuranosyl residues
55	are involved in cell growth, conidiation, polarity, and cell surface hydrophobicity. Our new
56	understanding of β -(1 \rightarrow 5)-galactofuranosyl residue biosynthesis provides important novel
57	insights into the formation of the complex cell wall structure and the virulence of the
58	subphylum Pezisomycotina.

60 INTRODUCTION

61	The cell wall of the pathogenic fungus Aspergillus fumigatus comprises several
62	kinds of polysaccharides including chitin, β -(1 \rightarrow 3)-glucan, β -(1 \rightarrow 3)-/ β -(1 \rightarrow 4)-glucan,
63	α -(1 \rightarrow 3)-glucan, galactosaminogalactan, and galactomannans (GMs) (1–3). These
64	polysaccharides are complexly intertwined to form the three-dimensional structure of cell
65	walls (1, 2). GMs are polysaccharides comprising D-mannose (Man) and D-galactofuranose
66	(Gal _f), localized on the surface layer of cell walls (2), and distinguished into fungal-type
67	galactomannan (FTGM) and O-mannose-type galactomannan (OMGM) (4). FTGM includes
68	core-mannan, a structure wherein α -(1 \rightarrow 2)-mannotetraose is linked with α -(1 \rightarrow 6)-linkage
69	from 9 to 10, and β -(1 \rightarrow 5)-/ β -(1 \rightarrow 6)-galactofuran side chains (5, 6). FTGM binds to a
70	glycosylphosphatidylinositol anchor for transportation from the Golgi apparatus to the cell
71	surface (7), and the transported FTGM is incorporated into the β -(1 \rightarrow 3)-glucan–chitin core
72	of the cell wall by DFG family proteins (8). OMGM structure comprises
73	β -(1 \rightarrow 5)-/ β -(1 \rightarrow 6)-galactofuranosyl chains bonded to an O-Man-type glycan with a
74	structure wherein Man is bonded to serine/threonine of a protein as a basic skeleton (6, 9).

75	Information on GM biosynthesis has been more thoroughly investigated recently
76	(3, 10, 11). CmsA/Ktr4 has been reported to be an α -(1 \rightarrow 2)-mannosyltransferase involved in
77	the biosynthesis of the α -(1 \rightarrow 2)-mannan backbone of FTGM (12, 13). In the gene-disrupted
78	strain of cmsA/ktr4 and/or its homolog cmsB/ktr7, pronounced hyphal elongation
79	suppression and conidia formation failure were observed (12, 13). Moreover, the $\Delta cmsA/ktr4$
80	mutant was significantly less virulent than the parental strain (13). These data indicate that
81	FTGM is crucial for normal cell growth and virulence (12, 13). GfsA is firstly identified as a
82	galactofuranosyltransferase involved in the biosynthesis of OMGM galactofuranosyl
83	residues (14). GfsA is a β -galactofuranoside β -(1 \rightarrow 5)-galactofuranosyltransferase also
84	involved in the biosynthesis of FTGM galactofuran side chains (4). However, in the $\Delta gfsA$
85	strain of <i>A. fumigatus</i> , the β -(1 \rightarrow 5)-galactofuranosyl residue was not completely lost (4). The
86	biosynthesis of the remaining β -(1 \rightarrow 5)-galactofuranosyl residues remain unclear. Therefore,
87	we focused on clarifying which residual β -(1 \rightarrow 5)-galactofuranosyl residues are
88	biosynthesized. There are two paralogs GfsB and GfsC in A. fumigatus. We evaluated
89	whether GfsB and GfsC are responsible for biosynthesis of the remaining

90	β -(1 \rightarrow 5)-galactofuranosyl residues. We obtained recombinant proteins of GfsA, GfsB, and
91	GfsC to elucidate galactofuranoside chain biosynthesis activity in vitro using an established
92	highly efficient assay of galactofuranosyltransferase activity. Furthermore, to investigate the
93	function of gfs family proteins in vivo, we analyzed the structure of GM extracted from
94	single, double, and triple gene-disruptants of gfsA, gfsB, and gfsC. In this study, we aimed to
95	clarify the biosynthesis and function of β -(1 \rightarrow 5)-galactofuranosyl residues in <i>A. fumigatus</i> .
96	
97	RESULTS
98	Features of GfsB and GfsC in A. fumigatus. The $\Delta gfsA$ disruptant exhibited reduction of
98 99	Features of GfsB and GfsC in A. fumigatus. The $\Delta gfsA$ disruptant exhibited reduction of the content of β -(1 \rightarrow 5)-galactofuranosyl residues within FTGM and OMGM (4); however,
99	the content of β -(1 \rightarrow 5)-galactofuranosyl residues within FTGM and OMGM (4); however,
99 100	the content of β -(1 \rightarrow 5)-galactofuranosyl residues within FTGM and OMGM (4); however, these residues remained within the galactomannan fractions. To determine the enzyme
99 100 101	the content of β -(1 \rightarrow 5)-galactofuranosyl residues within FTGM and OMGM (4); however, these residues remained within the galactomannan fractions. To determine the enzyme synthesizing the remaining β -(1 \rightarrow 5)-galactofuranosyl residues, we focused on <i>gfsA</i> paralogs,

105	secondary structures using TMHMM revealed that GfsB and GfsC have putative
106	transmembrane domains (GfsB: amino acids 13-35, GfsC: amino acids 23-42) at their
107	N-termini, suggesting that both GfsB and GfsC are type II membrane proteins, indicating
108	GfsB and GfsC localization at the Golgi apparatus like GfsA (3, 14). GfsB and GfsC have a
109	conserved metal-binding DXD motif (GfsB: amino acids 237–239, GfsC: amino acids 240–
110	242).
111	Enzymatic function of GfsA, GfsB, and GfsC. We previously constructed an Escherichia
112	coli strain expressing a recombinant GfsA protein. GfsC was successfully expressed as a
113	soluble protein using a cold-shock expression vector and GfsB was obtained as a soluble
114	fused NusA protein using an E. coli expression system. Recombinant 6× His-tagged GfsA,
115	GfsB, and GfsC proteins were purified by Ni ⁺ affinity chromatography and analyzed using
116	SDS-PAGE (Fig. S1). The NusA tag of GfsB was cleaved with a HRV 3C protease and
117	removed by Ni-agarose. GfsA, GfsB, and GfsC were visualized as bands close to their
118	predicted respective molecular weights of 57.9, 50.3, and 52.0 kDa. For the
119	galactofuranosyltransferase assay it is essential to use UDP-Gal _f as a sugar donor; however, it

120	is difficult to obtain as it is not commercially available. Thus, we biochemically synthesized
121	UDP-Gal _f using Glf, a UDP-galctopyranose (Gal _p) mutase derived from <i>E. coli</i> , followed by
122	HPLC purification (15, 16). This purified UDP-Gal _f was used for the assay within our
123	previous study (4, 14). Because enzymatic equilibrium of the reversible enzyme Glf is
124	inclined to be >93% of the mixture (16), generating much UDP-Gal _f was difficult. To solve
125	this problem, we attempted to improve the galactofuranosyltransferase assay (Fig. 1A).
126	When a small amount of UDP-Gal _{f} generated is consumed by galactofuranosyltransferase,
127	Glf regenerates UDP-Gal _f to maintain equilibrium (Fig. 1A). Glf oxidizes $FADH_2$ to FAD
128	when converting UDP-Gal _p to UDP-Gal _f . Therefore, reducing FAD to FADH ₂ is essential for
129	a continuous reaction (Fig. 1A). Sodium dithionite (SD) was used for re-reduction of $FADH_2$
130	from FAD. Dithionite ion plays a role as a driving horse for proceeding to
131	galactofuranosylation by FADH ₂ reduction from FAD within the continuous reaction, which
132	continues until UDP-Gal _{p} is almost lost. Based on this principle, we developed a highly
133	efficient assay for galactofuranosyltransferase activity using Glf and Gfs proteins (Fig. 1A).
134	Chemically synthesized 4-methylumbelliferyl- β -D-galactofuranoside (4MU- β -D-Gal _f) or

135	<i>p</i> -nitrophenyl- β -D-galactofuranoside (pNP- β -D-Gal _{<i>f</i>}) was used as acceptor substrate (17, 18).
136	When commercially available pNP- β -D-Gal _f was used as an acceptor substrate instead of
137	4MU- β -D-Gal _f , pNP- β -D-Gal _f was not detected by UV300 absorbance, suggesting
138	pNP- β -D-Gal _f variance within the structure by SD (19) (Fig. S2 (d) and (e)). Although
139	NADH/NADPH instead of SD could be used as a reducing reagent against FAD, SD
140	promoted galactofuranosyltransferase reaction more effectively than NADH/NADPH (Fig.
141	S2 (c) and (f)).
142	GfsA-lacking fraction showed no new peak generation, but fractions with GfsA
143	showed six new peaks at 18.0, 20.4, 23.4, 26.5, 30.2, and 34.3 min (defined as AG2–AG7,
144	respectively; Fig. 1B, upper panels). GfsB-lacking fraction showed no new peak generation,
145	but fractions with GfsB had two new peaks at 18.0 and 20.4 min (BG2 and BG3,
146	respectively; Fig. 1B, middle panels). GfsC-lacking fraction showed no new peak generation,
147	but fractions with GfsC had four new peaks at 18.0, 20.4, 23.4, and 26.5 min (CG2–CG5,
148	respectively; Fig. 1B, <i>bottom panels</i>). Table 1 shows the mass-to-charge ratios (m/z) of
149	enzymatic products of GfsA, GfsB, and GfsC as identified by LC/MS. The differences of

150	each peak were calculated as 162.1, indicating that a hexose molecule is continuously
151	attached and each peak was identical to the theoretical molecular mass of the molecule
152	sequentially added to $4MU-\beta$ -D-Gal _f by Gal _f .
153	To further determine chemical structure, we collected >1 mg of AG3, BG2, and
154	CG3 with HPLC and analyzed the sample using ¹ H-NMR (Fig. 2) with 4MU- β -D-Gal _f as a
155	control. Chemical shift values for H-1 position of the Gal_f residue in
156	t-Gal _f - β -(1 \rightarrow 5)-Gal _f - β -(1 \rightarrow 5)-Gal _f -D- β -4MU structures are 5.22 (signal A), 5.20 (signal B),
157	and 5.79 (signal C) ppm from the non-reducing end, according to previous reports (4, 6).
158	Signals for AG3, BG2, and CG3 were in agreement with the reported chemical shift values
159	(Fig. 2). To obtain further evidence for glycosidic linkage, we collected 500 μ g of AG3, AG4,
160	BG2, CG3, and CG4 using HPLC and analyzed the sample using methylation analysis for
161	each compound. This sample was methylated then hydrolyzed, and subsequently analyzed by
162	GC-MS (Fig. 3). The retention times for t-Gal _f \rightarrow , 5-Gal _f l \rightarrow and 6-Gal _f l \rightarrow were 16.36,
163	18.40, and 19.56 min, respectively, under these analysis conditions (6, 20). AG3, AG4, BG2,
164	CG3, and CG4 displayed a peak at 16.36 min (Fig. 3), indicating presence of terminal Gal_f

165	residues. In addition, AG3, AG4, BG2, CG3, and CG4 had a peak at 18.40 but not 19.56 min
166	(Fig. 3), indicating that the all added Gal_f residue was attached to the C-5 position of the first
167	Gal_f residue. These results indicate that $GfsB$ and $GfsC$ are also
168	β -(1 \rightarrow 5)-galactofuranosyltransferases and that GfsA, GfsB, and GfsC could not transfer a
169	Gal_f residue to the C-6 position in contrast to GlfT2, the bacterial
170	β -(1 \rightarrow 5)-/ β -(1 \rightarrow 6)-galactofuranosyltransferase (21, 22).
171	
172	Role of GfsB and GfsC in GM biosynthesis. To clarify the function of the gfs family in vivo,
173	we constructed $\Delta gfsB$, $\Delta gfsC$, $\Delta gfsC$:: <i>C</i> , $\Delta gfsAC$, and $\Delta gfsABC$ strains (Fig. S3, S4 and S5).
174	To identify the effect of gene disruption on the structure of GMs, those extracted from the
175	mycelia of A. fumigatus strains were purified by cetyl trimethyl ammonium bromide
176	precipitation with boric acid buffer. The GMs designated as FTGM+OMGM contain both
177	FTGM and OMGM (4); these were analyzed by ¹³ C-NMR spectroscopy (Fig. 4). Signals at
178	107.87 ppm and 108.70 ppm of the ¹³ C-NMR spectra represent the C-1 positions of the
179	underlined Gal _f residue within the structure of - <u>Gal_f-</u> β -(1 \rightarrow 5)-Gal _f -(1 \rightarrow (β -(1 \rightarrow 5)-Gal _f) and

180	- <u>Gal</u> _f - β -(1 \rightarrow 6)-Gal _f -(1 \rightarrow (β -1 \rightarrow 6)-Gal _f), respectively, as according to previous reports (6,
181	23). The signal intensity of β -(1 \rightarrow 5)-Gal _f was higher than that of β -(1 \rightarrow 6)-Gal _f in the
182	¹³ C-NMR chart of A1151-FTGM+OMGM. Within $\Delta gfsB$ -FTGM+OMGM there was little
183	difference from A1151-FTGM+OMGM (Fig. 4). In contrast, the intensity of signal of
184	β -(1 \rightarrow 5)-Gal _f was inversed in the ¹³ C-NMR chart of $\Delta gfsC$ -FTGM+OMGM, indicating that
185	the amount of β -(1 \rightarrow 5)-Gal _f was decreased in the FTGM+OMGM fraction of $\Delta gfsC$ strains
186	(Fig. 4). The signal intensity of β -(1 \rightarrow 5)-Gal _f was recovered in the ¹³ C-NMR chart of
187	$\Delta gfsC::C$ -FTGM+OMGM (Fig. 4). Interestingly, signals of β -(1 \rightarrow 5)-Gal _f in the ¹³ C-NMR
188	chart of $\Delta gfsAC-\Delta gfsABC$ -FTGM+OMGM were not detected, indicating that β -(1 \rightarrow 5)-Gal _f
189	disappeared within the FTGM+OMGM fractions of $\Delta gfsAC$ and $\Delta gfsABC$ strains. GC-MS
190	analyses of O-methylalditol acetates derived from methylation analyses of FTGM+OMGMs
191	were performed for the A1151, $\Delta gfsB$, $\Delta gfsC$, $\Delta gfsAC$, $\Delta gfsABC$, and $\Delta gfsC::C$ strains
192	(Table 2). The ratio of the 5-O-substituted Gal _f residue (5-Gal _f 1 \rightarrow) of $\Delta gfsC$ (2.16% ±
193	0.19%) was lower than that of A1151 (16.31% \pm 0.84%); however, the ratio of 5-Gal _f 1 \rightarrow of
194	$\Delta gfsB$ (15.37% ± 0.71%) was comparable with that of A1151 (Table 2). Interestingly, signals

15

195	for the 5-Gal _f 1 \rightarrow of $\Delta gfsAC$ or $\Delta gfsABC$ were not detected within these FTGM+OMGM
196	fractions (Table 2). These results clearly indicate that β -(1 \rightarrow 5)-galactofuranosyl residues
197	disappeared within both $\Delta gfsAC$ and $\Delta gfsABC$. Next, the FTGM galactofuran side chain was
198	prepared and separated by gel filtration chromatography to analyze its length (Fig. 5).
199	FTGM+OMGM fractions were treated with 0.15 M of trifluoroacetic acid at 100°C for 15
200	min. The resultant samples were applied to gel filtration chromatography to separate the
201	obtained galactofuran side chain (Fig. 5). Consequently, sugar chains consisting of up to 6
202	monosaccharides were detected in the fractions of A1151, $\Delta gfsA$ and $\Delta gfsC$ strains (Fig. 5).
203	Conversely, only monosaccharide was detected in the $\Delta gfsAC$ strain fraction, indicating that
204	elongation by β -(1 \rightarrow 5)-galactofuranosyl residues had not occurred (Fig. 5). These
205	observations clearly indicate that all β -(1 \rightarrow 5)-galactofuranosyl residues of FTGM and
206	OMGM in A. fumigatus are biosynthesized by GfsA and GfsC.

207

208 Phenotypic analyses of disruptant gfs family genes. The colony phenotypes of disruptant

209	strains were observed following 3 days of growth at 37°C/50°C on minimal medium (Fig. 6).
210	The colony growth rates of the disruptant strains are shown in Table 3. The colony growth
211	rate of the Δg strain decreased to 85.2% as compared with that of the A1151 strain at 37°C
212	(Table 3). In contrast, colony growth rate percentages of $\Delta gfsB$ and $\Delta gfsC$ strains were
213	comparable with that of the A1151 strain at 37°C (Table 3). Growth rate percentages of
214	$\Delta gfsAC$ and $\Delta gfsABC$ strains were reduced to 68.4% and 67.8% at 37°C, and to 86.4% and
215	84.0% at 50°C, respectively (Table 3). When quantifying the number of formed conidia at
216	37°C, the percentage of the $\Delta gfsA$ strain decreased to 50.9% compared with that of the
217	A1151 strain. The conidiation efficiencies of $\Delta gfsAC$ and $\Delta gfsABC$ were reduced to
218	approximately 32.1% and 25.4% of that of the A1151 strain (Table 4). In contrast, the
219	conidiation efficiency of the $\Delta gfsB$ and $\Delta gfsC$ strains did not obviously decrease (Table 4).
220	These results are consistent with the facts that GfsA and GfsC have redundant enzymatic
221	functions and GfsB can only synthesize short β -(1 \rightarrow 5)-galactofuranosyl oligomers. These
222	results indicate that the β -(1 \rightarrow 5)-galactofuranosyl residues plays an important role in conidia
223	formation and hyphal growth.

17

224	It was reported that hyphae branching was increasing within the $\Delta glfA$ strain (24).
225	Therefore, we observed hyphae in $\Delta gfsAC$ and $\Delta gfsABC$ strains to determine whether
226	abnormal hyphae branching was also formed in these strains (Fig. 7A). We did observe
227	abnormal hyphae branching at a high frequency, indicating that deficient of
228	β -(1 \rightarrow 5)-galactofuranosyl residues causes an increase of abnormal hyphae branching.
229	Reportedly, lack of the Galf-containing sugar chains from the cell causes increased cell
230	surface hydrophobicity (24). To confirm increasing cell surface hydrophobicity in $\Delta g fs AC$
231	and $\Delta gfsABC$ strains, whether the amount of adherence of latex beads to the mycelium
232	increased as observed within the $\Delta glfA$ strain was determined; this adherence was clearly
233	increased (Fig. 7B), indicating that β -(1 \rightarrow 5)-galactofuranosyl residues are involved in cell
234	surface hydrophobicity in A. fumigatus.
235	

236 Sensitivity to antifungal agents and virulence of β -(1 \rightarrow 5)-galactofuranosyl 237 residue-deficient strains. Next, we tested the sensitivity of the A1151, $\Delta gfsC$, $\Delta gfsAC$, and 238 $\Delta gfsABC$ strains to the widely used clinical antifungal agents micafungin (MCFG),

239	caspofungin (CPFG), amphotericin B (AMPH-B), flucytosine (5-FC), fluconazole (FLCZ),
240	itraconazole (ITCZ), voriconazole (VRCZ), and miconazole (MCZ) (Table 5). Sensitivities
241	of the mutants to antifungal agents were almost identical to those of A1151. The $\Delta gfsABC$
242	strain exhibited only slightly greater sensitivity to AMPH-B and MCZ as compared with the
243	A1151 strain (Table 5). We also examined the role of β -(1 \rightarrow 5)-galactofuranosyl residues in
244	pathogenesis using a murine infection model (Fig. 8). First, the virulence of A1151, $\Delta gfsC$
245	and $\Delta gfsC::C$ strains were tested within immune-compromised mice. Survival rates did not
246	differ between A1151, $\Delta gfsC$ and $\Delta gfsC::C$ infections (Fig. 8A). Virulence of A1151, $\Delta gfsC$,
247	$\Delta gfsAC$, and $\Delta gfsABC$ strains were also tested (Fig. 8B). In the aspergillosis model, virulence
248	of the $\Delta gfsAC$ and $\Delta gfsABC$ strains were comparable with that of the A1151 strain (Fig. 8B),
249	indicating that a lack of β -(1 \rightarrow 5)-galactofuranosyl residues did not influence survival rates
250	of immunosuppressed mice.

DISCUSSION

253	We previously characterized that GfsA is the β -galactofuranoside
254	β -(1 \rightarrow 5)-galactofutanosyltransferase (4). However, the β -(1 \rightarrow 5)-galactofuranosyl oligomer
255	synthesized with GfsA could only be confirmed to generate up to 3 sugars in the previous
256	reaction system due to a lack of commercially available UDP-Gal _{f} (4). In this study, we
257	showed that GfsA could synthesize β -(1 \rightarrow 5)-galactofuranosyl oligomers up to lengths of 7
258	monosaccharides (Fig. 1, upper panels). In addition, we showed that GfsB and GfsC also
259	could transfer β -Gal _f to the 5 position of the hydroxy group of the terminal
260	β -galactofuranosyl residue up to 3 and 5 monosaccharides lengths, respectively (Fig. 1,
261	middle and bottom panels). AG4, BG2 and CG3 accumulated within the assay of GfsA, GfsB
262	and GfsC, respectively (Fig. 1). This indicates that GfsA is a more suitable enzyme for
263	synthesizing longer β -(1 \rightarrow 5)-galactofuranosyl oligomers compared with GfsB and GfsC.
264	This result is consistent with the fact that gfsA disruption had greatest impact in the
265	disruptants of gfs family genes (Fig. 6). We subsequently proposed structures of the
266	fungal-type- and O-mannose-type galactomannans in the $\Delta gfsAC$ strain (Fig. 9).

267	One problematic issue for assaying galactofuranosyltransferases is that the sugar
268	donor UDP-Gal _{f} is not commercially available. Errey et al. described relatively easily
269	synthesizing UDP-Gal _f using flexible enzymatic and chemo-enzymatic approaches (25).
270	However, obtaining and retaining the chemically unstable UDP-Gal _f remains complicated
271	(26). We thus attempted to establish a galactofuranosyltransferase assay using a continuous
272	reaction of sugar-nucleotide conversion and sugar transfer with UDP-galactopyranose
273	mutase and galactofuranosyltransferase. Rose et al. previously performed a method to detect
274	galactofuranosyltransferase activity via continuous reaction using NADH for the reduction
275	of FAD (27). In our hands galactofuranosylation proceeded even when NADH/NADPH was
276	used instead of SD, but was more efficient with SD versus NADH/NADPH (Fig. S2). This
277	established method could measure galactofuranosyltransferase activity without UDP-Gal _{f} . In
278	addition, since a sufficient amount of purified product can be separated and purified, this is
279	advantageous for structural analysis of the enzymatic product (Figs. 2 and 3). This method
280	will likely be useful for functional analysis of other galactofuranosyltransferases.

281	The growth phenotypes of the $\Delta gfsA$ strain are less severe than that of
282	the $\Delta gfsAC/\Delta gfsABC$ strains (Fig. 6, Tables 3 and 4). Deletion of $gfsB$ and $gfsC$ did not
283	result in any growth defect of A. fumigatus (Fig. 6, Tables 3 and 4). Very recently, similar
284	results have been observed within disrupted strains of gfs family genes in A. niger (28),
285	suggesting that existence of a common functional relationships of the gfs family proteins for
286	A. niger and A. fumigatus. We clarified that the phenotypic abnormalities occurring in the
287	$\Delta gfsAC$ strain were due to defects in β -(1 \rightarrow 5)-galactofuranosyl residues via analysis of the
288	sugar chain structure of the $\Delta gfsAC$ strain.
289	Several galactofuranosyl sugar chain-absent mutants have been reported in A.
290	<i>fumigatus</i> ; whole galactofurnosyl sugar chains are absent within $\Delta glfA$ and $\Delta glfB$ strains
291	(24, 29, 30). These absent Gal_f residues caused decreased growth rates, abnormal hyphae
292	branching, thinner cell walls, increased susceptibility to several antifungal agents and
293	increased adhesive phenotype as compared with the parental strain (24, 29, 30). The
294	phenotypes of the $\Delta gfsAC/\Delta gfsABC$ strains were similar in some aspects to the $\Delta glfA$ strain,
295	but not identical. The latter showed stronger inhibition of hyphal growth and conidia

296	formation compared with $\Delta gfsAC/\Delta gfsABC$ (Fig. 6). This is because galactofuranosyl
297	residues are β -(1 \rightarrow 5)-linked, β -(1 \rightarrow 2)-linked, β -(1 \rightarrow 3)-linked, and β -(1 \rightarrow 6)-linked sugars
298	(5, 6, 10). These Gal _f residues, except β -(1 \rightarrow 5)-galactofuranosyl, are found in glycosyl
299	phosphoinositolceramides (GIPC), FTGM, OMGM, and other sugar chains (5, 6, 10, 31-33)
300	and might be involved in biological events. Only the β -(1 \rightarrow 5)-galactofuranosyl residues
301	disappear in the $\Delta gfsAC/\Delta gfsABC$ strains, thus it seems reasonable that they exhibit less
302	influence than the $\Delta glfA$ strain, wherein all Gal _f -containing sugar chain is lost. However,
303	abnormal branching of the hyphae and cell surface hydrophobicity were not significantly
304	different between the $\Delta gfsAC$, $\Delta gfsABC$, and $\Delta glfA$ strains (Fig. 7), indicating that GM
305	β -(1 \rightarrow 5)-galactofuranosyl residues' functions are heavily involved in normal polarity of the
306	hyphae and cell surface hydrophobicity.
307	The presence of the β -(1 \rightarrow 6)-galactofuranosyl moiety has been reported in the
308	galactofuran side chain of FTGM and OMGM in A. fumigatus. We, therefore, predicted that
309	if the β -(1 \rightarrow 5)-galactofuranosyl residues disappeared so would the
310	β -(1 \rightarrow 6)-galactofuranosyl residues. However, upon disappearance of the

311	β -(1 \rightarrow 5)-galactofuranosyl residues the β -(1 \rightarrow 6)-galactofuranosyl residues remained
312	detectable within the ¹³ C-NMR of GMs from the $\Delta gfsAC$ strain (Fig. 4). This strongly
313	suggests the existence of a β -(1 \rightarrow 6)-galactofuranosyl oligomer and/or polymer other than the
314	β -(1 \rightarrow 6)-galactofuranosyl moiety of the FTGM galactofuran side chain.
315	β -(1 \rightarrow 6)-Galactofuranosyl polymer was found in <i>Fusarium</i> sp., but not in <i>A. fumigatus</i> (34–
316	36).
317	In the mouse infection model of invasive aspergillosis, the lack of GM
318	β -(1 \rightarrow 5)-galactofuranosyl residues exhibited no significant differences in virulence for the
319	A1151, $\Delta gfsAC$ and $\Delta gfsABC$ strains. These findings were consistent with Lamarre's
320	findings that disruption of <i>glfA</i> has no effect on virulence (24). In contrast, Schmalhorst et al.
321	reported that disruption of glfA resulted in attenuated virulence in mouse model of invasive
322	aspergillosis (29). Recently, Koch et al. showed that the survival rate of $\Delta glfA$ strain
323	(Schmalhorst's strain) decreased slightly more gradually compared with the wild strains
324	using zebrafish embryo model (37). They explained that the attenuated pathogenicity of the
325	$\Delta glfA$ strain might be caused by decreased germination rate or hyphal growth rate (37). These

24

326	differences in virulence might be due to varying genetic backgrounds of the strains used or
327	differing protocols of pathogenicity tests, necessitating further detailed analysis to
328	understand the involvement of β -(1 \rightarrow 5)-galactofuranosyl sugar chains in pathogenicity.
329	This study broadens our understanding of the biosynthesis of
330	β -(1 \rightarrow 5)-galactofuranosyl residues in <i>A. fumigatus</i> and their important role in cell wall
331	formation. However, β -(1 \rightarrow 6)-galactofuranosyltransferases that transfer β -galactofuranose
332	to galactofuranosyl residues have not been identified in A. fumigatus. Additionally,
333	β -(1 \rightarrow 2)-, β -(1 \rightarrow 3)-/ β -(1 \rightarrow 6)-galactofuranosyltransferases transferring β -galactofuranose
334	to mannosyl residues remain unknown. Our findings regarding the biosynthesis of
335	β -(1 \rightarrow 5)-galactofuranosyl residue provide important novel insights into the formation of the
336	complex cell wall structure and the virulence of the subphylum Pezisomycotina. Future
337	studies will be needed to identify other galactofuranosyltransferases and clarify the
338	individual functions of each Gal _f -containing oligosaccharide.
339	

340 MATERIALS AND METHODS

25

341	Microorganisms and growth conditions. A. fumigatus strains used in this study are listed in
342	Table S1. A. fumigatus A1160 and A1151 were obtained from the Fungal Genetics Stock
343	Center (FGSC) (38). Strains were grown on minimal medium (MM). Standard
344	transformation procedures for Aspergillus strains were used. Plasmids were amplified in E.
345	coli DH5a. E. coli strain Rosetta-gami B (DE3) purchased from Merck Millipore (Merck
346	Millipore, Germany) was used for protein expression. Colony growth rates were measured as
347	described previously (14).
348	
349	Construction of GfsB and GfsC expression vector. All PCR reactions were performed
547	construction of Gisb and Gisc expression vector. An Tele reactions were performed
350	using Prime STAR GXL DNA Polymerase (Takara Bio, Otsu, Japan). The pCold [™] II
351	(Takara Bio) and pET50b-Amp plasmids for protein expression in E. coli were used. The

352 pET50b-Amp is a plasmid constructed by replacing the kanamycin resistance gene of

pET50b with an ampicillin resistance gene, and was constructed as follows: DNA region of
pET50b except for the kanamycin resistance gene was amplified by PCR using pET50b
plasmid as a template for the primer pairs, pET50b-Amp-F and pET50b-Amp-R. The

356	ampicillin resistance gene was amplified by PCR using pET15b plasmid as a template for the
357	primer pairs Amp-gene-F and Amp-gene-R. The obtained DNA fragments were ligated
358	using an In-fusion HD cloning Kit (Takara Bio) to yield pET50b-Amp. Plasmids useful for
359	expression of $gfsB$ and $gfsC$ were constructed as follows: total RNA was extracted from A .
360	fumigatus A1160 strain mycelia grown in MM for 18 h using TRIzol Reagent (Thermo
361	Fisher Scientific, MA, USA) according to the manufacturer's instructions. Single-stranded
362	DNA was synthesized by M-MLV Reverse Transcriptase (NIPPON GENE, Tokyo, Japan)
363	using oligo-dT-18 primers. gfsB and gfsC were amplified using PCR with single-stranded
364	DNA as a template for primer pairs pET50b-AfGfsB-F and pET50b-AfGfsB-R for gfsB,
365	pCold2-AfGfsC-F and pCold2-AfGfsC-R for gfsC, respectively. The amplified fragments
366	were inserted into the Nde I site of pCold TM II to yield pCold2-AfGfsC, and the Sma I site of
367	pET50b-Amp to yield pET50b-Amp-AfGfsB using the In-fusion HD cloning Kit. The
368	constructed plasmids were transformed into Rosetta-gami B (DE3) cells.
369	

27

370	Protein purification, quantification, and electrophoresis. GfsA protein was expressed in
371	Rosetta-gami B (DE3) cells harboring the plasmids pET15b-AfGfsA (4). Protein expression
372	and purification for GfsA and GfsB were performed as described previously (4).
373	Rosetta-gami B (DE3) cells harboring the plasmids pCold2-AfGfsC were used for protein
374	expression of GfsC, which was performed according to the manufacturer's protocol for the
375	pCold DNA cold-shock expression system. The NusA tag of GfsB was cleaved with a HRV
376	3C protease at 4°C (Takara Bio) and removed by Ni-agarose. Protein concentrations were
377	determined using the Qubit Protein Assay Kit (Thermo Fisher Scientific), and purified
378	proteins were analyzed by SDS-PAGE to assess purity and molecular weight. Glf protein
379	was obtained with the ASKA clone as previously described (4, 39). Purified Glf was
380	visualized as a band close to the predicted molecular weights of 45.0 kDa (Fig. S1).
381	
382	Synthesis of <i>p</i> -nitrophenyl β-D-galactofuranoside (pNP-Gal _f) and 4-methylumbelliferyl
383	β -D-galactofuranoside (4MU-Gal _f). Para-nitrophenyl β -D-galactofuranoside (pNP-Gal _f)

384 was chemically synthesized as described previously (18, 40) or purchased (Toronto Research

385	Chemicals, Toronto, Canada). 4-methylumbelliferyl β -D-galactofuranoside (4MU-Gal _f) was
386	chemically synthesized as follows (41, 42): 4-methylumbelliferon (50.0 mmol) and
387	BF3•Et2O (50.0 mmol) was added to a solution of per-benzoylated galactofuranose (10.0
388	mmol) with 4A molecular sieves in CH ₃ CN (50 mL) at 0°C (41). The reaction mixture was
389	stirred at 0°C for 1 h followed by 23°C for 24 h. Next, the mixture was filtered through a
390	Celite pad and the residue was diluted with EtOAc, washed with sat. aq. NaHCO3 solution
391	and brine, dried over MgSO ₄ , and concentrated <i>in vacuo</i> to dryness, producing a mixture of
392	4-methylumbelliferyl 2,3,4,6-tetra-O-benzoyl- β -D-galactofuranoside. A 28% aq. NH ₃
393	solution was added to the aforementioned mixture in CH ₃ OH at 0°C, the resulting solution
394	was stirred at this temperature for 1 h and then at 23°C for 24 h. The reaction solution was
395	concentrated. The target material was purified by silica-gel column chromatography
396	(CHCl ₃ :CH ₃ OH, 4/1) to give 4-methylumbelliferyl β -D-galactofuranoside (4MU-Gal _f) as a
397	yellow solid (1.80 mmol).

398

399 Continuous enzymatic reaction assay. Standard assays were performed with 1.5 mM

400	4MU- β -D-Gal _f acceptor substrate, 40 mM UDP-galactopyranose, purified Glf protein
401	(UDP-galactopyranose mutase from <i>Escherichia coli</i> : 15.8 µg), 40 mM sodium dithionite
402	(SD), and purified GfsA (4.5 μ g), GfsB (4.5 μ g), or GfsC (4.5 μ g) proteins in a total reaction
403	volume of 20 $\mu L.$ The mixtures were incubated at 30 °C for 16 h and the reaction was stopped
404	by heat (99°C) for 5 min. The supernatants were analyzed by HPLC with an amino column
405	Shodex Asahipak NH2P-50 4E (250 x 4.6 mm, Showa Denko, Tokyo, Japan) as previously
406	described (4). 4-Methylumbelliferyl and p -nitrophenyl derivatives were detected by 300 nm
407	of absorbance. The mass spectra of the enzymatic products of GfsA, GfsB, and GfsC were
408	determined using the Exactive Plus Orbitrap Mass Spectrometer (Thermo Fisher Scientific).
409	
410	Construction of $\Delta gfsB$ and $\Delta gfsC$ gene disruption strains. A. fumigatus A1151/A1160
411	was used as parental strain (Table S1); gfsB were disrupted in the A1151 strain by ptrA
412	insertion; gfsC was also disrupted in the A1160 strain by AnpyrG insertion. DNA fragments
413	for gene disruption were constructed using a "double-joint" PCR method as described
414	previously (43). The 5'- and 3'-flanking regions (approximately 1.0-1.1 kb each) of each

415	gene were PCR amplified from genomic DNA with the following primer pairs (Table S2):
416	AFUB_070620-1/AFUB_070620-2 and AFUB_070620-3/AFUB_070620-4 for gfsB
417	disruption; AFUB_067290-1/AFUB_067290-2 and AFUB_067290-3/AFUB_067290-4 for
418	gfsC. ptrA and AnpyrG used as selective markers were amplified using plasmids pPTR-I
419	(Takara Bio) and pSH1 (14) as template, respectively, and the primer pairs ptrA-5/ptrA-6 or
420	pyrG-5/pyrG-6. The three amplified fragments were purified and mixed and a second PCR
421	was performed without specific primers to assemble each fragment, as the overhanging
422	chimeric extensions act as primers. A third PCR was performed with the nested primer pairs
423	AFUB_070620-7/AFUB_070620-8 for gfsB or AFUB_067290-7/AFUB_067290-8 for gfsC
424	and the products of the second PCR as a template to generate the final deletion construct. The
425	amplified final deletion constructs were purified using the Fast Gene Gel/PCR Extraction Kit
426	(NIPPON GENE) and used directly for transformation. Transformants were grown on MM
427	plates containing 0.6 M KCl as an osmotic stabilizer under appropriate selection conditions
428	and single colonies were isolated twice before further analysis. Disruption of target genes
429	was confirmed by PCR with these primer pairs: AFUB_070620-1/ptrA-R and

430 ptrA-F/AFUB_070620-4 for *gfsB*, AFUB_067290-1/ptrA-R and ptrA-F/AFUB_067290-4 or

431 AFUB_067290-1/pyrG-R and pyrG-F/AFUB_067290-4 for *gfsC* (Fig. S3).

432

433 **Construction of the complementary strain of** $\Delta gfsC$ **using** gfsC**.** *A. fumigatus* $\Delta gfsC$ strain 434 was used as the parental strain (Table S1). The relevant region of gfsC was PCR amplified 435 from genomic DNA using the primer pair AfgfsC-complement-1/AfgfsC-complement-2 436 (Table S2). The relevant region of the AnpyrG was PCR amplified from pSH1 using the 437 primer pair AfgfsC-complement-3/AfgfsC-complement-4 (Table S2). ptrA used as selective 438 markers were amplified using the pPTR-I plasmid as a template and the primer pair 439 ptrA-5/ptrA-6. The three amplified fragments were purified and mixed, and a second PCR 440 was performed. A third PCR was performed using the nested primer pair 441 AfgfsA-complement-7/AfgfsA-complement-8 and the products of the second PCR as a 442 template to generate the final DNA construct. Correct replacement of the DNA fragments for 443 gene complementation confirmed by PCR using the primer was pairs 444 AfgfsA-complement-1/ptrA-R and ptrA-F/AfgfsA-complement-4 (Fig. S4).

446	Construction of double and triple gene disruption strains. <i>A. fumigatus</i> $\Delta gfsA$ was used
447	as a parental strain (Table S1) to construct double and triple gene disruption strains. Genes
448	were disrupted in A. fumigatus by $ptrA/hph$ insertion; $gfsC$ was disrupted in strain $\Delta gfsA$ by
449	<i>ptrA</i> insertion to construct strain $\Delta gfsAC$. Next, $gfsB$ was disrupted in strain $\Delta gfsAC$ by <i>hph</i>
450	insertion to construct strain $\Delta gfsABC$. Primer pairs
451	AFUB_067290-1/AFUB_067290-2(gfsC::ptrA),
452	AFUB_067290-3(<i>gfsC</i> :: <i>ptrA</i>)/AFUB_067290-4, ptrA-5/ptrA-6 and
453	AFUB_067290-7/AFUB_067290-8 were used to construct a deletion cassette for $\Delta gfsC$
454	Primer pairs AFUB_070620-1/AFUB_070620-2(gfsB::hph)
455	AFUB_070620-3(gfsB::hph)/AFUB_070620-4, hph-5/hph-6 and
456	AFUB_070620-7/AFUB_070620-8 were used to construct a deletion cassette for $\Delta gfsB$. hph
457	was amplified by PCR using pAN7-1 as template (44) and the primers hph-5 and hph-6
458	(Table S2). Target gene disruption was confirmed using PCR with primer pairs
459	AFUB_096220-1/pyrG-R and pyrG-F/AFUB_096220-4 for gfsA, AFUB_070620-1/hph-R

gfsB,

and

AFUB_067290-1/ptrA-R

for

460

and

hph-F/AFUB_070620-4

and

461	ptrA-F/AFUB_067290-4 for gfsC (Fig. S5).
462	
463	Methylation analysis and Nuclear magnetic resonance (NMR) spectroscopy. GMs were
464	prepared using a previously described method (4, 14). Glycosidic linkage was analyzed using
465	a previously described method (4, 6). NMR experiments were performed as previously
466	described (4, 6, 14). Proton and carbon chemical shifts were referenced relative to internal
467	acetone at δ 2.225 and 31.07 ppm, respectively.
468	

469 Analysis of conidiation efficiency and surface adhesion. Conidiation efficiency was 470 analyzed as described previously (14). Hyphal surface adhesion assay was performed as 471 described previously with sight modifications (24, 45). The 0.5-μm diameter polystyrene 472 beads (Sigma) were diluted 1:100 in sterile phosphate buffered saline (PBS). Mycelia were 473 grown for 18 h at 37°C with shaking at 127 rpm in MM liquid medium, harvested into 474 PBS-containing polystyrene beads for 1 h, and then washed five times with PBS. Mycelia

34

475 images were collected using a microscope equipped with a digital camera.

477	Drug susceptibility testing and mouse model of pulmonary aspergillosis. Drug
478	susceptibility was tested in triplicates as described previously (12, 46, 47). The mouse model
479	of pulmonary aspergillosis was generated as per a previously described method with slight
480	modifications (48). In each experiment, A1151, $\Delta gfsC$, and $\Delta gfsC::C$ or A1151, $\Delta gfsC$,
481	$\Delta gfsAC$, and $\Delta gfsABC$ strains were used to infect immunosuppressed mice (10 or 11 mice per
482	group). Outbreed male ICR mice were housed in sterile cages (5 or 6 per cage) with sterile
483	bedding and provided with sterile feed and drinking water containing 300 μ g/ml tetracycline
484	hydrochloride to prevent bacterial infection. Mice were immunosuppressed with
485	cyclophosphamide (200 mg per kg of body weight), which was intraperitoneally
486	administered on days -4 , -2 , 2, and 5, or -4 , -2 , and 3 (day 0: infection). Cortisone acetate
487	(200 mg per kg of body weight) was injected on day -1 for immunosuppression. Mice were
488	infected by intratracheal instillation of 3×10^5 conidia in 30 µl of PBS. Mice were weighed
489	and visually inspected every 24 h from the day of infection. On recording 30% body weight

reduction, the mouse was regarded as dead and euthanized. Prism statistical analysis package

491	was used for statistical analysis and survival curve drawing (GraphPad Software Inc., CA,

493

492

USA).

490

- 494 Ethics statement. The institutional animal care and use committee of Chiba University
- 495 approved the animal experiments (Permit Number: DOU28-376 and DOU29-215). All
- 496 efforts were made to minimize suffering in strict accordance with the principles outlined by
- 497 the Guideline for Proper Conduct of Animal Experiments.

498

499 ACKNOWLEDGMENTS

- 500 This work was supported in part by JSPS KAKENHI grant numbers JP26450106, 18K05418
- 501 (to TO) and 17K15492 (to YT), a 2017 Research Grant from the Noda Institute for Scientific
- 502 Research (to TO) and Joint Usage/Research Program of Medical Mycology Research Center,
- 503 Chiba University (grant numbers 18-9 and 19-4) (to TO). Strains and plasmids were obtained
- from the Fungal Genetics Stock Center (Kansas City, MO).

36

506 **REFERENCES**

- 507 1. Latgé JP, Beauvais A, Chamilos G. 2017. The cell wall of the human fungal pathogen
- 508 Aspergillus fumigatus: biosynthesis, organization, immune response, and virulence.

509 Annu Rev Microbiol 71:99-116. https://doi.org/10.1146/annurev-micro-030117-020406.

- Gow NAR, Latge JP, Munro CA. 2017. The Fungal cell wall: structure, biosynthesis, and
 function. Microbiol Spectr 5 https://doi.org/10.1128/microbiolspec.FUNK-0035-2016.
- Oka T. 2018. Biosynthesis of galactomannans found in filamentous fungi belonging to
 Pezizomycotina. Biosci Biotechnol Biochem 82:183-191.
 https://doi.org/10.1080/09168451.2017.1422383.
- 4. Katafuchi Y, Li Q, Tanaka Y, Shinozuka S, Kawamitsu Y, Izumi M, Ekino K, Mizuki K,
 Takegawa K, Shibata N, Goto M, Nomura Y, Ohta K, Oka T. 2017. GfsA is a
 β1,5-galactofuranosyltransferase involved in the biosynthesis of the galactofuran side
 chain of fungal-type galactomannan in *Aspergillus fumigatus*. Glycobiology 27:568-581.
 https://doi.org/10.1093/glycob/cwx028.
- 5. Latgé JP, Kobayashi H, Debeaupuis JP, Diaquin M, Sarfati J, Wieruszeski JM, Parra E,
 Bouchara JP, Fournet B. 1994. Chemical and immunological characterization of the
 extracellular galactomannan of *Aspergillus fumigatus*. Infect Immun 62:5424-5433.
- Kudoh A, Okawa Y, Shibata N. 2015. Significant structural change in both *O* and *N*-linked carbohydrate moieties of the antigenic galactomannan from *Aspergillus fumigatus* grown under different culture conditions. Glycobiology 25:74-87.
 https://doi.org/10.1093/glycob/cwu091.
- 527 7. Costachel C, Coddeville B, Latgé JP, Fontaine T. 2005.
 528 Glycosylphosphatidylinositol-anchored fungal polysaccharide in *Aspergillus fumigatus*.
 529 J Biol Chem 280:39835-39842. https://doi.org/10.1074/jbc.m510163200.
- 530 8. Muszkieta L, Fontaine T, Beau R, Mouyna I, Vogt MS, Trow J, Cormack BP, Essen LO, 531 Jouvion G, Latgé JP. 2019. The Glycosylphosphatidylinositol-anchored DFG family is 532 essential for the insertion of galactomannan into the β -(1,3)-glucan-chitin core of the cell 533 of 4 e00397-19. wall Aspergillus fumigatus. mSphere pii: 534 https://doi.org/10.1128/mSphere.00397-19.

37

9. Oka T, Hamaguchi T, Sameshima Y, Goto M, Furukawa K. 2004. Molecular
characterization of protein *O*-mannosyltransferase and its involvement in cell-wall
synthesis in *Aspergillus nidulans*. Microbiology 150:1973-1982.
https://doi.org/10.1099/mic.0.27005-0.

- 539 10. Tefsen B, Ram AF, van Die I, Routier FH. 2012. Galactofuranose in eukaryotes: aspects
 540 of biosynthesis and functional impact. Glycobiology 22:456-469.
 541 https://doi.org/10.1093/glycob/cwr144.
- 542 11. Oka T, Goto M 2016. Biosynthesis of galactofuranose-containing glycans in
- 543 filamentous fungi. Trends Glycosci Glycotechnol 28:E39–E45.
- 544 https://doi.org/10.4052/tigg.1428.1E.
- 545 12. Onoue T, Tanaka Y, Hagiwara D, Ekino K, Watanabe A, Ohta K, Kamei K, Shibata N,
- 546 Goto M, Oka T. 2018. Identification of two mannosyltransferases contributing to
- 547 biosynthesis of the fungal-type galactomannan α -core-mannan structure in *Aspergillus*

548 *fumigatus*. Sci Rep 8:16918. https://doi.org/10.1038/s41598-018-35059-2.

- 13. Henry C, Li J, Danion F, Alcazar-Fuoli L, Mellado E, Beau R, Jouvion G, Latgé JP,
 Fontaine T. 2019. Two KTR mannosyltransferases are responsible for the biosynthesis of
 cell wall mannans and control polarized growth in *Aspergillus fumigatus*. mBio 10:
 e02647-18. https://doi.org/10.1128/mBio.02647-18.
- 14. Komachi Y, Hatakeyama S, Motomatsu H, Futagami T, Kizjakina K, Sobrado P, Ekino K,
 Takegawa K, Goto M, Nomura Y, Oka T. 2013. GfsA encodes a novel
 galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of *O*-glycan in *Aspergillus nidulans* and *Aspergillus fumigatus*. Mol Microbiol
 90:1054-1073. https://doi.org/10.1111/mmi.12416.
- 15. Nassau PM, Martin SL, Brown RE, Weston A, Monsey D, McNeil MR, Duncan K. 1996.
- 559 Galactofuranose biosynthesis in *Escherichia coli* K-12: identification and cloning of
- 560
 UDP-galactopyranose
 mutase.
 J
 Bacteriol
 178:1047-1052.

 561
 https://doi.org/10.1128/jb.178.4.1047-1052.1996.
 178:1047-1052.
 1996.
- 16. Lee R, Monsey D, Weston A, Duncan K, Rithner C, McNeil M. 1996. Enzymatic
 synthesis of UDP-galactofuranose and an assay for UDP-galactopyranose mutase based
 on high-performance liquid chromatography. Anal Biochem 242:1-7.

- 565 https://doi.org/10.1006/abio.1996.0419.
- 566 17. Varela O, Marino C, de Lederkremer RM. 1986. Synthesis of p-nitrophenyl beta-
- 567 D-galactofuranoside. A convenient substrate for beta-galactofuranosidase. Carbohydr
 568 Res 155:247–251. https://doi.org/10.1016/S0008-6215(00)90153-8.
- 569 18. Ota R, Okamoto Y, Vavricka CJ, Oka T, Matsunaga E, Takegawa K, Kiyota H, Izumi M.
- 570 2019. Chemo-enzymatic synthesis of *p*-nitrophenyl β -D-galactofuranosyl disaccharides
- from *Aspergillus* sp. fungal-type galactomannan. Carbohydr Res 473:99-103.
 https://doi.org/10.1016/j.carres.2019.01.005.
- 573 19. Wasmuth CR, Edwards C, Hutcherson R. 1964. Participation of the SO₂⁻ Radical Ion in
 574 the Reduction of *p*-Nitrophenol by Sodium Dithionite. J Phys Chem 68: 423-425.
 575 https://doi.org/10.1021/j100784a510.
- Shibata N, Saitoh T, Tadokoro Y, Okawa Y. 2009. The cell wall galactomannan antigen
 from *Malassezia furfur* and *Malassezia pachydermatis* contains beta-1,6-linked linear
 galactofuranosyl residues and its detection has diagnostic potential. Microbiology
 155:3420-3429. https://doi.org/10.1099/mic.0.029967-0.
- 21. Rose NL, Zheng RB, Pearcey J, Zhou R, Completo GC, Lowary TL. 2008. Development
 of a coupled spectrophotometric assay for GlfT2, a bifunctional mycobacterial
 galactofuranosyltransferase. Carbohydr Res 343:2130-2139.
 https://doi.org/10.1016/j.carres.2008.03.023.
- May JF, Splain RA, Brotschi C, Kiessling LL. A tethering mechanism for length control
 in a processive carbohydrate polymerization. 2009 Proc Natl Acad Sci U S A
 106:11851-11856. https://doi.org/10.1073/pnas.0901407106.
- 587 23. Shibata N, Okawa Y. 2011. Chemical structure of beta-galactofuranose containing
 588 polysaccharide and O-linked oligosaccharides obtained from the cell wall of pathogenic
 589 dematiaceous fungus *Fonsecaea pedrosoi*. Glycobiology 21:69–81.
 590 https://doi.org/10.1093/glycob/cwq132.
- 24. Lamarre C, Beau R, Balloy V, Fontaine T, Wong Sak Hoi J, Guadagnini S, Berkova N,
 Chignard M, Beauvais A, Latgé JP. 2009 Galactofuranose attenuates cellular adhesion of *Aspergillus fumigatus*. Cell Microbiol 11:1612-1623.
 https://doi.org/10.1111/j.1462-5822.2009.01352.x.

39

595 25. Errey JC, Mukhopadhyay B, Kartha KP, Field RA. 2004. Flexible enzymatic and
596 chemo-enzymatic approaches to a broad range of uridine-diphospho-sugars. Chem
597 Commun (Camb) 7:2706-2707. https://doi.org/10.1039/b410184g.

- 598 26. Tsvetkova YE, Nikolaev AV. 2000. The first chemical synthesis of Perkin 599 J UDP-α-D-galactofuranose. Chem Soc Trans 1:889-891. https://doi.org/10.1039/B000210K. 600
- 27. Rose NL, Completo GC, Lin SJ, McNeil M, Palcic MM, Lowary TL. 2006. Expression,
 purification, and characterization of a galactofuranosyltransferase involved in
 Mycobacterium tuberculosis arabinogalactan biosynthesis. J Am Chem Soc
 128:6721-6729. https://doi.org/10.1021/ja058254d.
- Arentshorst M, de Lange D, Park J, Lagendijk EL, Alazi E, van den Hondel CAMJJ, Ram
 AFJ. 2019. Functional analysis of three putative galactofuranosyltransferases with
 redundant functions in galactofuranosylation in *Aspergillus niger*. Arch Microbiol
 https://doi.org/10.1007/s00203-019-01709-w.
- 29. Schmalhorst PS, Krappmann S, Vervecken W, Rohde M, Müller M, Braus GH, Contreras
 R, Braun A, Bakker H, Routier FH. 2008. Contribution of galactofuranose to the
 virulence of the opportunistic pathogen *Aspergillus fumigatus*. Eukaryot Cell 2008
 7:1268-1277. https://doi.org/10.1128/EC.00109-08.
- 613 30. Engel J, Schmalhorst PS, Dörk-Bousset T, Ferrières V, Routier FH. 2009. A single
 614 UDP-galactofuranose transporter is required for galactofuranosylation in *Aspergillus*615 *fumigatus*. J Biol Chem 284:33859-33868. https://doi.org/10.1074/jbc.M109.070219.
- 516 31. Toledo MS, Levery SB, Bennion B, Guimaraes LL, Castle SA, Lindsey R, Momany M,
 617 Park C, Straus AH, Takahashi HK. 2007. Analysis of glycosylinositol
 618 phosphorylceramides expressed by the opportunistic mycopathogen *Aspergillus*619 *fumigatus*. J Lipid Res 48:1801-1824. https://doi.org/10.1194/jlr.m700149-jlr200.
- Guimarães LL, Toledo MS, Ferreira FA, Straus AH, Takahashi HK. 2014. Structural
 diversity and biological significance of glycosphingolipids in pathogenic and
 opportunistic fungi. Front Cell Infect Microbiol 4:138.
 https://doi.org/10.3389/fcimb.2014.00138.
- 624 33. Kotz A, Wagener J, Engel J, Routier F, Echtenacher B, Pich A, Rohde M, Hoffmann P,

40

Heesemann J, Ebel F. 2010. The *mitA* gene of *Aspergillus fumigatus* is required for
 mannosylation of inositol-phosphorylceramide, but is dispensable for pathogenicity.

627 Fungal Genet Biol 47:169-178. https://doi.org/10.1016/j.fgb.2009.10.001.

- 628 34. Iwahara S, Maeyama T, Mishima T, Jikibara T, Takegawa K, Iwamoto H 1992. Studies
- on the uronic acid-containing glycoproteins of *Fusarium* sp. M7-1: IV. Isolation and
- 630 identification of four novel oligosaccharide units derived from the acidic polysaccharide

631 chain. J Biochem 112:355-359. https://doi.org/10.1093/oxfordjournals.jbchem.a123905.

- 35. Iwahara S, Mishima T, Ramli N, Takegawa K. 1996. Degradation of beta 1-->6
 galactofuranoside linkages in the polysaccharide of *Fusarium* sp. M7-1 by
 endo-beta-galactofuranosidase from *Bacillus* sp. Biosci Biotechnol Biochem
 60:957-961. https://doi.org/10.1271/bbb.60.957.
- 636 36. Chen YL, Mao WJ, Tao HW, Zhu WM, Yan MX, Liu X, Guo TT, Guo T. 2015.
 637 Preparation and characterization of a novel extracellular polysaccharide with antioxidant
 638 activity, from the mangrove-associated fungus *Fusarium oxysporum*. Mar Biotechnol
 639 (NY) 17:219-228. https://doi.org/10.1007/s10126-015-9611-6.
- Koch BEV, Hajdamowicz NH, Lagendijk E, Ram AFJ, Meijer AH. 2019. Aspergillus *fumigatus* establishes infection in zebrafish by germination of phagocytized conidia,
 while Aspergillus niger relies on extracellular germination. Sci Rep. 9:12791.
 https://doi.org/10.1038/s41598-019-49284-w.
- 644 38. da Silva Ferreira ME, Kress MR, Savoldi M, Goldman MH, Härtl A, Heinekamp T,
 645 Brakhage AA, Goldman GH. 2006. The *akuB*(KU80) mutant deficient for
 646 nonhomologous end joining is a powerful tool for analyzing pathogenicity in *Aspergillus*647 *fumigatus*. Eukaryot Cell 5:207-211. https://doi.org/10.1128/ec.5.1.207-211.2006.
- 648 39. Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori
- 649 H. 2005. Complete set of ORF clones of *Escherichia coli* ASKA library (a complete set
- 650 of E. coli K-12 ORF archive): unique resources for biological research. DNA Res
- 651 12:291-299. https://doi.org/10.1093/dnares/dsi012.
- 40. Matsunaga E, Higuchi Y, Mori K, Yairo N, Oka T, Shinozuka S, Tashiro K, Izumi M,
- 653 Kuhara S, Takegawa K. 2015. Identification and characterization of a novel

654	galactofuranose-specific β -D-galactofuranosidase from <i>Streptomyces</i> species. PLoS One
655	10:e0137230. http://10.1371/journal.pone.0137230
656	41. D'Accorso NB, Thiel IME, Schüller M. 1983. Proton and C-13 nuclear magnetic
657	resonance spectra of some benzoylated aldohexoses. Carbohydr. Res 124:177-184.
658	https://doi.org/10.1016/0008-6215(83)88453-5.
659	42. de Lederkremer RM, Nahmad VB, Varela O. 1994. Synthesis of α -D-Galactofuranosyl
660	Phosphate. J Org Chem 59, 690-692. http://dx.doi.org/10.1021/jo00082a037
661	43. Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Domínguez Y, Scazzocchio C. 2004.
662	Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous
663	fungi. Fungal Genet Biol. 41:973-981. https://doi.org/10.1016/j.fgb.2004.08.001.
664	44. Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CA. 1987.
665	Transformation of Aspergillus based on the hygromycin B resistance marker from
666	Escherichia coli. Gene 56:117-124. https://doi.org/10.1016/0378-1119(87)90164-8.
667	45. Alam MK, van Straaten KE, Sanders DA, Kaminskyj SG. 2014. Aspergillus nidulans cell
668	wall composition and function change in response to hosting several Aspergillus
669	fumigatus UDP-galactopyranose mutase activity mutants. PLoS One 9:e85735.
670	https://doi.org/10.1371/journal.pone.0085735.
671	46. Wayne, P. A. 2008. Clinical and laboratory standards institute reference method for broth
672	dilution antifungal susceptibility testing of filamentous fungi. CLSI. Approved
673	standard-second edition clinical and laboratory standards institute document M38-A2.
674	47. Kikuchi K, Watanabe A, Ito J, Oku Y, Wuren T, Taguchi H, Yarita K, Muraosa Y, Yahiro
675	M, Yaguchi T, Kamei K. 2014. Antifungal susceptibility of Aspergillus fumigatus clinical
676	isolates collected from various areas in Japan. J Infect Chemother 20:336-338.
677	https://doi.org/10.1016/j.jiac.2014.01.003.
(70	

48. Hagiwara D, Miura D, Shimizu K, Paul S, Ohba A, Gonoi T, Watanabe A, Kamei K,
Shintani T, Moye-Rowley WS, Kawamoto S, Gomi K. 2017. A Novel Zn₂-Cys₆
Transcription Factor AtrR Plays a key role in an azole resistance mechanism of

681	Aspergillus fumigatus by co-regulating cyp51A and cdr1B expressions. PLoS Pathog
682	13:e1006096. https://doi.org/10.1371/journal.ppat.1006096.
683	
684	
685	
686	
687	
688	
689	
690	
691	
692	
693	
694	
695	
696	

43

697 FIGURE LEGENDS

698	Figure 1. In vitro method for measuring galactofuranosyltransferase activity using a
699	continuous reaction. (A) Schematic diagram of continuous reaction in
700	galactofuranosyltransferase activity assay. Glf is UDP-galctopyranose (Gal _{p}) mutase derived
701	from E. coli to generate UDP-Gal _f from UDP-Gal _p . The enzymatic equilibrium of a
702	reversible Glf enzyme is skewed >93% to UDP-Gal _p . When a small amount of UDP-Gal _f
703	generated is consumed by galactofuranosyltransferase, Glf reverts to UDP-Gal _{f} to maintain
704	equilibrium. Glf oxidizes FADH ₂ to FAD when converting from UDP-Gal _p to UDP-Gal _f .
705	Therefore, reducing FAD to FADH ₂ is essential for a continuous reaction. The dithionite ion
706	plays a role as a driving horse for proceeding to galactofuranosylation by reduction of
707	FADH ₂ from FAD within the continuous reaction. (B) Chromatograms of <i>in vitro</i> assay of
708	galactofuranosyltransferase activity of GfsA, GfsB, and GfsC. Enzyme activities were
709	assayed as described in the Materials and Methods. 4.5 μ g of purified GfsA, GfsB, or GfsC
710	were used as enzyme. Chromatograms indicate typical results of the assay with/without
711	GfsA, GfsB, or GfsC (right and left panels, respectively). The assays lacking GfsA, GfsB, or

712	GfsC showed no novel peak generation (left panels), but in contrast, fractions containing
713	GfsA, GfsB, or GfsC did have new products (defined as AG2-AG7 for GfsA; BG2 and BG3
714	for GfsB; CG2-CG5 for GfsC; <i>right panels</i>). Retention times were 18.0 min for AG2, BG2,
715	and CG2, 20.4 min for AG3, BG3, and CG3, 23.4 min for AG4 and CG4, 26.5 min for AG5
716	and CG5, 30.2 for AG6, and 34.3 min for AG7. Gal_f , galactofuranose; Gal_p , galactopyranose;
717	Glf, UDP-galactopyranose mutase from E. coli; UDP, uridine diphosphate; FAD, flavin
718	adenine dinucleotide; 4MU, 4-methylumbelliferyl.
719	Figure 2. ¹ H-NMR analyses of enzymatic products of GfsA, GfsB, and GfsC using
719 720	4MU-β-D-Gal <i>f</i> as an acceptor substrate. ¹ H-NMR charts for 4MU-β-D-Gal <i>f</i> , AG3, BG2,
720	4MU-β-D-Gal f as an acceptor substrate. ¹ H-NMR charts for 4MU-β-D-Galf, AG3, BG2,
720 721	4MU-β-D-Gal _f as an acceptor substrate. ¹ H-NMR charts for 4MU- β -D-Gal _f , AG3, BG2, and CG3. The 5.8 ppm signal was detected in the ¹ H-NMR chart for 4MU- β -D-Gal _f . The
720 721 722	4MU-β-D-Gal <i>f</i> as an acceptor substrate. ¹ H-NMR charts for 4MU-β-D-Gal <i>f</i> , AG3, BG2, and CG3. The 5.8 ppm signal was detected in the ¹ H-NMR chart for 4MU-β-D-Gal <i>f</i> . The chemical shift values of BG2 of the H-1 position of the underlined Gal <i>f</i> residue in the
720721722723	4MU-β-D-Gal _f as an acceptor substrate. ¹ H-NMR charts for 4MU-β-D-Gal _f , AG3, BG2, and CG3. The 5.8 ppm signal was detected in the ¹ H-NMR chart for 4MU-β-D-Gal _f . The chemical shift values of BG2 of the H-1 position of the underlined Gal _f residue in the <u>Gal</u> _f -β-(1→5)-Gal _f -β-4MU and Gal _f -β-(1→5)- <u>Gal</u> _f -β-4MU structures are 5.22 and 5.79 ppm,

 $Gal_{f}-\beta-(1\rightarrow 5)-Gal_{f}-\beta-(1\rightarrow 5)-\underline{Gal}_{f}-\beta-4MU$ structures are 5.22, 5.20 and 5.79 ppm,

727

742 galactomannan; FTGM, fungal-type galactomannan; FTGM+OMGM, total GM (FTGM +

743 OMGM).

745	Figure 5. Analysis of galactofuran side chain length of fungal-type galactomannan.
746	Galactofuran side chain was prepared and separated by gel filtration chromatography.
747	FTGM+OMGM fractions were treated with 0.15 M of trifluoroacetic acid at 100°C for 15
748	min. The resultant samples were applied to gel filtration chromatography using a Bio-Gel P-2
749	$(2 \times 90 \text{ cm})$ column and dH ₂ O as eluent. The partial acid hydrolysis product of dextran was
750	used as a molecular weight marker. The eluted sugar was detected using the phenol-sulfuric
751	acid method. G1, Glucose; G2, Maltose; G3, Maltotriose; G4, Maltotetraose; G5,
752	Maltopentaose; G6, Maltohexaose; G7, Maltoheptaose.
753	
754	Figure 6. Colony phenotype comparison of A1151, $\Delta gfsA$, $\Delta gfsB$, $\Delta gfsC$, $\Delta gfsAB$,
755	Δ gfsABC, gfsA::A and Δ gfsC::C strains. Strain colony images are shown for A1151,

- 756 $\Delta gfsA, \Delta gfsB, \Delta gfsC, \Delta gfsAB, \Delta gfsABC, gfsA::A, and \Delta gfsC::C.$ Conidia were incubated on

757 minimal medium at 37°C (*left*) or 50°C (*right*) for 3 days.

759	Figure 7. Morphology of the A1151, $\Delta glfA$, $\Delta gfsAC$, and $\Delta gfsABC$ strains. (A) Hyphae
760	morphology of the A1151, $\Delta glfA$, $\Delta gfsAC$, and $\Delta gfsABC$ strains. (B) Hyphae hydrophobicity
761	of A1151, $\Delta glfA$, $\Delta gfsAC$, and $\Delta gfsABC$ strains. Hydrophobicity is indicated by adherence of
762	latex beads to the hyphae.
763	
764	Figure 8. β -(1 \rightarrow 5)-galactofuranosyl residues are dispensable for virulence in a mouse
765	model of invasive pulmonary aspergillosis. (A) Infection with A1151, $\Delta gfsC$ and $\Delta gfsC::C$
766	strains. Outbred ICR mice (male; 5 weeks of age; n=11) were immune-compromised via
767	intraperitoneal injection of cyclophosphamide (200 mg/kg) at days -4 , -2 , 2, and 5.
768	Cortisone acetate was also administrated subcutaneously at a concentration of 200 mg per kg
769	of body weight on day –1. Mice were infected intratracheally with 3.0×10^5 conidia in a
770	volume of 30 µL for each strain (A1151, $\Delta gfsC$ and $\Delta gfsC::C$ strains) on day 0. (B) Mouse
771	infection with A1151, $\Delta gfsC$, $\Delta gfsAC$, and $\Delta gfsABC$ strains. Outbred ICR mice (male; 5

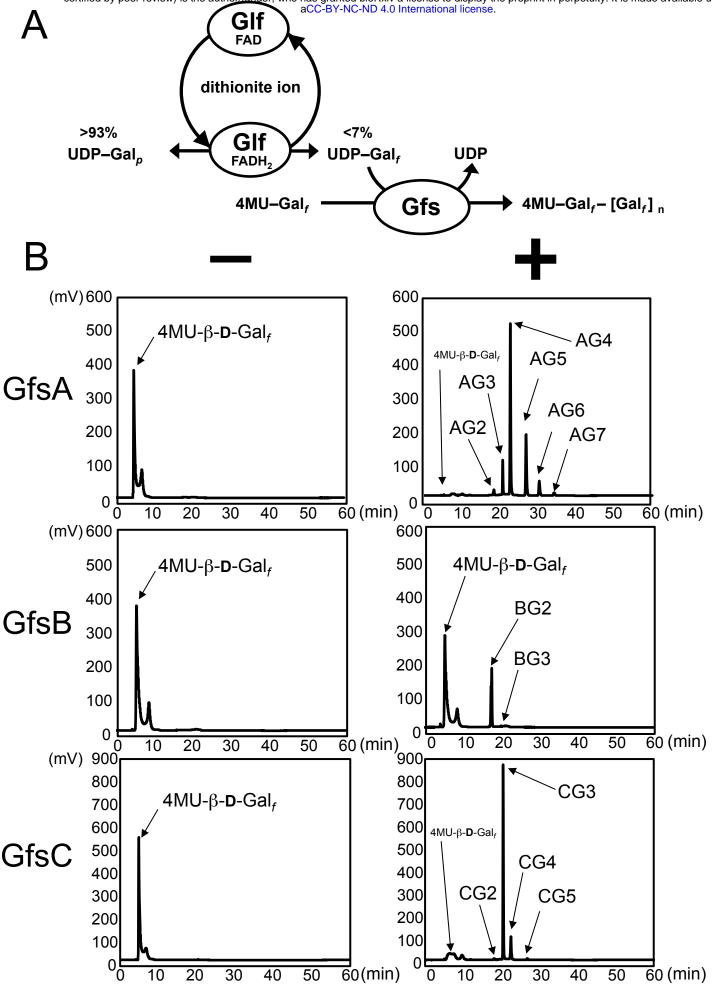
772	weeks of age; n=10-11) were immune-compromised via intraperitoneal injection of
773	cyclophosphamide (200 mg/kg mouse) at days -4 , -2 , 2, and 3. Cortisone acetate was also
774	administrated subcutaneously at a concentration of 200 mg per kg of body weight on day -1 .
775	Mice were infected intratracheally with 3.0×10^5 conidia in a volume of 30 μL for each strain
776	(A1151, $\Delta gfsC$, $\Delta gfsAC$, and $\Delta gfsABC$) on day 0.
777	
778	Figure 9. Proposed GM structures in <i>AgfsAC</i> strain. (A) Typical structure of FTGM, and
779	(B) OMGM in A. fumigatus. (C) Proposed structure of FTGM in the $\Delta gfsAC$ strain. (D)
780	Proposed structure of OMGM in the $\Delta gfsAC$ strain.

Figure S1. SDS-PAGE analysis of purified recombinant GfsA, GfsB, GfsC, and Glf

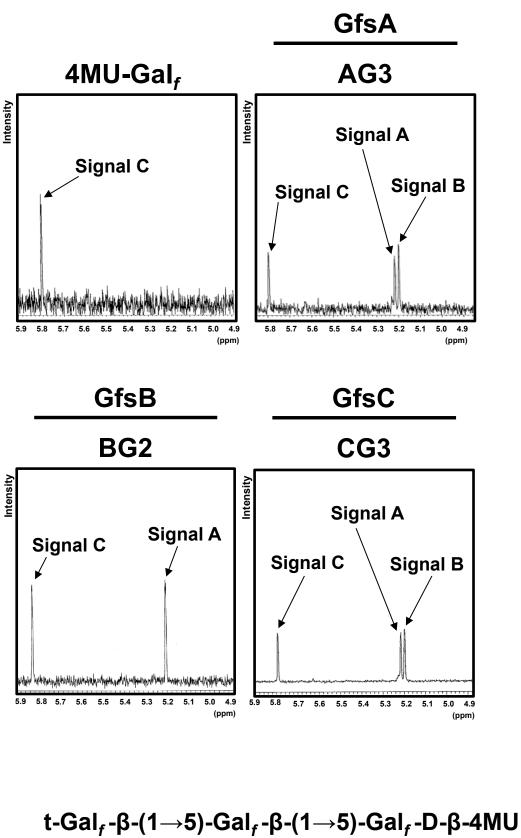
784

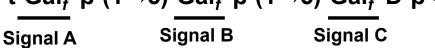
785	proteins. Purified recombinant GfsA (5.0 μ g), GfsB (3.0 μ g), GfsC (5.0 μ g), and Glf (5.0 μ g)
786	were separated by 5%–20% SDS-PAGE and stained with Coomassie brilliant blue, revealing
787	bands of approximately 57.9 kDa (GfsA), 50.3 kDa (GfsB), 52.0 kDa (GfsC), and 45.0 kDa
788	(Glf).
789	
790	Figure S2. Effects of reducing agent and acceptor substrate on
791	galactofuranosyltransferase assay. Chemically synthesized
792	4-methylumbelliferyl- β -D-galactofuranoside (4MU- β -D-Gal _f) or
793	<i>p</i> -nitrophenyl- β -D-galactofuranoside (pNP- β -D-Gal _f) were used acceptor substrate. The
794	chromatogram of standard galactofuranosyltransferase assay containing the purified GfsA
795	protein (4.5 μ g), purified 15.8 μ g of Glf protein, 40 mM UDP-Gal _p , 1 mM Mn ²⁺ , 1.5 mM
796	4MU- β -D-Gal _f , and 40 mM sodium dithionite (SD) at 30°C for 16 h (a); 40 mM SD was
797	omitted from the standard assay (b); 40 mM NADH was added to the standard assay instead
798	of 40 mM SD (c), pNP- β -D-Gal _f was used as an acceptor substrate instead of 4MU- β -D-Gal _f

799	(d), or pNP- β -D-Gal _f instead of 4MU- β -D-Gal _f and 40 mM SD was omitted from the
800	standard assay (e); and 40 mM NADPH was added to the standard assay instead of 40 mM
801	SD (f).
802	
803	Figure S3. Construction of the strains $\triangle gfsB$, $\triangle gfsC$ (<i>ptrA</i>), and $\triangle gfsC$ (<i>AnpyrG</i>).
804	Chromosomal maps of strains $\Delta gfsB$ (a) and $\Delta gfsC$ (b), and primers used for confirmation.
805	The positions of the primers are indicated by arrows. Electrophoretic analyses of products
806	amplified by PCR using the primer pairs AFUB_070620-1/ptrA-R (5'-region) and
807	ptrA-F/AFUB_070620-4 (3'-region) for $\Delta gfsB$ (c), and AFUB_067290-1/pyrG-R (5'-region)
808	and pyrG-F/AFUB_067290-4 (3'-region) for $\Delta gfsC$ (d). M: DNA size markers; Gene Ladder
809	Wide 2 (Nippon Gene, Tokyo, Japan).
810	
811	Figure S4. Construction of the $\Delta gfsC$ complementary strains $\Delta gfsC::C$. (a) Schematic
812	representation of $\Delta gfsC$ complementation with $gfsC$. $gfsC$ (P), $gfsC$ promoter; $gfsC$ (T), $gfsC$

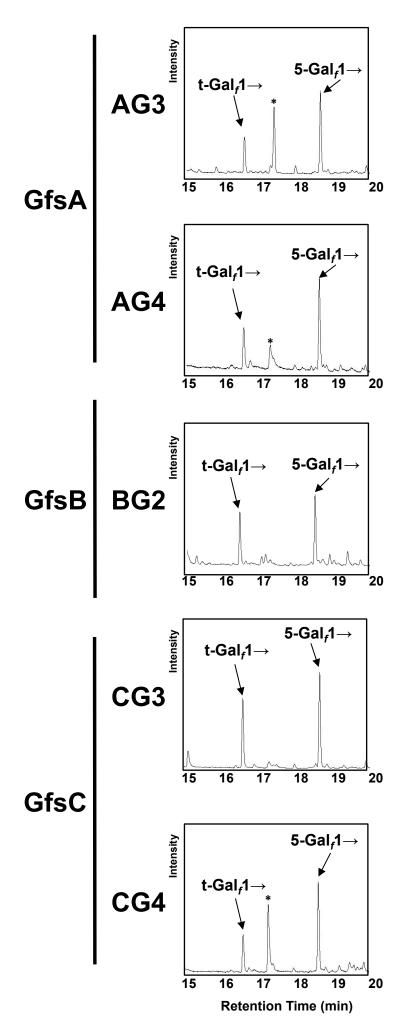

813 terminator; gfsC, open reading frame of gfsC. The positions of the primers are indicated by

814	arrows. (b) Confirmation of correct recombination of gfsC using PCR analysis.
815	Electrophoretic analysis of products amplified by PCR are shown. M, DNA size markers;
816	Gene Ladder Wide 2; Lane 1, DNA fragment (2.6 kbp) amplified using PCR and the primers
817	AfgfsC-complement-7 and ptrA-R; lane 2, DNA fragment (1.1 kb) amplified using PCR and
818	the primers ptrA-F and AfgfsC-complement-8.
819	
820	Figure S5 Construction of the strains $A = f A C$ and $A = f A B C$ (a) Chromosomal mans of


820	Figure S5. Construction of the strains $\Delta gfsABC$ and $\Delta gfsABC$. (a) Chromosomal maps of
821	strains $\Delta gfsAC$ (a) and $\Delta gfsABC$ (b), and primers used for confirmation. The positions of the
822	primers are indicated by arrows. Electrophoretic analyses of products amplified by PCR
823	using the primer pairs AFUB_096220-1/pyrG-R (5' region of gfsA),
824	pyrG-F/AFUB_096220-4 (3' region of gfsA), AFUB_067290-1/ptrA-R (5' region of gfsC),
825	and ptrA-F/AFUB_067290-4 (3' region of gfsC), for Δ gfsAC (c), AFUB_096220-1/pyrG-R
826	(5' region of gfsA, pyrG-F/AFUB_096220-4 (3' region of gfsA), AFUB_070620-1/hygB-R
827	(5' region of gfsB), hygB-F/AFUB_070620-4 (3' region of gfsB), AFUB_067290-1/ptrA-R


- 828 (5' region of gfsC), and ptrA-F/AFUB_067290-4 (3' region of gfsC), for $\Delta gfsABC$ (d). M:
- 829 DNA size markers; Gene Ladder Wide 2.

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available un



certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available un aCC-BY-NC-ND 4.0 International license.

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available un aCC-BY-NC-ND 4.0 International license.

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available u aCC-BY-NC-ND 4.0 International license.

¹³C-NMR

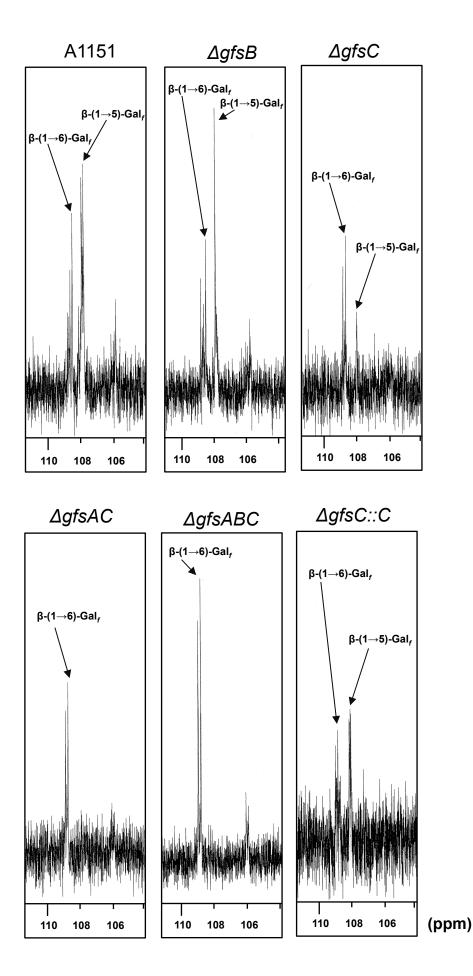
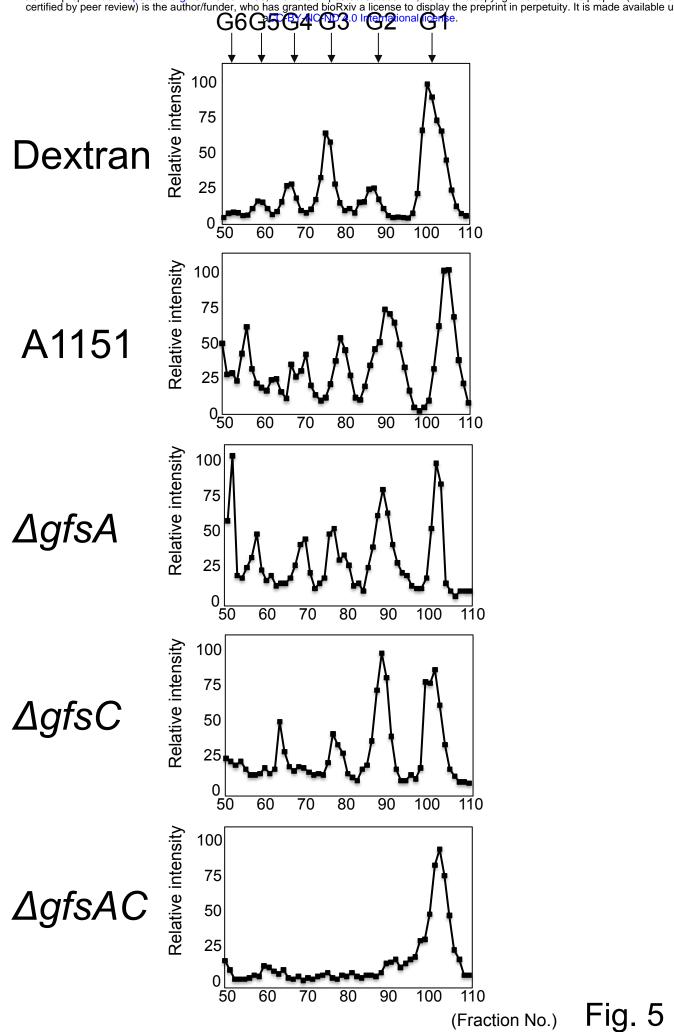



Fig. 4

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available un aCC-BY-NC-ND 4.0 International license.

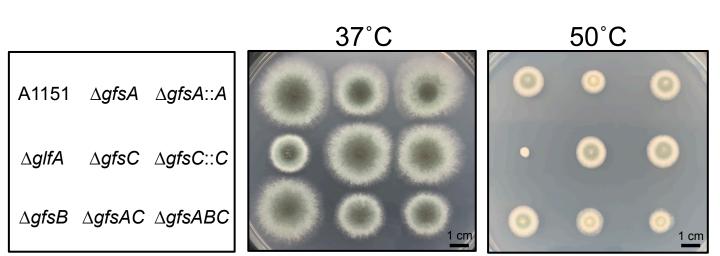
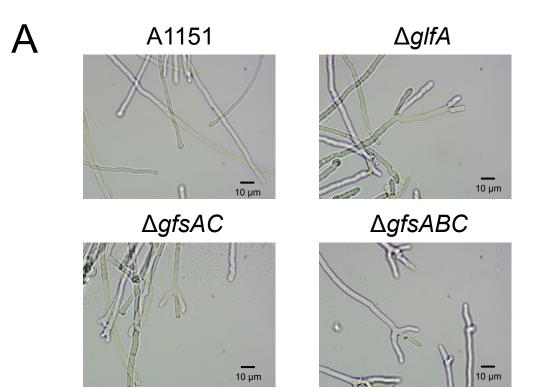
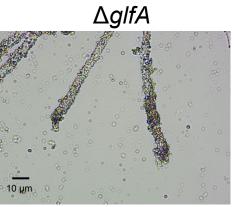



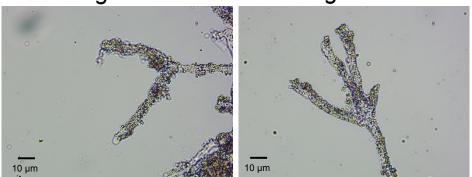
Fig. 6

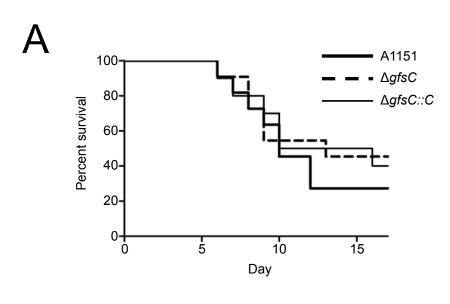
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available u aCC-BY-NC-ND 4.0 International license.


В

and the state of t

A CONSTRUCTION OF CONSTRUCTUON OF CONSTRUCTUON


10 µm



Mr 53

∆gfsABC

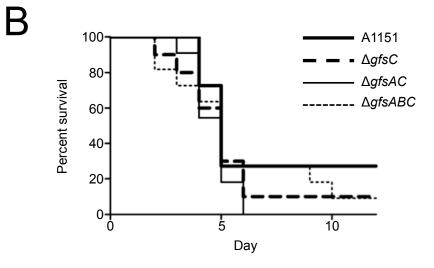


Fig. 8

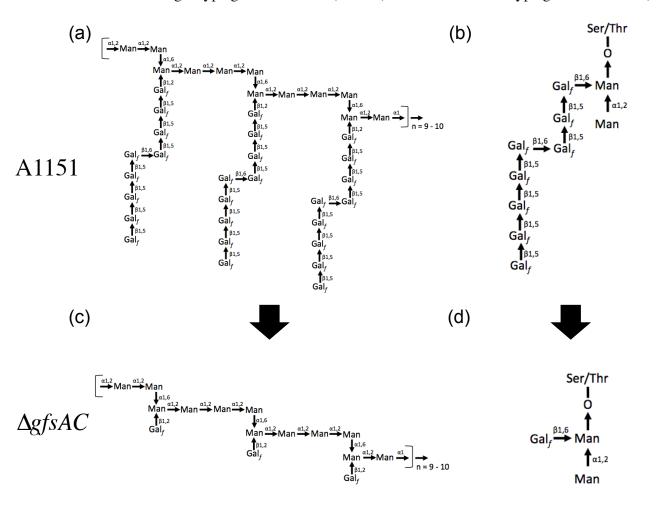
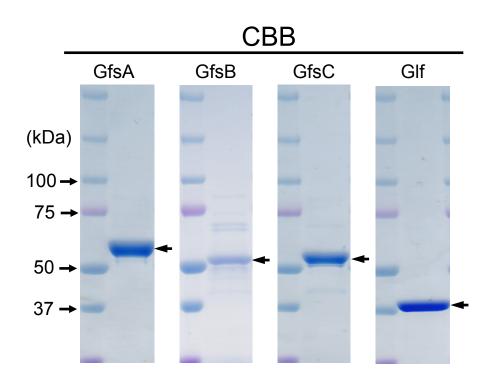
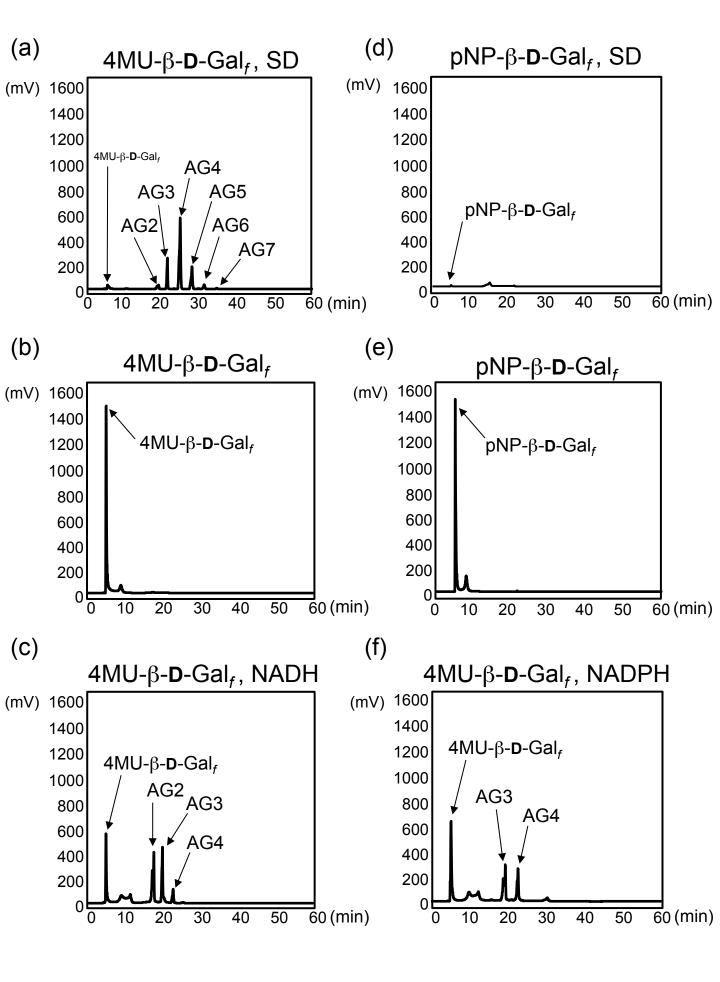
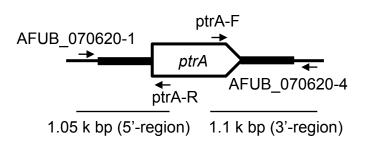
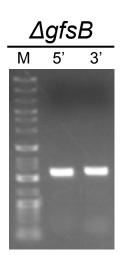
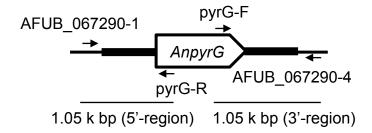




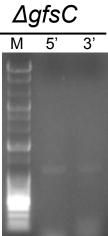
Fig. 9

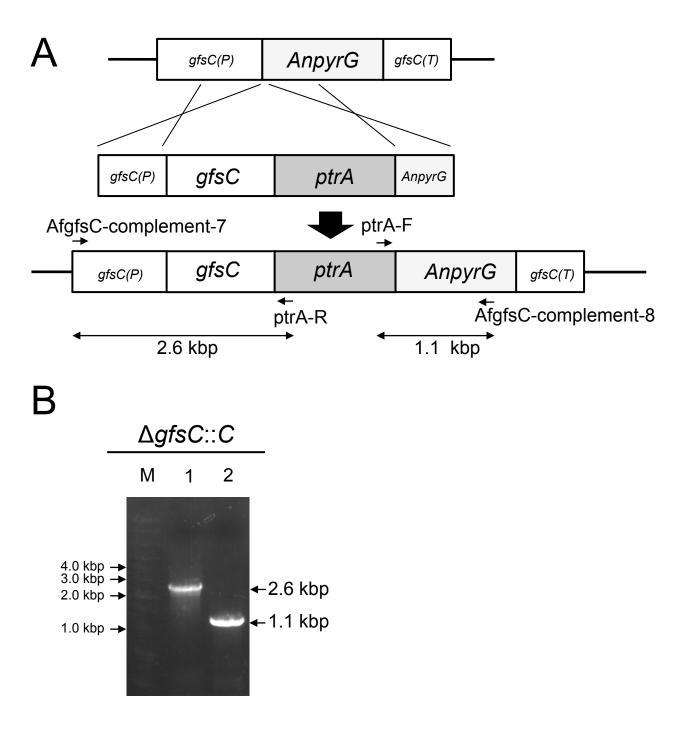


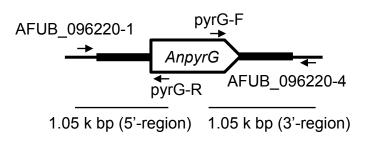


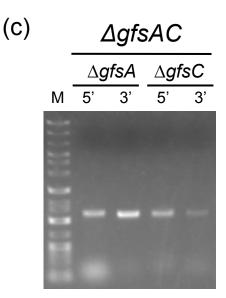


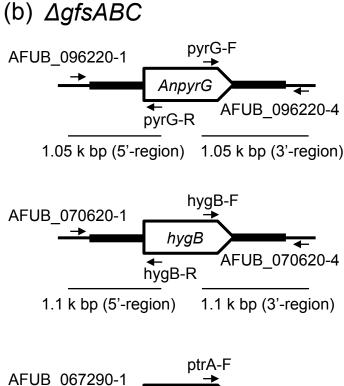
(d)

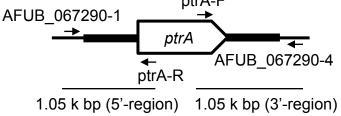


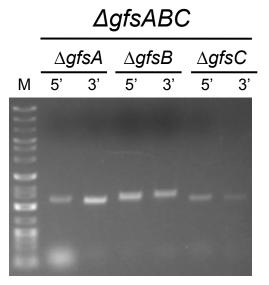



(b) *∆gfsC*


Μ







(d)

Table 1. List of mass-to-charge ratios (m/z) of enzymatic products of GfsA, GfsB, and GfsC identified by LC/MS.

	Product name	Molecular mass (calculated)	Mass spectrum $[M - H]^+ (m/z)$	Suggested structure
4MU-β-D-Gal		338.31	339.11	
	AG2	500.45	501.16	Gal _r β-(1→5)-Gal _r D-β-4MU
	AG3	662.59	663.21	Gal ₇ β-(1→5)-Gal ₇ β-(1→5)-Gal ₇ D-β-4MU
	AG4	824.73	825.27	$Gal_{\mathcal{F}}\beta\text{-}(1 \rightarrow 5)\text{-}Gal_{\mathcal{F}}\beta\text{-}(1 \rightarrow 5)\text{-}Gal_{\mathcal{F}}\beta\text{-}(1 \rightarrow 5)\text{-}Gal_{\mathcal{F}}D\text{-}\beta\text{-}4MU$
GfsA	AG5	986.87	987.32	$\operatorname{Gal}_{r}\beta\text{-}(1\rightarrow5)\text{-}\operatorname{Gal}_{r}\beta\text{-}(1\rightarrow5)\text{-}\operatorname{Gal}_{r}\beta\text{-}(1\rightarrow5)\text{-}\operatorname{Gal}_{r}\text{-}D\text{-}\beta\text{-}4MU$
	AG6	1149.01	1149.37	$Gal_r\beta - (1 \rightarrow 5) - Gal_r\beta - (1 \rightarrow 5) $
	AG7	1311.15	1311.42	$Gal_{\mathcal{F}}\beta - (1 \rightarrow 5) - Gal_{\mathcal{F}}\beta - (1 \rightarrow 5) - Gal_$
CCD	BG2	500.45	501.16	Gal _r β-(1→5)-Gal _r D-β-4MU
GfsB	BG3	662.59	663.22	Gal _r β-(1→5)-Gal _r β-(1→5)-Gal _r D-β-4MU
	CG2	500.45	501.16	Gal _r β-(1→5)-Gal _r D-β-4MU
<u> </u>	CG3	662.59	663.21	Gal _Γ β-(1→5)-Gal _Γ β-(1→5)-Gal _Γ D-β-4MU
GfsC	CG4	824.73	825.27	$Gal_{f^{*}}\beta - (1 \rightarrow 5) - Gal_{f^{*}}\beta - (1 \rightarrow 5) - Gal_{f^{*}}\beta - (1 \rightarrow 5) - Gal_{f^{*}}D - \beta - 4MU$
	CG5	986.87	987.32	$\operatorname{Gal}_{\mathcal{F}}\beta\text{-}(1 \to 5)\text{-}\operatorname{Gal}_{\mathcal{F}}\beta\text{-}(1 \to 5)\text{-}\operatorname{Gal}_{\mathcal{F}}\beta\text{-}(1 \to 5)\text{-}\operatorname{Gal}_{\mathcal{F}}\beta\text{-}(1 \to 5)\text{-}\operatorname{Gal}_{\mathcal{F}}D\text{-}\beta\text{-}4\mathrm{MU}$

Products of GfsA were AG2, AG3, AG4, AG5, AG6, and AG7; those of GfsB were BG2 and BG3; and for GfsC were CG2, CG3, CG4, and CG5. Mass-to-charge ratios (m/z) of the products were determined by LC/MS with positive ion mode electrospray ionization (ESI).

<i>O</i> -methylalditol acetate	Sugar linkage	A1151	$\Delta gfsB$	$\Delta gfsC$	$\Delta gfsAC$	$\Delta gfsABC$	ΔgfsC::C
2,3,4,6-Me4-Man	$tMan_p1 \rightarrow$	17.01 ± 1.05	21.19 ± 3.48	22.89 ± 2.96	26.50 ± 1.00	23.13 ± 5.45	16.32 ± 1.83
3,4,6-Me3-Man	$2\text{-Man}_p1 \rightarrow$	29.80 ± 2.28	27.89 ± 2.34	26.69 ± 1.25	25.23 ± 5.11	25.04 ± 2.39	21.35 ± 3.15
2,3,4-Me3-Man	6-Man _p 1→	12.95 ± 1.66	12.76 ± 1.54	16.42 ± 1.09	16.80 ± 1.87	16.39 ± 1.24	8.50 ± 0.74
3,4-Me2-Man	2,6-Man _p 1→	8.36 ± 0.86	7.14 ± 1.33	8.25 ± 1.28	7.62 ± 0.92	8.99 ± 1.26	4.06 ± 0.40
2,3,5,6-Me4-Gal	tGal _f l→	13.76 ± 3.33	14.29 ± 2.04	19.97 ± 1.27	20.94 ± 2.35	22.77 ± 1.09	26.86 ± 1.51
2,3,6-Me3-Gal	5-Gal _f 1→	16.31 ± 0.84	15.37 ± 0.71	2.16 ± 0.19	N. D.	N. D.	20.18 ± 2.12
2,3,5-Me3-Gal	6-Gal _f 1→	1.81 ± 0.70	1.34 ± 0.24	3.62 ± 0.44	2.91 ± 0.68	3.68 ± 0.51	2.73 ± 0.87

of galactomannans.

Table 2. GC-MS analysis of O-methylalditol acetates derived from methylation analyses

Table 3 Colony growth rate of the WT, $\Delta gfsA$, $\Delta gfsB$, $\Delta gfsC$, $\Delta gfsAC$, $\Delta gfsABC$, $\Delta gfsABC$, $\Delta gfsA::A$,

and $\Delta gfsC::C$ strains.

	A1151	$\Delta gfsA$	$\Delta gfsB$	$\Delta gfsC$	$\Delta gfsAC$	$\Delta gfsABC$	$\Delta gfsA::A$	$\Delta gfsC::C$
37°C	0.75 ± 0.06	0.63 ± 0.04	0.73 ± 0.10	0.76 ± 0.08	0.51 ± 0.03	0.50 ± 0.05	0.78 ± 0.04	0.76 ± 0.06
	(100%)	(85.2%)	(98.6%)	(102.0%)	(68.4%)	(67.8%)	(104.1%)	(101.9%)
50°C	0.30 ± 0.04	0.24 ± 0.03	0.30 ± 0.03	0.27 ± 0.11	0.26 ± 0.03	0.25 ± 0.03	0.31 ± 0.03	0.37 ± 0.03
	(100%)	(81.2%)	(100.5%)	(90.9%)	(86.4%)	(84.0%)	(103.2%)	(124.3%)

Strain name	Number of formed conidia (conidia/mm ²)	Percentage of formed conidia to WT strain
A1151	$3.1 \ge 10^5 \pm 9.6 \ge 10^4$	100%
$\Delta A fg fs A$	$1.6 \ge 10^5 \pm 9.1 \ge 10^3$	50.9%
$\Delta A fg fs B$	$3.0 \ge 10^5 \pm 5.2 \ge 10^4$	95.9%
$\Delta A fg fs C$	$2.8 \ge 10^5 \pm 3.0 \ge 10^4$	90.9%
$\Delta A fg fs A C$	$1.0 \ge 10^5 \pm 5.7 \ge 10^3$	32.1%
$\Delta A fg fs ABC$	$7.9 \ge 10^4 \pm 3.5 \ge 10^3$	25.4%
$\Delta A fgfsA::A$	$2.6 \ge 10^5 \pm 3.5 \ge 10^4$	82.6%
$\Delta AfgfsC::C$	$3.8 \ge 10^5 \pm 3.4 \ge 10^4$	120.3%

Table 4 Number of formed conidia of the WT, $\Delta gfsA$, $\Delta gfsB$, $\Delta gfsC$, $\Delta gfsAC$, $\Delta gfsABC$, $\Delta gfsA::A$, and $\Delta gfsC::C$ strains.

MCFG CPFG AMPH-B ITCZ VRCZ 5-FC FLCZ MCZ A1151 0.015 >64 0.5 2 0.25 1 >64 0.5 $\Delta AfgfsC$ 0.015 0.25 1 >64 >64 0.5 0.5 1-2 $\Delta A fg fs A C$ 0.015 0.25 1 >64 >64 0.25-0.5 0.5-1 1-2

0.5

 $\Delta A fg fs ABC$

0.015

0.25

Table 5 Sensitivity of the WT, $\Delta cmsA$, $\Delta cmsB$, and $\Delta cmsAB$ strains to antifungal agents ($\mu g/mL$).

micafungin (MCFG), caspofungin (CPFG), amphotericin B (AMPH-B), flucytosine (5-FC), fluconazole (FLCZ), itraconazole (ITCZ), voriconazole (VRCZ), and miconazole (MCZ).

>64

>64

0.5

0.5

Strains	Genotype	Source of
		reference
A. fumigatus A1151	KU80::pyrG	da Silva
		Ferreira, 2006;
		FGSC
A. fumigatus A1160	KU80::pyrG, pyrG	da Silva
		Ferreira, 2006;
		FGSC
A. fumigatus $\Delta glfA$	KU80::AfpyrG, glfA::ptrA	Komachi, 2013
		(ref)
A. fumigatus $\Delta gfsA$	KU80::AfpyrG, pyrG, AfgfsA::AnpyrG	Komachi, 2013
		(ref)
A. fumigatus $\Delta gfsB$	KU80::AfpyrG, AfgfsB::ptrA	This study
A. fumigatus $\Delta gfsC$	KU80::AfpyrG, pyrG, AfgfsC::AnpyrG	This study
A. fumigatus $\Delta gfsAC$	KU80::AfpyrG, pyrG-, AfgfsA::AnpyrG, AfgfsC::ptrA	This study
A. fumigatus $\Delta gfsABC$	KU80::AfpyrG, pyrG-, AfgfsA::AnpyrG, AfgfsB::hph, AfgfsC::ptrA	This study
A. fumigatus $\Delta gfsA::A$	$KU80::pyrG, AfgfsA::AnpyrG, \Delta AfgfsA::AfgfsA-ptrA$	Katafuchi, 2017
		(ref)
A. fumigatus $\Delta gfsC::C$	KU80::AfpyrG, pyrG-, AfgfsC::AnpyrG, ΔAfgfsC::AfgfsC-ptrA	This study

Table S1 Aspergillus strains used in this study

Table S2 Oligonucleotides used in this study

Oligonucleotide primers	Sequence	
AFUB_070620-1	5'- CCGTCGTCATTCACAGAGC -3'	
AFUB 070620-2	5'- TCGTTACCAATGGGATCCCGTTAGATGTCGCCTGCTTGCAG -3'	
AFUB 070620-3	5'- ATGCAAGAGCGGCTCATCGCGCCTTCTGTCCGAGTTCTTT -3'	
AFUB_070620-2(gfsB::hph)	5'- GGAAGATCCAGGCACCGGGTTAGATGTCGCCTGCTTGCAG -3'	
AFUB 070620-3(gfsB::hph)	5'- AAAACGCGTTTCGGGTTTACCCGCCTTCTGTCCGAGTTCTTT -3'	
AFUB 070620-4	5'- TAGCCGGGGTGGAAATTCG -3'	
AFUB_070620-7	5'- AGCTTTGAGCGTTTCTTGGG -3'	
AFUB 070620-8	5'- GCTTCAGTGCCAACGAGAGTG -3'	
AFUB 067290-1	5'- TTCGTAGTCGTTGGAACTCCTC -3'	
AFUB 067290-2	5'- GGCGTGATAGCGTTGAAGGGGTATGTGTTCCGCTTTCCCTCG-3'	
AFUB 067290-3	5'- AGGTTCCTTTGTGGCTGGGACCCCACACTGAGATGATTTGTGG-3'	
AFUB 067290-2(gfsC::ptrA)	5'- TCGTTACCAATGGGATCCCGTATGTGTTCCGCTTTCCCTCG -3'	
AFUB 067290-3(gfsC::ptrA)	5'- ATGCAAGAGCGGCTCATCGCCCCACACTGAGATGATTTGTGG -3'	
AFUB_067290-4	5'- TGCCGCTTCTGTTCCTGTC -3'	
AFUB_067290-7	5'- TTGTCTTTGCCACTGTCGTTTC -3'	
AFUB_067290-8	5'- GCATATCCCATCCCCATGAC -3'	
AFUB_096220-1	5'- TACGCCGCTTGCTACTTGG -3'	
AFUB_096220-4	5'- GCCAAATTCAATAGTGCACGC -3'	
AfgfsC-complement-1	5'- GGAACTCCTCCAATTGTCTAATCG -3'	
AfgfsC-complement-2	5'- TCGTTACCAATGGGATCCCCTACGCCATCTTCCAGATCAATTC -3'	
AfgfsC-complement-3	5'- ATGCAAGAGCGGCTCATCGCCCTTCAACGCTATCACGCC -3'	
AfgfsC-complement-4	5'- AGACATGATGGCGGTTCTCC -3'	
AfgfsC-complement-7	5'- TTTGCCACTGTCGTTTCTCC -3'	
AfgfsC-complement-8	5'- AAGCTGGAAGTGGGATGGCT -3'	
pyrG-5	5'- CCCTTCAACGCTATCACGCC -3'	
pyrG-6	5'- TCCCAGCCACAAAGGAACCT -3'	
ptrA-5	5'- GGGATCCCATTGGTAACGA -3'	
ptrA-6	5'- CGATGAGCCGCTCTTGCAT -3'	
hph-5	5'- CCGGTGCCTGGATCTTCCT -3'	
hph-6	5'- GGTAAACCCGAAACGCGTTTTAT -3'	
pyrG-F	5'- GATCTACCCCTTGGAACGCA -3'	
pyrG-R	5'- GACCATCGTGGGCAATTGGT -3'	
ptrA-F	5'- CATATGTAAATGGCTGTGTCCCG -3'	
ptrA-R	5'- TTTAGCTTTGACCGGTGAGC -3'	
hph-F	5'- CCGCGGGATCCACTTAACG -3'	
hph-R	5'- GTCTCTCCGCATGCCAGAAA -3'	
pET50b-AfGfsB-F	5'- ATCATCATCATCATAGCTCCAGACCTGCTAGTCCCTC -3'	
pET50b-AfGfsB-F	5'- GTACCGAGCTCCATATCACCCAGATGTAGGTTTCCAG -3'	
pCold2-AfGfsC-F	5'- ATCATCATCATCATAGCCGCGCCGTGTATATGC -3'	
pCold2-AfGfsC-R	5'- GTACCGAGCTCCATACTACGCCATCTTCCAGATC -3'	
pET50b-Amp-F	5'- GAATTAATTCATGAGCGGATA -3'	
pET50b-Amp-R	5'- AACACCCCTTGTATTACTGT -3'	
Amp-gene-F	5'- AATACAAGGGGTGTTATGAGTATTCAACATTTCCGT -3'	
Amp-gene-R	5'- CTCATGAATTAATTCTTACCAATGCTTAATCAGTG -3'	