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Abstract 

Given various risk profiles, manifestations, comorbidities, and outcomes for individuals with Type 2 

diabetes mellitus (T2D), a one-size-fits-all approach towards treatment and management is inadequate, 

and there is a clear need for personalized medications to reduce rates of complications and 

comorbidities. Here, we leveraged comprehensive Electronic Medical Records (EMR) to identify 

associations between T2D comorbidities and medications and evaluated their biological determinants 

using EMR-linked genetic information. We discovered clinically novel associations supported by the 

previous laboratory studies; e.g. 5-hydroxytryptamine 3 receptor antagonists, ondansetron and 

granisetron, are protective against cognitive disorders, and clopidogrel is protective against retinopathy. 

Furthermore, potentially novel associations were validated by genetic analysis; e.g. association between 

gabapentin and cognitive disorders was supported via variants of its target genes, GRIN1 and 

CACNA2D2. These results of the current study open the door for optimizing treatment combinations to 

mitigate risks and for individualizing therapy based on T2D subtype risk profiles. 
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Type 2 diabetes mellitus (T2D) is a heterogeneous, multifactorial disease with a global diabetes 

prevalence that has more than doubled since 1980, rising from 4.3% to 9% in the adult population 1. 

Associated with psychological and physical distress to both patients and caregivers, diabetes is a 

considerable determinant of disability and remains the leading cause of vision loss, kidney failure, and 

non-traumatic lower limb amputations. Moreover, diabetes more than doubles the risk of the myocardial 

infarction and cerebrovascular accidents 2,3. According to the National Health and Nutrition 

Examination Survey (NHANES) the prevalence of diabetes in the United States is over 12% 4, and as 

such, diabetes is associated with a total direct estimated medical cost of $237 billion in 2017 5,6. At the 

time of diagnosis 86% of patients with T2D are affected by chronic comorbid conditions 7, and this 

figure rises over the natural course of disease, compounding the burden on patients, providers, and the 

economy. There is tremendous need to advance the way in which T2D is treated in order to further 

reduce rates of complications and co-morbidities. 

Given various risk profiles, manifestations, comorbidities, and outcomes for individuals with 

T2D, a one-size-fits-all approach towards treatment and management is inadequate. There have been 

attempts to disentangle determinants of poor patient outcomes, as well as efforts to develop more 

personalized treatment recommendations 8. One clear path forward is to model treatment 

recommendations based on disease profiles, since many conditions either co-manifest with or result 

from T2D. A previous study used Electronic Medical Records (EMR) to analyze patient characteristics 

and make treatments recommendations which improved diabetes control, measured by glycated 

hemoglobin A1C (HbA1c), beyond the standard of care 9. Another study sought to evaluate the molecular 

effects of various medications on diabetes comorbidities using a systems biology approach 10. 
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In our previous work, we characterized the heterogeneous patient landscape of T2D into three 

distinct subtypes using clinical and genomic data from an EMR-paired biobank 11. We stratified patients 

using a topology-based, patient–patient network derived from demographic and clinical features such as 

disease diagnoses. We then layered on genetic information in the form of single nucleotide 

polymorphisms (SNPs) and characterized each subgroup according to enrichment of these features. For 

instance, subtype 1 was characterized by diabetic retinopathy and diabetic nephropathy; subtype 2 was 

enriched for lung cancer malignancy and cardiovascular diseases; and subtype 3 was associated most 

strongly with cardiovascular diseases and neurological diseases. Additionally, a recent study 12 

discovered five replicable clusters of patients with T2D, representing different patient characteristics and 

risk of diabetic complications, based on a data-driven cluster analysis on six relevant variables. Taken 

together, the findings of those studies suggested that there might be subtypes of T2D that have different 

genetic and phenotypic characteristics, as well as risk factors for developing certain subsequent 

conditions. 

As a data-driven analysis of a clinical population identified new T2D subtypes, we hypothesize 

that this approach can be applied to improve our knowledge regarding the association of medications 

with T2D related comorbidities and complications. In this study, we sought to push beyond our previous 

work to identify specific treatment strategies that are personalized according to T2D phenotypic patient 

profiles. Using the EMR of Mount Sinai Hospital, we investigated whether medications conferred a 

protective effect against, or the increased the risk of, subsequent comorbidities in all T2D patients (Fig. 

1). Our results identified previously reported associations between medications and specific disease 

outcomes, and also uncovered potentially novel connections between medications and T2D 

comorbidities, some of which is supported by laboratory and animal data. We also evaluated the additive 

effects of medication pairs to identify potentially beneficial treatment regimens. In addition, we assessed 
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relationships between predicted protective medications and disease comorbidities through a genetic 

association analysis of T2D patients in the Mount Sinai BioMe biobank cohort, a subset of EMR 

patients. The results of the current study open the door for optimizing treatment combinations to 

mitigate risks and for individualizing therapy based on T2D subtype risk profiles. 
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Results 

Prevalence and risk estimation of comorbidities following T2D diagnosis 

We began by assessing the prevalence and temporal ordering of the associations between T2D and other 

diseases (Fig. 1A). In particular, we sought to determine whether a given comorbidity tended to occur 

after diagnosis of T2D. We restricted our analysis to diseases with reported dates and only included the 

first reported encounter of a diagnosis, yielding 874,553 person–disease pairs, and analyzed their 

prevalence and temporal ordering at the patient level. 

First, we calculated the prevalence of subsequent diseases based on the Kaplan–Meier product–

limit estimator, in units of 1 year (Fig. 2A and Supplementary Table S1). In our cohort, the prevalence 

10 years after T2D diagnosis was highest for ‘Hypertension’ (72% of cases), followed by ‘Disorder of 

lipid metabolism’ (63%). The macrovascular complication ‘Coronary atherosclerosis and other heart 

disease’ was had a prevalence of 46%, and the microvascular complication, ‘Chronic kidney disease’ 

was also quite common (34%). These results are consistent with previous studies demonstrating 

rates >67% for hypertension 7, 77% for ‘Disorder of lipid metabolism’ 13, 45–51% for ‘Coronary 

atherosclerosis and other heart disease’ 14,15, and 24–40% for ‘Chronic kidney disease’ 13,16, suggesting 

that our EMR data reflect a representative cohort of the US population. Ninety-six out of 219 diseases 

exhibited prevalence greater than 10% prevalence within 10 years after T2D diagnosis, and these were 

analyzed below. In addition, we analyzed all 13 neoplasms, because neoplasms are enriched in one of 

the T2D subtypes identified in our previous published study 17. 109 T2D comorbidities were analyzed in 

total. 

The increase in risk of each comorbidity after T2D diagnosis was quantified based on the timing 

of their occurrence in individual patients. Overall, out of the 109 T2D comorbidities analyzed, 93 
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diseases were significantly more likely to occur after T2D diagnosis (adjusted p < 0.05; Fig. 2B, 

Supplementary Table S1, and Supplementary Results). 

 

Candidate medications associated with each T2D comorbidity 

Fifteen medications specifically indicated for T2D (T2D medications) were associated with at least one 

T2D comorbidity, with 79 protective and 198 risk associations (Fig. 3), in the cross-sectional analysis 

with adaptive LASSO (Supplementary Results). For example, insulin was associated with protection 

against 11 comorbidities and risk for 33 comorbidities, and metformin was associated with protection 

against 12 comorbidities and risk for 14 comorbidities. Rosiglitazone had the largest number of risk 

associations, including circulatory diseases. This is consistent with the previously reported risk of 

cardiovascular disease and death, which led to rosiglitazone being withdrawn from European and other 

markets 18,19. 

 Nine T2D-related medications, which are not necessarily indicated for T2D, but are often used 

for treating or managing T2D co-morbidities (see Supplementary Methods), were associated with at 

least one disease, including three statins and five antihypertensive medications (three angiotensin II 

receptor [AT2R] blockers, two angiotensin-converting-enzyme [ACE] inhibitors, and niacin) (Fig. 3). 

These medications had 48 protective associations and 42 risk associations. Two high potency statins, 

atorvastatin and rosuvastatin, exhibited a wide variety of protective effects but few risks for T2D 

comorbidities, supporting that the use of these medications is a key factor in preventing and managing 

comorbidities related to lipid metabolism 20. 
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T2D and T2D-related medications predicted to modulate the onset of various comorbidities 

Among the candidate medications associated with each T2D comorbidity in the cross-sectional analysis, 

we assessed the timing effect of medications on disease onset by survival analysis with time-dependent 

covariates in propensity score–matched cohorts (Fig. 1B). Among T2D medications, indicated directly 

for diabetes treatment (see Supplementary Methods), and T2D-related medications, 64 out of 127 

protective associations and 43 of 240 risk associations were also identified by the survival analysis (Fig. 

3 and Supplementary Table S3). The analysis identified 30 medication-disease associations described 

previously, involving the medications commonly prescribed in patients with T2D, such as metformin, 

insulin, and statins. These associations include, for instance, atorvastatin and ‘Pulmonary heart disease’ 

(HR=0.62, adjusted p < 0.0001) 21, sitagliptin and ‘Hepatitis’ (HR=0.43, adjusted p=0.0060) 22, 

metformin and ‘Nutritional deficiency’ (HR=1.1, adjusted p=0.0023) 23, and nateglinide and ‘Other 

endocrine disorders’, which includes hypoglycemia (HR=3.7, adjusted p< 0.0001) 24 (Supplementary 

Table S3). Some associations were controversial due to inconsistent results in published studies. Among 

them, five medications had protective associations in our study, including metformin with ‘Delirium, 

dementia, and amnestic and other cognitive disorders’ (HR=0.74, adjusted p=0.00020) 25,26; atorvastatin 

with ‘Delirium, dementia, and amnestic and other cognitive’ (HR=0.69, adjusted p=0.00041) 27,28; 

rosuvastatin with ‘Esophageal disorders’ (HR=0.84, adjusted p=0.040) 29,30; and sitagliptin with ‘Acute 

and unspecified renal failure’ (HR=0.78, adjusted p=0.027) 31 and ‘Cardiac dysrhythmias’ (HR=0.84, 

adjusted p=0.047) 32,33. Lastly, we identified 40 protective associations which have not previously been 

described. These include insulin and ‘Osteoporosis’ (HR=0.72, adjusted p=0.0017), liraglutide and 

‘Urinary tract infections’ (HR=0.46, adjusted p=0.048), and nateglinide and ‘Abdominal pain’ 

(HR=0.38, adjusted p=0.013). In addition, we identified 30 new risk associations, including exenatide 

and ‘Glaucoma’ (HR=1.6, adjusted p=0.046), metformin and ‘Cataract’ (HR=1.36, adjusted p < 0.0001), 
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and nateglinide and ‘Nutritional deficiencies’ (HR=1.52, adjusted p=0.023). 

 

Non-T2D-related medications predicted to modulate the onset of well-known T2D 

complications 

Two hundred thirty one medications, including non-T2D-related medications, exhibited protective 

effects for at least one of the 104 T2D comorbidities (Fig. 4 and Supplementary Table S4), and 270 

medications increased the risk for at least one comorbidity (Fig. 4 and Supplementary Table S5). Table 1 

summarizes seven comorbidities, including two major microvascular complications, ‘Retinal 

detachments; defects; vascular occlusion; and retinopathy’ and ‘Chronic kidney disease’; two major 

macrovascular complications ‘Coronary atherosclerosis and other heart disease’ and ‘Acute 

cerebrovascular disease’; and three comorbidities that were enriched in particular T2D subtypes in our 

previously published study 11, ‘Neoplasm excl. benign’, ‘Delirium, dementia, and amnestic and other 

cognitive disorders’, and ‘Nutritional deficiencies’. 

We identified medications whose use conferred protective effects against the development of 

specific comorbidities in T2D patients (Table 1A). Twelve medications were demonstrated to have 

protective associations which were previously described, including cholecalciferol and ‘Coronary 

atherosclerosis and other heart disease’ (HR=0.66, adjusted p=0.038) 34; aspirin and ‘Neoplasm excl. 

benign’ (HR=0.57, adjusted p<0.0001) 35; and nifedipine and ‘Delirium, dementia, and amnestic and 

other cognitive disorders’ (HR=0.54, adjusted p<0.0001) 36. Intriguingly, our analysis confirms 

protective medication effects previously demonstrated only in non-clinical laboratory studies. Two 5-

hydroxytryptamine 3 (5-HT3) receptor antagonists (ondansetron and granisetron) and one alpha-

adrenergic agonist (phenylephrine), exhibited protective effects against ‘Delirium, dementia, and 
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amnestic and other cognitive disorders’ (HR=0.71, adjusted p=0.0011; HR=0.44, adjusted p=0.045; 

HR=0.76, adjusted p=0.019; respectively) 37,38. Bacitracin, azithromycin, and lidocaine protected against 

‘Neoplasm excl. benign’ (HR=0.67, adjusted p=0.016; HR=0.72, adjusted p=0.00041; HR=0.80, 

adjusted p=0.029; respectively) 39-41. Clopidogrel and hydroxyzine were protective against ‘Retinal 

detachments; defects; vascular occlusion; and retinopathy’ (HR=0.80, adjusted p=0.025; HR=0.52, 

adjusted p=0.017; respectively) 42,43.  

We identified a list of potentially novel protective associations (Table 1A). In regard to 

microvascular complications, seven medications were significantly associated with ‘Retinal 

detachments; defects; vascular occlusion; and retinopathy’, and five medications were related to 

‘Chronic kidney disease’. In regard to macrovascular complications, six medications were associated 

with ‘Coronary atherosclerosis and other heart disease’, and four medications exhibited a protective 

effect on ‘Acute cerebrovascular disease’. Four medications, including gabapentin (HR=0.74, adjusted 

p=0.0068), one of the first-line medications for the treatment of neuropathic pain in diabetic neuropathy, 

exhibited protective effects against ‘Delirium, dementia, and amnestic and other cognitive disorders’. 

Three medications, vancomycin (HR=0.73, adjusted p=0.0049), betamethasone (HR=0.53, adjusted 

p=0.0060), and oxycodone (HR=0.79, adjusted p=0.0034), were associated with protection against 

‘Neoplasm excl. benign’ and 11 medications were related to ‘Nutritional deficiencies’. A complete list 

of all disease categories is provided in Supplementary Table S4. 

We also discovered associations between medications and increased risk for comorbidities 

(Table 1B). We corroborated two previously reported risk medications, except for T2D medications, to 

‘Nutritional deficiencies’, which were methotrexate (HR=1.6, adjusted p=0.013) 44 and ritonavir 

(HR=2.4, adjusted p<0.0001) 45. In addition, we identified 9 potentially novel associations between 

medications and ‘Retinal detachments; defects; vascular occlusion; and retinopathy’ and 11 potentially 
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novel associations between medications and ‘Chronic kidney disease’ (Table 1B). Colchicine was 

associated with increased risk of ‘Coronary atherosclerosis and other heart disease’ (HR=1.7, adjusted 

p=0.00038), and phenytoin with increased risk of ‘Acute cerebrovascular disease’ (HR=2.1, adjusted 

p=0.0011). Four medications were associated with risk of ‘Delirium, dementia, and amnestic and other 

cognitive disorders’. Six medications were associated with an increased risk of ‘Neoplasms excl. 

benign’. Nine medications were associated with ‘Nutritional deficiencies’. A complete list of all disease 

categories is available in Supplementary Table S5. 

 

Validation of the predicted comorbidity-medication relationship by genetic association 

analysis 

We evaluated the associations between the predicted medications and seven disease comorbidities of 

interest (Table 1A) within the Mount Sinai BioMe biobank cohort (see Methods). Specifically, we 

analyzed the associations between each comorbidity and SNPs mapped to the genes targeted by 

medications predicted to be protective. 

We found that 286 of 4,912 SNPs were significantly associated with comorbidities, with nominal 

p values less than 0.05 (Table 2 and Supplementary Table S9). We identified 58 SNPs, corresponding to 

17 unique drug targets, that were significantly enriched in patients diagnosed with ‘Retinal detachments; 

defects; vascular occlusion; and retinopathy’. These patients could, in theory, benefit from three 

corresponding medications: calcium, hydroxyzine, and ibuprofen, which demonstrated a protective 

effect. Twelve SNPs mapped to five genes targeted by metformin, naproxen, and ondansetron were 

associated with ‘Chronic kidney disease’. Additionally, 45 SNPs mapped to 18 genes connected to six 

medications were associated with ‘Coronary atherosclerosis and other heart disease’. Thirty-four SNPs 
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mapped to 11 genes targeted by five medications were associated with ‘Acute cerebrovascular disease’. 

Twenty-five SNPs corresponding to six medications, specifically azithromycin, bacitracin, 

betamethasone, ketorolac, lidocaine, and oxycodone, were related to ‘Neoplasms excluding benign’. 

Seventy-seven SNPs mapped to 15 genes related to four medications, gabapentin, nifedipine, cefazolin, 

and phenylephrine, were associated with ‘Delirium, dementia, and amnestic and other cognitive 

disorders.’ Sixteen SNPs linked to four medications were related to ‘Nutritional deficiencies’. A 

complete list of each significant SNP-comorbidity association is provided in Supplementary Table S9. 

In the SNP set–comorbidity combinations, we gathered SNPs based on gene-level annotations. 

There were nine associations between the gene level and comorbidities, all of which were consistently 

identified within the SNP–comorbidity combinations described above (Table 2).  

These genetic associations between drug-target genes/SNPs and comorbidities in the T2D patient 

cohort strongly support our findings regarding the protective associations between medications and 

comorbidities and suggest mechanisms of actions for each medication. 
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Discussion 

Because T2D is associated with various clinical manifestations and chronic comorbidities over time, the 

optimal therapeutic regimen evolves according to the changing disease profile of the individual patient. 

In this study, we developed the first data-driven deep phenotyping strategy for identifying the risk and 

benefits of medications based on the T2D comorbidity profiles. These T2D comorbidity profiles are 

based on our comprehensive large-scale EMR, which contains longitudinal clinical measurements, 

prescribed or administered medications, and disease diagnoses. Analyzing EMR enables us to explore 

longitudinal trajectory outcomes with more than 10 years of follow-up, increasing the likelihood of 

capturing long-term effects. We developed a systematic approach to estimate the association of 

medications, alone in combination, with future onset of comorbidities. Our approach could facilitate the 

precision of treatment regimens tailored to individual disease profiles. 

 Our analyses confirmed known associations between medications and diseases, and also 

uncovered potentially novel connections between medications and T2D comorbidities.  Our approach 

began with evaluating the prevalence of comorbidities in T2D patients after the initial diagnosis of T2D. 

Next, statistical models were applied to assess the effects of medications on the risk of developing 

subsequent comorbidities. Lastly, medications and disease associations were assessed and explained by 

genetic variants using the T2D patient cohort in the genotyping biobank data from our BioMe program 

17. 

Our analysis provides clinical evidence for associations previously demonstrated only in 

laboratory and animal studies. Two 5-hydroxytryptamine 3 (5-HT3) receptor antagonists, ondansetron 

and granisetron, consistently showed protective effects to ‘Delirium, dementia, and amnestic and other 

cognitive disorders’. Several studies on rats and nonhuman primates showed that ondansetron has 

positive effects on learning 37. A clinical trial of ondansetron 46 revealed no significant therapeutic 
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benefit for Alzheimer’s disease (AD), but that study was conducted on mild/moderate AD patients who 

received a short-term treatment (24 weeks), rather than pre-AD patients in which the condition might be 

prevented. This result, in conjunction with other two studies with 5-HT reuptake inhibitors 47,48, suggest 

that serotonergic strategies are not effective at improving cognition in patients with existing AD. 

Nevertheless, our analysis is the first to support a protective effect of 5-HT3 antagonists against 

cognitive disorders, the first such evidence to be obtained in human patients. Thus, our EMR-based 

studies could reveal the long-term effects of prognostic factors for pre-dementia patients, particularly 

patients with T2D.  To our knowledge, we are the first to describe a protective association in humans 

between clopidogrel, classified as a thienopyridine, and ‘Retinal detachments; defects; vascular 

occlusion; and retinopathy’. A protective effect was established for ischemic retinopathy in a mouse 

model 43. A clinical trial using a randomized, double-masked, placebo-controlled design showed that 

another thienopyridine, ticlopidine, significantly slows the progression of nonproliferative diabetic 

retinopathy in insulin-treated diabetic patients 49, and our result supports a protective class effect. 

Additionally, our analysis supported the previous studies, which have reported that some antibiotics are 

associated with decreased risk for neoplasms (See Supplementary Discussion). 

Genetic analysis of the T2D patient cohort in our biobank provided potential insights into the 

protective associations between medication and disease comorbidities through an inferred underlying 

mechanism of action (Table 2). The potentially novel association between ‘Delirium, dementia, and 

amnestic and other cognitive disorders’ and the antiepileptic gabapentin, a first-line medications for 

neuropathic pain in diabetic neuropathy, is supported by the relationship between this disease and its 

target genes, GRIN1 and CACNA2D2 (Table 2). GRIN1 encodes NMDA (N-methyl-D-aspartate) 

receptor 1, a target gene of the Alzheimer’s disease drug, memantin. In addition, voltage-gated calcium 

channels, including CACNA2D2, are inhibited by gabapentin 50; calcium channel blockade attenuates 
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amyloid-β-induced neuronal decline in vitro and is neuroprotective in animal models 51. Further 

potentially novel associations were discussed in Supplementary Discussion.  

 Although some of the medication–comorbidity associations we identified have been supported 

by previous preclinical studies, the genetic association results further strengthen and guide our 

interpretation of the potential mechanisms of action. The association between ‘Retinal detachments; 

defects; vascular occlusion; and retinopathy’ and the histamine H1 blocker hydroxyzine is supported by 

two SNPs mapped to HRH1. The protective effect of an H1 blocker against retinopathy is consistent 

with a previous study showing that H1 blockage is effective in reversing leakage of albumin from the 

blood across the retinal barrier, a typical phenotype of diabetic retinopathy in diabetic rats 52. We also 

describe an association between lidocaine and lower rates of ‘Neoplasm excluding benign’, and this 

observation is supported by studies which demonstrated that a clinical concentration of lidocaine inhibits 

epidermal growth factor receptor (EGFR) activity and suppresses EGF-induced in vitro cancer cell 

proliferation 53,54. 

 Though several of the associations demonstrated in our analysis have been previously reported 

by patient-level studies, our genetic association analysis sheds light on potential mechanisms of drug 

action. For example, the protective effect of metformin against ‘Chronic kidney disease’ is supported by 

the association with PRKAB1, the gene coding AMP-activated protein kinase (AMPK), which is 

activated by metformin. AMPK is an energy sensor that plays a pivotal role in cellular homoeostasis. 

Deficiency in AMPK activity promotes epithelial-to-mesenchymal transition and renal cell apoptosis, 

eventually contributing to chronic kidney disease (CKD) 55. In addition, a meta-analysis of genome-wide 

association studies has identified a link between estimated glomerular filtration rate (eGFR) and another 

component of AMPK, encoded by PRKAG2 56. Although, due to a risk of lactic acidosis, metformin is 

currently contraindicated in patients with severe CKD (eGFR < 30 ml/min/1.73 m2), it has been 
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suggested that the benefits of its use may outweigh possible risks in these patients 57. A novel AMPK 

activator, without the risk of lactic acidosis, could be a safer alternative to metformin in preventing 

progression of severe CKD.  

In addition to identifying associations between medications and comorbidities, we analyzed 

whether medication pairing modified these associations (Supplementary Results and Supplementary 

Table S7). Some T2D medications were associated with nutritional deficiencies and this implies closer 

monitoring may be necessary with certain drugs. We observed novel associations between metformin 

and nateglinide with vitamin D deficiency, which is interesting because of data supporting that vitamin 

D supplementation may improve insulin sensitivity 58. Other novel associations identified include 

glyburide and vitamin B-complex deficiencies and repaglinide and protein-calorie malnutrition.   

In our current study, we build upon our previous work to identify specific treatment strategies 

according to individual T2D disease profiles and drug-disease associations. In our preceding publication, 

we characterized the heterogeneous patient landscape of T2D into three distinct subtypes using clinical 

data from an EMR and verified the disease association in a genetics biobank 11. That work had suggested 

that there might be patterns of T2D with different genetic associated phenotypic characteristics, as well 

as risk factors for developing certain subsequent conditions. Combining this knowledge with our current 

observations regarding medication associations with comorbidities, a more personalized and precise 

approach toward medication regimens can be devised (Supplementary Discussion).  

This study has its limitations. First, to define the patient cohort, we had to use ICD-9 codes 

instead of the well-validated eMERGE algorithm 59 because about 30% of the patients did not have lab 

test results for random/fasting glucose or HbA1c. To ensure high-quality phenotyping, however, we 

carefully ruled out type 1 diabetes mellitus, similarly to what is done by the eMERGE algorithm. 

Furthermore, the eMERGE algorithm was developed in 2012 and does not capture T2D medications 
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approved by FDA after 2012, such as some DPP-4 inhibitors, GLP-1 agonists, insulin analogs, and any 

SGLT-2 inhibitors. Second, the first diagnosis of T2D may not always have been documented at our 

hospital, so we cannot ensure that a given patient was not been diagnosed previously elsewhere. By the 

same reasoning, it is possible that some diagnoses and prescription of medications documented at 

different institutions may have been missed. One possible solution and future direction is to incorporate 

data from insurance claims. In addition, the definition of outcome comorbidities by CCS Diagnoses 

terms would reduce the resolution of disease category coded by ICD-9. However, we could collect 

sufficient sample size and reduce the noise of underdiagnoses, including assignment of a similar but 

different ICD-9 code, which was observed in diabetic neuropathy. Finally, the results of this 

observational study need to be interpreted with caution and will require confirmation in randomized 

clinical trials that stratify treatment groups based on the status of disease comorbidities and other clinical 

features.  

Our study is the first to investigate a comprehensive EMR linked to a biobank with the aim of 

discovering the risk of T2D comorbidities and revealing treatment strategies tailored to patient risk 

profiles. Using systematic feature selection with a regularization technique and survival analysis with 

time dependent covariate in propensity score matched cohort, we identified a list of medications that 

may influence the risk spectrum of T2D comorbidities. We analyzed medications based on ingredient 

level irrespectively on drug form, and the approach enabled us to identify the ingredients that associate 

with comorbidities, which have not been reported in literature. Future studies would be followed up for 

further investigation. Finally, both previously observed and novel associations between medications and 

comorbidities were validated by genetic variants analysis using the T2D patient cohort in our biobank. 

With further evidence, if these recommendations can successfully be implemented in the clinic, it would 

undoubtedly reduce the economic burden by prioritizing prescription of the right medication at the right 
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time. Our medication–comorbidity model provides a real-world, data-driven approach for treatment 

stratifications that consider future development of comorbidities, with the ultimate goal of guiding 

precision medicine based on individual clinical phenotypes of patients with T2D. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814392doi: bioRxiv preprint 

https://doi.org/10.1101/814392


 20 

Methods 

Ethics statement 

All data were fully anonymized. Ethical approval was provided by Program for the Protection of Human 

Subjects (PPHS) at Mount Sinai health system (HS#17-01058, IRB#17-02530). Waiver of informed 

consent was approved due to the purpose and scale of this study with retrospective and anonymous data 

only. 

 

Study design  

The objective of our study was to develop a data-driven approach to identify the risk and benefits of 

medications based on the T2D comorbidity profiles for guiding precision medicine tailored to individual 

clinical phenotypes. We used comprehensive Electronic Medical Records (EMR) system of Mount Sinai 

Hospital (MSH) to identify associations between T2D comorbidities and medications. We analyzed a 

T2D cohort of 40,144 individuals with well-annotated patient information. Please refer to 

Supplementary Methods section for patient cohort, clinical sources and term standardization, and 

definition of outcomes. We applied a systematic feature selection using a regularization technique and 

survival analysis method with time dependent covariates in a propensity score matched cohort. The 

relations between medications and comorbidities were validated by genetic variants analysis using the 

T2D patient cohort in our EMR-linked biobank. 
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Disease prevalence and disease pair temporal directionality 

We calculated the disease prevalence based on the Kaplan–Meier product–limit estimator, with units of 

1 year, and then we assessed disease-pair connectivity patterns for T2D comorbidities. Please refer to 

the Supplementary Methods section for detailed descriptions of the disease prevalence and disease pair 

temporal directionality analyses. 

 

Feature selection 

We considered many disease variables coded by Single-Level Clinical Classifications Software (CCS) 

diagnoses, medication variables mapped to RxNorm ingredient code, and lab/vital variables based on 

LOINC codes (Supplementary Methods). Accordingly, we adopted a feature selection method, 

specifically a penalized logistic regression with adaptive LASSO (Eq. 1), to identify variables of the 

highest relevance associated with ensuing comorbidities following T2D disease diagnosis. First, we pre-

filtered disease and medication variables to only include those with more than 20 patients, and lab/vital 

variables measured for more than 50% of patients, yielding a total of 1,255 features including 246 

diseases, 899 medications, 107 lab/vitals, and four demographic features. Adaptive LASSO is an 

extension of traditional LASSO 60 that uses coefficient-specific weights 61. The adaptive LASSO 

estimator may achieve sparsity and selection consistency for the true model, i.e., correctly identifies the 

zero and nonzero parameters 62. Let ℒ"(𝛽; 𝑌, 𝑋) be the negative log-likelihood parametrized by β for a 

sample of size n. The adaptive LASSO estimator is defined as:  

 

𝛽* = 𝑎𝑟𝑔𝑚𝑖𝑛2	{ℒ"(𝛽; 𝑌, 𝑋) + 𝜆" ∑ 𝜔9:;𝛽<;=
<>? }	                                            (1) 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814392doi: bioRxiv preprint 

https://doi.org/10.1101/814392


 22 

where 𝜔9: = |𝛽9B |CD is a coefficient specific weights vector, and 𝜆" is a regularization parameter. We set 

the positive constant γ as 1, according to Zou et al. 61, and obtained 𝛽E by the maximum likelihood 

estimate of Ridge regression. The 𝜆"value for minimum AUC was chosen by 10-fold cross validation. 

We used the R package glmnet 63 for these penalized regressions. 

 

Logistic regression model 

In the cross-sectional analysis, we used the odds ratio (OR) from logistic regression to quantify the 

magnitude of the risk of comorbidity associated with prescription of each medication (i.e., increased risk 

or protective effect). Please see the Supplementary Methods section for a detailed description of logistic 

regression. Features that were significantly associated with each of the outcome comorbid diseases with 

nominal p values less than 0.05 were used for the following propensity score matching and survival 

analysis. 

 

Survival analysis 

We calculated hazard ratios using Cox proportional hazards models with propensity score matching of 

cases and controls. Propensity score matching is described in Supplementary Methods. Although many 

previous studies demonstrated that propensity score matching effectively suppresses confounder effects 

64,65, we further adjusted the time-dependent effects after the baseline time point using time-dependent 

covariates 66. We did so because our study focuses on the association between medications and the 

development of comorbid diseases, considering interventions after the baseline time point (Fig. 1B). For 

the time-dependent covariates, we used as many adaptive-LASSO-selected covariates as possible unless 

a given covariate did not violate the proportional hazards assumption. 

Cox proportional hazard model with time-dependent covariates: 
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ℎ(𝑡) = ℎH(𝑡)exp	(𝛽𝑥𝐿𝐴𝑆𝑆𝑂_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑥(𝑡))                 (2) 

 

where ℎ(𝑡) is the expected hazard at time t, ℎH(𝑡) is the baseline hazard, and 

𝐿𝐴𝑆𝑆𝑂_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒Y(𝑡) is each of the time t-dependent binary variables selected by adaptive 

LASSO, such as medications, disease history, lab values, and vital signs. 

 We confirmed the proportional hazards assumption by calculating Schoenfeld residuals 

(Schoenfeld test p>0.05). We used the R packages survival and survminer for survival analysis. The p 

values derived from the Cox models were adjusted for multiple testing using the Benjamini and 

Hochberg false discovery rate method 67. 

 

SNP/gene and disease association analyses 

We assessed our predicted associations between medications and above seven well-known T2D 

comorbidities 11 by performing a genetic association analysis. Specifically, we retrieved drug–gene 

relationship information from DrugBank version 5.0.11 68, and then obtained genotyping data for all 

SNPs mapped to these genes in our cohort. We analyzed association a SNP–comorbidity basis as well as 

a gene–comorbidity basis by using the SNP-set Kernel Association Test (SKAT) method 69 

(Supplementary Methods).  
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Data availability 

The data that support the findings of this study are available from the corresponding author upon 

reasonable request. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814392doi: bioRxiv preprint 

https://doi.org/10.1101/814392


 25 

References 

1 Collaboration, N. C. D. R. F. Worldwide trends in diabetes since 1980: a pooled analysis of 751 

population-based studies with 4.4 million participants. Lancet 387, 1513-1530, 

doi:10.1016/S0140-6736(16)00618-8 (2016). 

2 Emerging Risk Factors, C. et al. Diabetes mellitus, fasting blood glucose concentration, and risk 

of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375, 2215-

2222, doi:10.1016/S0140-6736(10)60484-9 (2010). 

3 Chatterjee, S., Khunti, K. & Davies, M. J. Type 2 diabetes. Lancet 389, 2239-2251, 

doi:10.1016/S0140-6736(17)30058-2 (2017). 

4 Menke, A., Casagrande, S., Geiss, L. & Cowie, C. C. Prevalence of and Trends in Diabetes 

Among Adults in the United States, 1988-2012. JAMA 314, 1021-1029, 

doi:10.1001/jama.2015.10029 (2015). 

5 Seuring, T., Archangelidi, O. & Suhrcke, M. The Economic Costs of Type 2 Diabetes: A Global 

Systematic Review. Pharmacoeconomics 33, 811-831, doi:10.1007/s40273-015-0268-9 (2015). 

6 American Diabetes, A. Economic Costs of Diabetes in the U.S. in 2017. Diabetes Care 41, 917-

928, doi:10.2337/dci18-0007 (2018). 

7 Suh, D. C., Choi, I. S., Plauschinat, C., Kwon, J. & Baron, M. Impact of comorbid conditions 

and race/ethnicity on glycemic control among the US population with type 2 diabetes, 1988-1994 

to 1999-2004. J Diabetes Complications 24, 382-391, doi:10.1016/j.jdiacomp.2009.07.001 

(2010). 

8 Kaul, N. & Ali, S. Genes, Genetics, and Environment in Type 2 Diabetes: Implication in 

Personalized Medicine. DNA Cell Biol 35, 1-12, doi:10.1089/dna.2015.2883 (2016). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814392doi: bioRxiv preprint 

https://doi.org/10.1101/814392


 26 

9 Bertsimas, D., Kallus, N., Weinstein, A. M. & Zhuo, Y. D. Personalized Diabetes Management 

Using Electronic Medical Records. Diabetes Care 40, 210-217, doi:10.2337/dc16-0826 (2017). 

10 Mayer, B. Using systems biology to evaluate targets and mechanism of action of drugs for 

diabetes comorbidities. Diabetologia 59, 2503-2506, doi:10.1007/s00125-016-4032-2 (2016). 

11 Li, L. et al. Identification of type 2 diabetes subgroups through topological analysis of patient 

similarity. Sci Transl Med 7, 311ra174, doi:10.1126/scitranslmed.aaa9364 (2015). 

12 Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a 

data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol, doi:10.1016/S2213-

8587(18)30051-2 (2018). 

13 Iglay, K. et al. Prevalence and co-prevalence of comorbidities among patients with type 2 

diabetes mellitus. Curr Med Res Opin 32, 1243-1252, doi:10.1185/03007995.2016.1168291 

(2016). 

14 Matsuura, T. et al. [Study of bacterial flora in the oral cavity and stomach of elderly patients 

receiving nasogastric tube feeding]. Kansenshogaku Zasshi 71, 397-404 (1997). 

15 Group, D. A. I. S. The prevalence of coronary heart disease in Type 2 diabetic patients in Italy: 

the DAI study. Diabet Med 21, 738-745, doi:10.1111/j.1464-5491.2004.01230.x (2004). 

16 Plantinga, L. C. et al. Prevalence of chronic kidney disease in US adults with undiagnosed 

diabetes or prediabetes. Clin J Am Soc Nephrol 5, 673-682, doi:10.2215/CJN.07891109 (2010). 

17 Li, L. et al. Disease risk factors identified through shared genetic architecture and electronic 

medical records. Sci Transl Med 6, 234ra257, doi:10.1126/scitranslmed.3007191 (2014). 

18 Nissen, S. E. & Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death 

from cardiovascular causes. N Engl J Med 356, 2457-2471, doi:10.1056/NEJMoa072761 (2007). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814392doi: bioRxiv preprint 

https://doi.org/10.1101/814392


 27 

19 Jain, R., Mullins, C. D., Lee, H. & Wong, W. Use of rosiglitazone and pioglitazone immediately 

after the cardiovascular risk warnings. Res Social Adm Pharm 8, 47-59, 

doi:10.1016/j.sapharm.2010.12.003 (2012). 

20 Mooradian, A. D. Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 5, 

150-159, doi:10.1038/ncpendmet1066 (2009). 

21 Liu, H. F., Qi, X. W., Ma, L. L., Yao, D. K. & Wang, L. Atorvastatin improves endothelial 

progenitor cell function and reduces pulmonary hypertension in patients with chronic pulmonary 

heart disease. Exp Clin Cardiol 18, e40-43 (2013). 

22 Yanai, H. Dipeptidyl peptidase-4 inhibitor sitagliptin significantly reduced hepatitis C virus 

replication in a diabetic patient with chronic hepatitis C virus infection. Hepatobiliary Pancreat 

Dis Int 13, 556 (2014). 

23 Aroda, V. R. et al. Long-term Metformin Use and Vitamin B12 Deficiency in the Diabetes 

Prevention Program Outcomes Study. J Clin Endocrinol Metab 101, 1754-1761, 

doi:10.1210/jc.2015-3754 (2016). 

24 Group, N. S. et al. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N 

Engl J Med 362, 1463-1476, doi:10.1056/NEJMoa1001122 (2010). 

25 Ng, T. P. et al. Long-term metformin usage and cognitive function among older adults with 

diabetes. J Alzheimers Dis 41, 61-68, doi:10.3233/JAD-131901 (2014). 

26 Kuan, Y. C., Huang, K. W., Lin, C. L., Hu, C. J. & Kao, C. H. Effects of metformin exposure on 

neurodegenerative diseases in elderly patients with type 2 diabetes mellitus. Prog 

Neuropsychopharmacol Biol Psychiatry 79, 77-83, doi:10.1016/j.pnpbp.2017.06.002 (2017). 

27 Bitzur, R. Remembering Statins: Do Statins Have Adverse Cognitive Effects? Diabetes Care 39 

Suppl 2, S253-259, doi:10.2337/dcS15-3022 (2016). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814392doi: bioRxiv preprint 

https://doi.org/10.1101/814392


 28 

28 Geifman, N., Brinton, R. D., Kennedy, R. E., Schneider, L. S. & Butte, A. J. Evidence for benefit 

of statins to modify cognitive decline and risk in Alzheimer's disease. Alzheimers Res Ther 9, 10, 

doi:10.1186/s13195-017-0237-y (2017). 

29 Beales, I. L., Dearman, L., Vardi, I. & Loke, Y. Reduced Risk of Barrett's Esophagus in Statin 

Users: Case-Control Study and Meta-Analysis. Dig Dis Sci 61, 238-246, doi:10.1007/s10620-

015-3869-4 (2016). 

30 Smith, I., Schmidt, R., Halm, E. A. & Mansi, I. A. Do Statins Increase the Risk of Esophageal 

Conditions? Findings from Four Propensity Score-Matched Analyses. Clin Drug Investig, 

doi:10.1007/s40261-017-0589-x (2017). 

31 Coppolino, G. et al. Exploring the effects of DPP-4 inhibitors on the kidney from the bench to 

clinical trials. Pharmacol Res, doi:10.1016/j.phrs.2017.12.001 (2017). 

32 Chattipakorn, N., Apaijai, N. & Chattipakorn, S. C. Dipeptidyl peptidase-4 inhibitors and the 

ischemic heart: Additional benefits beyond glycemic control. Int J Cardiol 202, 415-416, 

doi:10.1016/j.ijcard.2015.09.044 (2016). 

33 Hung, Y. C., Lin, C. C., Huang, W. L., Chang, M. P. & Chen, C. C. Sitagliptin and risk of heart 

failure hospitalization in patients with type 2 diabetes on dialysis: A population-based cohort 

study. Sci Rep 6, 30499, doi:10.1038/srep30499 (2016). 

34 Aggarwal, R., Akhthar, T. & Jain, S. K. Coronary artery disease and its association with Vitamin 

D deficiency. J Midlife Health 7, 56-60, doi:10.4103/0976-7800.185334 (2016). 

35 Cao, Y. et al. Population-wide Impact of Long-term Use of Aspirin and the Risk for Cancer. 

JAMA Oncol 2, 762-769, doi:10.1001/jamaoncol.2015.6396 (2016). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814392doi: bioRxiv preprint 

https://doi.org/10.1101/814392


 29 

36 Lovell, M. A. et al. Calcium Channel Blockers, Progression to Dementia, and Effects on 

Amyloid Beta Peptide Production. Oxid Med Cell Longev 2015, 787805, 

doi:10.1155/2015/787805 (2015). 

37 Domeney, A. M. et al. The effect of ondansetron on cognitive performance in the marmoset. 

Pharmacol Biochem Behav 38, 169-175 (1991). 

38 Luo, F. et al. Phenylephrine enhances glutamate release in the medial prefrontal cortex through 

interaction with N-type Ca2+ channels and release machinery. J Neurochem 132, 38-50, 

doi:10.1111/jnc.12941 (2015). 

39 Li, S. et al. Bacitracin Inhibits the Migration of U87-MG Glioma Cells via Interferences of the 

Integrin Outside-in Signaling Pathway. J Korean Neurosurg Soc 59, 106-116, 

doi:10.3340/jkns.2016.59.2.106 (2016). 

40 Li, F. et al. Azithromycin effectively inhibits tumor angiogenesis by suppressing vascular 

endothelial growth factor receptor 2-mediated signaling pathways in lung cancer. Oncol Lett 14, 

89-96, doi:10.3892/ol.2017.6103 (2017). 

41 Zhang, L. et al. Lidocaine inhibits the proliferation of lung cancer by regulating the expression of 

GOLT1A. Cell Prolif 50, doi:10.1111/cpr.12364 (2017). 

42 Hollis, T. M. et al. Antihistamines reverse blood-ocular barrier breakdown in experimental 

diabetes. J Diabet Complications 2, 47-49 (1988). 

43 De La Cruz, P. et al. Effects of clopidogrel and ticlopidine on experimental diabetic ischemic 

retinopathy in rats. Naunyn Schmiedebergs Arch Pharmacol 367, 204-210, doi:10.1007/s00210-

002-0657-4 (2003). 

44 Morgan, S. L., Baggott, J. E., Lee, J. Y. & Alarcon, G. S. Folic acid supplementation prevents 

deficient blood folate levels and hyperhomocysteinemia during longterm, low dose methotrexate 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814392doi: bioRxiv preprint 

https://doi.org/10.1101/814392


 30 

therapy for rheumatoid arthritis: implications for cardiovascular disease prevention. J Rheumatol 

25, 441-446 (1998). 

45 Dave, J. A., Cohen, K., Micklesfield, L. K., Maartens, G. & Levitt, N. S. Antiretroviral Therapy, 

Especially Efavirenz, Is Associated with Low Bone Mineral Density in HIV-Infected South 

Africans. PLoS One 10, e0144286, doi:10.1371/journal.pone.0144286 (2015). 

46 Dysken, M., Kuskowski, M., Love, S. & Ondansetron Study, G. Ondansetron in the treatment of 

cognitive decline in Alzheimer dementia. Am J Geriatr Psychiatry 10, 212-215 (2002). 

47 Cutler, N. R. et al. Evaluation of zimeldine in Alzheimer's disease. Cognitive and biochemical 

measures. Arch Neurol 42, 744-748 (1985). 

48 Dehlin, O., Hedenrud, B., Jansson, P. & Norgard, J. A double-blind comparison of alaproclate 

and placebo in the treatment of patients with senile dementia. Acta Psychiatr Scand 71, 190-196 

(1985). 

49 Ticlopidine treatment reduces the progression of nonproliferative diabetic retinopathy. The 

TIMAD Study Group. Arch Ophthalmol 108, 1577-1583 (1990). 

50 Maneuf, Y. P., Luo, Z. D. & Lee, K. alpha2delta and the mechanism of action of gabapentin in 

the treatment of pain. Semin Cell Dev Biol 17, 565-570, doi:10.1016/j.semcdb.2006.09.003 

(2006). 

51 Nimmrich, V. & Eckert, A. Calcium channel blockers and dementia. Br J Pharmacol 169, 1203-

1210, doi:10.1111/bph.12240 (2013). 

52 Hollis, T. M., Sill, H. W., Butler, C., Campos, M. J. & Gardner, T. W. Astemizole reduces 

blood-retinal barrier leakage in experimental diabetes. J Diabetes Complications 6, 230-235 

(1992). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814392doi: bioRxiv preprint 

https://doi.org/10.1101/814392


 31 

53 Hirata, M. et al. Lidocaine inhibits tyrosine kinase activity of the epidermal growth factor 

receptor and suppresses proliferation of corneal epithelial cells. Anesthesiology 100, 1206-1210 

(2004). 

54 Sakaguchi, M., Kuroda, Y. & Hirose, M. The antiproliferative effect of lidocaine on human 

tongue cancer cells with inhibition of the activity of epidermal growth factor receptor. Anesth 

Analg 102, 1103-1107, doi:10.1213/01.ane.0000198330.84341.35 (2006). 

55 Allouch, S. & Munusamy, S. AMP-activated Protein Kinase as a Drug Target in Chronic Kidney 

Disease. Curr Drug Targets, doi:10.2174/1389450118666170601130947 (2017). 

56 Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways 

relevant for kidney function. Nat Commun 7, 10023, doi:10.1038/ncomms10023 (2016). 

57 Heaf, J. Metformin in chronic kidney disease: time for a rethink. Perit Dial Int 34, 353-357, 

doi:10.3747/pdi.2013.00344 (2014). 

58 von Hurst, P. R., Stonehouse, W. & Coad, J. Vitamin D supplementation reduces insulin 

resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D 

deficient - a randomised, placebo-controlled trial. Br J Nutr 103, 549-555, 

doi:10.1017/S0007114509992017 (2010). 

59 Pacheco, J. & Thompson, W. Northwestern University. Type 2 Diabetes Mellitus. PheKB; 2012 

Available from: https://phekb.org/phenotype/18). 

60 Tibshirani, R. Regression shrinkage and selection via the lasso: a retrospective. Journal of the 

Royal Statistical Society Series B-Statistical Methodology 73, 273-282, doi:DOI 10.1111/j.1467-

9868.2011.00771.x (2011). 

61 Zou, H. & Zhang, H. H. On the Adaptive Elastic-Net with a Diverging Number of Parameters. 

Ann Stat 37, 1733-1751, doi:10.1214/08-AOS625 (2009). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814392doi: bioRxiv preprint 

https://doi.org/10.1101/814392


 32 

62 Zou, H. & Li, R. One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. Ann 

Stat 36, 1509-1533, doi:10.1214/009053607000000802 (2008). 

63 Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models via 

Coordinate Descent. J Stat Softw 33, 1-22 (2010). 

64 Schneeweiss, S. Learning from big health care data. N Engl J Med 370, 2161-2163, 

doi:10.1056/NEJMp1401111 (2014). 

65 Schermerhorn, M. L. et al. Long-Term Outcomes of Abdominal Aortic Aneurysm in the 

Medicare Population. N Engl J Med 373, 328-338, doi:10.1056/NEJMoa1405778 (2015). 

66 Fisher, L. D. & Lin, D. Y. Time-dependent covariates in the Cox proportional-hazards regression 

model. Annu Rev Public Health 20, 145-157, doi:10.1146/annurev.publhealth.20.1.145 (1999). 

67 Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate - a Practical and Powerful 

Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 

57, 289-300 (1995). 

68 Wishart, D. S. et al. DrugBank: a comprehensive resource for in silico drug discovery and 

exploration. Nucleic Acids Res 34, D668-672, doi:10.1093/nar/gkj067 (2006). 

69 Ionita-Laza, I., Lee, S., Makarov, V., Buxbaum, J. D. & Lin, X. Sequence kernel association 

tests for the combined effect of rare and common variants. Am J Hum Genet 92, 841-853, 

doi:10.1016/j.ajhg.2013.04.015 (2013). 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814392doi: bioRxiv preprint 

https://doi.org/10.1101/814392


 33 

Acknowledgements 

We thank Mount Sinai Data Warehouse for data access and infrastructural support. The BioMe Biobank 

was funded by The Charles Bronfman Institute for Personalized Medicine at the Icahn School of 

Medicine at Mount Sinai. We also thank Douglas Ruderfer and Eli Stahl for performing the original 

quality control of the BioMe genotype data. This work was supported in part by a gift from the Harris 

Family Charitable Foundation (to J.T. D.), and grant from the NIH R01 DK098242. The funders had no 

role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. 

 

Author Contributions 

Study supervision: L.L. and J.T.D. Conceived and designed the study: O.I. and L.L. Analyzed EMRs: 

O.I., B.G., and L.L. Performed machine learning, model development, survival and other statistical 

analysis: O.I. Figures and tables: O.I. and B.G. Analyzed genotyping data: O.I., L.L. Contributed Drug 

Bank and genetic variant analysis tools: B.G., S.D.L., and R.C. Contributed statistical insights: H-C. L. 

Contributed to literature review: O.I. and N.M. Contributed to clinical interpretation: L.L., O.I. and 

N.M. Wrote and edited the paper: O.I., B.G., N.M., L.L., S.D.L., and J.T.D.  

 

Competing Interests 

J.T.D. has received consulting fees or honoraria from Janssen Pharmaceuticals, GlaxoSmithKline, 

AstraZeneca, and Hoffman-La Roche; is a scientific advisor to LAM Therapeutics; and holds equity in 

NuMedii Inc., Ayasdi Inc., and Ontomics, Inc. O.I. is an employee of Sumitomo Dainippon Pharma Co., 

Ltd. All other authors declare no competing interests.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814392doi: bioRxiv preprint 

https://doi.org/10.1101/814392


 34 

Figure Legends 

Fig. 1. Schematic work flow of our study design and methods. (A) Workflow of current study. (B) 

Diagram of survival analysis with time dependent covariates after propensity score matching. The 

baseline time point, T0, was defined as the first prescription day of the targeted medication or 30 days 

after the initial T2D diagnosis date, whichever was later (see Supplementary Methods).  

 

Fig. 2. Prevalence and increased risk after T2D. (A) The 20 most prevalent diseases in our T2D 

cohort. The color coding of diseases is shown in the right of the plot. (B) The 20 diseases with the 

greatest increase in risk after T2D diagnosis (adjusted binomial p values < 0.05, using the Bonferroni 

method). The values on the edge and line thickness indicate relative risks. A complete list of prevalence 

and increased risk is provided in Supplementary Table S1. 

 

Fig. 3. Heatmap of associations between T2D disease comorbidity and T2D /T2D- related 

medication. Rectangle border color represents odds ratio (OR) by the cross-sectional analysis using 

logistic regression (nominal p values < 0.05), and rectangle fill color represents hazard ratio (HR) by the 

survival analysis using time-dependent covariate Cox regression after propensity score matching 

(adjusted p values < 0.05, using the Benjamini-Hochberg method). The protective associations (OR < 

1.0 or HR < 1.0) are displayed in blue, and the risk associations (OR > 1.0 or HR > 1.0) are displayed in 

red. The drug indications are colored gray. 

 

Fig. 4. Network of T2D disease comorbidities and medications. This network includes all kinds of 

medications, including non-T2D medications, and associations with adjusted p values < 0.01, using the 
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Benjamini-Hochberg method. For visualization purposes, we showed the diseases categorized into six 

Multi-Level CCS codes (Neoplasms, Nutritional, Mental, Sense, Circulatory, and Genitourinary), except 

for residual diseases beginning with “other” (e.g., “Other circulatory disease”). Blue ellipses represent 

medications, and squares represent disease comorbidities with the fill color corresponding to the disease 

categories by Multi-Level CCS codes. The protective associations (HR < 1.0) are displayed by blue 

lines, and the risk associations (HR > 1.0) are displayed by red lines. Line thickness represents the 

magnitude of HR. A complete list of all associations (adjusted p values < 0.05) is available in 

Supplementary Tables S4 and S5.  
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Tables 

Table 1. Protective or risk medications for the selected comorbidities.  

Table 1 (A) 

Comorbidity Medication HR cox 95% CI Adjusted 

P value 

Reference (PMID) 

Retinal detachments; defects; 

vascular occlusion; and 

retinopathy 

Psyllium 0.47 0.26-0.83 3.35E-02 
 

Hydroxyzine 0.52 0.33-0.81 1.66E-02 
 

Aluminum (INa) 0.52 0.32-0.85 3.23E-02 
 

Naproxen 0.70 0.54-0.91 2.74E-02 
 

Lidocaine 0.71 0.59-0.87 4.89E-03 
 

Nystatin 0.72 0.57-0.92 2.67E-02 
 

Calcium 0.73 0.57-0.92 3.20E-02 
 

Ibuprofen 0.73 0.6-0.88 7.66E-03 
 

Clopidogrel 0.80 0.68-0.94 2.54E-02 
 

Chronic kidney disease Levetiracetam 0.53 0.37-0.76 3.95E-03 
 

Metforminb 0.63 0.63-0.63 0.00E+00 22641582, 21325870 

Sodium phosphate 0.66 0.51-0.86 1.11E-02 
 

Ondansetron 0.68 0.6-0.78 1.86E-06 
 

Naproxen 0.69 0.54-0.9 2.38E-02 
 

Acetaminophen 0.72 0.64-0.81 1.13E-06 
 

Hydrocortisone 0.76 0.65-0.9 8.91E-03 28415636 

Coronary atherosclerosis and 

other heart disease 

Atovaquone 0.22 0.1-0.52 3.76E-03 
 

Pseudoephedrine 0.34 0.21-0.55 1.90E-04 
 

Timolol 0.48 0.28-0.81 2.33E-02 15819591 

Diclofenac 0.60 0.42-0.86 2.28E-02 
 

Potassium 

phosphate 

0.60 0.45-0.81 5.52E-03 
 

Sulfamethoxazole 0.62 0.48-0.81 3.95E-03 
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Iron 0.65 0.51-0.82 2.93E-03 18294483 

Cholecalciferol 0.66 0.48-0.91 3.80E-02 27499590 

Hydromorphone 0.74 0.6-0.92 2.55E-02 
 

Metforminb 0.79 0.69-0.89 1.72E-03 28476766 

Acute cerebrovascular 

disease 

Succinylcholine 0.53 0.39-0.71 4.95E-04 
 

Repaglinideb 0.54 0.37-0.8 1.02E-02 
 

Ondansetron 0.59 0.47-0.75 1.84E-04 
 

Bacitracin 0.61 0.42-0.89 3.60E-02 
 

Sitagliptinb 0.65 0.46-0.92 4.67E-02 26687195 

Neoplasms excl. Benign Betamethasone 0.53 0.37-0.77 6.01E-03 
 

Aspirin 0.57 0.57-0.57 0.00E+00 26940135 

Ketorolac 0.65 0.53-0.79 4.78E-04 26071482 

Bacitracin 0.67 0.51-0.87 1.56E-02 
 

Azithromycin 0.72 0.62-0.84 4.11E-04 
 

Vancomycin 0.73 0.61-0.88 4.88E-03 
 

Hydralazine 0.74 0.61-0.89 8.55E-03 28277033 

Oxycodone 0.79 0.7-0.9 3.39E-03 
 

Amoxicillin 0.80 0.67-0.95 3.30E-02 28529929 

Lidocaine 0.80 0.68-0.95 2.94E-02 
 

Delirium, dementia, and 

amnestic and other cognitive 

disorders 

Granisetron 0.44 0.22-0.85 4.48E-02 
 

Nifedipine 0.54 0.42-0.7 8.29E-05 26221415 

Hydrocortisone 0.65 0.53-0.81 1.64E-03 
 

Cefazolin 0.68 0.58-0.8 3.42E-05 
 

Atorvastatin 0.69 0.58-0.82 4.10E-04 c 28212683, 27440840 

Ondansetron 0.71 0.59-0.84 1.12E-03 
 

Hydromorphone 0.72 0.58-0.89 1.23E-02 
 

Metforminb 0.74 0.65-0.85 1.95E-04 c 24577463, 28583443  

Gabapentin 0.74 0.62-0.89 6.80E-03 
 

Phenylephrine 0.76 0.64-0.92 1.87E-02 
 

Nutritional deficiencies Psyllium 0.59 0.44-0.8 3.68E-03 
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Bupivacaine 0.60 0.5-0.71 1.67E-07 
 

Gemfibrozil 0.67 0.48-0.93 4.59E-02 
 

Acetaminophen 0.67 0.61-0.74 6.28E-13 
 

Chlorhexidine 0.67 0.5-0.91 3.09E-02 
 

Aspirin 0.69 0.63-0.75 5.98E-14 
 

Atovaquone 0.69 0.52-0.93 4.21E-02 
 

Dextromethorphan 0.71 0.56-0.9 2.07E-02 
 

Tiotropium 0.74 0.59-0.92 2.84E-02 
 

Allopurinol 0.79 0.67-0.93 1.66E-02 
 

Clopidogrel 0.79 0.71-0.88 1.98E-04 
 

 

Table 1 (B) 

Comorbidity Medication HR cox 95% CI Adjusted P 

value 

Reference (PMID) 

Retinal detachments; defects; 

vascular occlusion; and 

retinopathy 

Aprepitant 4.81 2.4-9.65 1.84E-04 
 

HYLAN G-F 20 4.37 2.29-8.32 1.44E-04 
 

Prednisolone 2.99 2.14-4.18 1.70E-08 
 

Desloratadine 2.18 1.15-4.11 4.72E-02 
 

Timolol 1.76 1.3-2.38 2.28E-03 
 

Repaglinideb 1.47 1.18-1.82 3.86E-03 
 

Insulinb 1.36 1.17-1.58 7.48E-04 
 

Lisinopril 1.36 1.2-1.54 3.89E-05 
 

Glipizide 1.20 1.04-1.38 3.66E-02 
 

Chronic kidney disease Indigotindisulfonate 2.65 1.55-4.55 3.26E-03 
 

Omega-3 Acid 

Ethyl Esters (USP) 

2.48 1.41-4.36 9.23E-03 
 

Calcitriol 1.85 1.38-2.49 6.93E-04 
 

Pyridoxine 1.64 1.15-2.34 2.43E-02 
 

Nifedipine 1.52 1.3-1.78 9.49E-06 
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Pseudoephedrine 1.43 1.08-1.91 4.21E-02 
 

Prochlorperazine 1.41 1.09-1.82 3.27E-02 
 

Insulinb 1.40 1.25-1.58 1.05E-06 
 

Labetalol 1.36 1.19-1.55 1.48E-04 
 

Ferrous sulfate 1.30 1.14-1.48 1.15E-03 
 

Carvedilol 1.18 1.04-1.34 3.24E-02 
 

Coronary atherosclerosis and 

other heart disease 

Colchicine 1.71 1.33-2.18 3.76E-04 
 

Insulinb 1.19 1.03-1.37 4.89E-02 c 28958751, 22686416 

Acute cerebrovascular disease Phenytoin 2.08 1.44-3.01 1.13E-03 
 

Neoplasms excl. Benign Cosyntropin 2.62 1.55-4.43 2.91E-03 
 

Trimethobenzamide 2.10 1.27-3.48 1.77E-02 
 

Cetylpyridinium 1.93 1.14-3.28 4.47E-02 
 

Nadolol 1.91 1.38-2.64 1.19E-03 
 

Tenofovir 1.85 1.3-2.62 4.61E-03 
 

Sodium sulfate 1.46 1.09-1.94 3.39E-02 
 

Delirium, dementia, and 

amnestic and other cognitive 

disorders 

Iohexol 2.25 1.32-3.83 1.41E-02 
 

Bupropion 1.59 1.22-2.08 4.32E-03 
 

Repaglinideb 1.37 1.11-1.69 1.49E-02 
 

Heparin 1.33 1.11-1.59 1.06E-02 
 

Nutritional deficiencies HYLAN G-F 20 2.51 1.32-4.74 2.00E-02 
 

Ritonavir 2.36 1.86-2.99 3.35E-10 26633015 

Thiopental 2.11 1.19-3.76 3.54E-02 
 

Tretinoin 1.95 1.19-3.19 2.81E-02 
 

Methotrexate 1.60 1.18-2.18 1.32E-02 9517760 

Nateglinideb 1.52 1.13-2.05 2.29E-02 
 

Dobutamine 1.52 1.08-2.14 4.82E-02 
 

Fexofenadine 1.47 1.2-1.79 1.67E-03 
 

Ramipril 1.26 1.09-1.45 9.73E-03 
 

Homatropine 1.26 1.07-1.48 2.49E-02 
 

Glyburideb 1.24 1.06-1.44 2.33E-02 1070515 
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Repaglinideb 1.22 1.06-1.4 2.60E-02 
 

Metforminb 1.14 1.06-1.22 2.31E-03 22179958 

(A) Protective medications for the selected comorbidities (adjusted p < 0.05, using Benjamini-Hochberg 
method). All comorbidities are listed in Supplementary Tables S4. (B) Risk medications for the selected 
comorbidities (adjusted p < 0.05, using Benjamini-Hochberg method). All comorbidities are available in 
Supplementary Tables S5.  
a Ingredient. 
b Medications for T2D. 
c Multiple published studies showed inconsistent results. 
 

 

Table 2. Summary of associations between T2D comorbidities and SNPs/genes related to predicted 

protective medications (p<0.05).  

Disease Medication 

SNP-level association Gene-level association 

Gene (# of significant SNPs; P < 

0.05) 

Gene; P < 

0.05) 
P value 

# of 

marker 

used 

in 

SKAT 

Retinal detachments; 

defects; vascular 

occlusion; and 

retinopathy 

Calcium 

ATP2C1(1), CACNA1C(23), 

CALM1(1), CAST(2), CP(2), 

S100A2(1), SPTBN1(2), TFRC(2) 

CP 6.23E-04 28 

Hydroxyzine HRH1(2) - - - 

Ibuprofen 

BCL2(5), PLAT(2), PPARA(3), 

PPARG(3), PTGS1(1), PTGS2(1), 

SLC15A1(6), THBD(1) 

PTGS2 2.27E-02 4 

Chronic kidney disease 

Metformin PRKAB1(3) PRKAB1 1.26E-02 8 

Naproxen PTGS1(1) - - - 

Ondansetron HTR3A(2), HTR4(4), OPRM1(2) OPRM1 2.89E-02 98 
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Coronary 

atherosclerosis and 

other heart disease 

Cholecalciferol VDR(3) - - - 

Diclofenac 
ALOX5(1), KCNQ2(1), KCNQ3(4), 

SCN4A(1) 
- - - 

Hydromorphone OPRD1(2), OPRK1(3), OPRM1(2) - - - 

Iron CP(1), EGLN1(1), TF(5) - - - 

Pseudoephedrine 

ADRA1A(7), ADRB1(1), ATF6(1), 

GRIN3B(1), NFATC1(2), 

SLC6A2(6), SLC6A3(3) 

- - - 

Timolol ADRB1(1) - - - 

Acute cerebrovascular 

disease 

Bacitracin IDE(3) - - - 

Ondansetron HTR4(9), OPRM1(4) - - - 

Repaglinide ABCC8(2), PPARG(4) - - - 

Sitagliptin DPP4(3) - - - 

Succinylcholine 
CHRM1(1), CHRM2(3), CHRM3(3), 

CHRNA10(1), CHRNA7(1) 
CHRM2 8.36E-03 46 

Neoplasms excl. benign 

Azithromycin PADI4(2) - - - 

Bacitracin IDE(4) - - - 

Betamethasone NR3C1(7) - - - 

Ketorolac PTGS1(1) - - - 

Lidocaine 
EGFR(5), SCN4A(3), SCN5A(1), 

SCN9A(5) 
SCN4A 1.08E-02 48 

Oxycodone OPRK1(2), OPRM1(5) - - - 

Delirium, dementia, 

and amnestic and other 

cognitive disorders 

Cefazolin PON1(10) - - - 

Gabapentin 

ADORA1(3), CACNA1B(2), 

CACNA2D1(5), CACNA2D2(2), 

GABBR2(3), GRIN1(3), GRIN2A(6), 

GRIN2B(8) 

CACNA2D2 3.21E-03 26 

Gabapentin 
ADORA1(3), CACNA1B(2), 

CACNA2D1(5), CACNA2D2(2), 
GRIN1 4.40E-03 6 
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GABBR2(3), GRIN1(3), GRIN2A(6), 

GRIN2B(8) 

Nifedipine 

CACNA1C(13), CACNA1D(15), 

CACNA2D1(5), CACNB2(3), 

CALM1(1) 

- - - 

Phenylephrine 
ADRA1A(3), ADRA1B(2), 

ADRA1D(1) 
ADRA1A 3.43E-03 73 

Nutritional deficiencies 

Bupivacaine SCN10A(5) - - - 

Dextromethorphan 
CHRNA7(1), NCF2(1), OPRK1(2), 

OPRM1(2) 
- - - 

Gemfibrozil PPARA(2) - - - 

Tiotropium CHRM1(1), CHRM3(1), CHRM5(1) CHRM1 1.25E-02 4 

Reference SNP ID number, position, OR, 95% confidence interval, and p-values for SNP-level 
associations are provided in Supplementary Table S9. 
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Supporting information captions 

Supplementary Methods. 

Supplementary Results. 

Supplementary Discussion. 

Fig. S1. Types of selected features for each disease comorbidities. Types of selected features for each 

disease comorbidities. Medication, disease, lab values/vital signs, demographics were colored by 

blue, green, red, and purple, respectively. 

Fig. S2. Exclusion of the first 30days after T2D diagnosis. (A) Diagnosis distribution. (B) 

Prescription distribution. The order of the dates of T2D and its comorbidities was important for 

this study, but it is not biologically meaningful to assign an exact date of diagnosis for either 

T2D or its comorbidities. This is especially T2D true because, from a biological point of view, 

T2D is subject to considerable uncertainty in regard to the date of onset. As a result, a very sharp 

distinction of T2D comorbidities diagnoses immediately after diagnosis of T2D is not likely to 

be meaningful. 

Table S1. Prevalence and increased risk after T2D. 

Table S2. All features selected by adaptive LASSO and odds ratio estimated by logistic regression 

(nominal p < 0.05). 

Table S3. All associations between T2D comorbidity and T2D /T2D-related medications (adjusted 

p < 0.05, using the Benjamini-Hochberg method). References to the previous studies are also 

included. a Multiple published studies showed inconsistent results. 
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Table S4. All protective medications identified by the survival analysis (adjusted p < 0.05, using 

the Benjamini-Hochberg method). 

Table S5. All risk medications identified by the survival analysis (adjusted p < 0.05, using the 

Benjamini-Hochberg method). 

Table S6. Balance of covariates before and after propensity score matching in the survival 

analysis. 

Table S7. Candidate medications for adjunctive/combination therapy with T2D medications. (A) 

Significant additive effects in each subgroup of T2D patients taking a T2D medication in Table 1B. All 

medications in Table 1A were tested for each comorbidity, except for ‘Nutritional deficiencies’ (see 

Supplementary Methods). (B) Significant additive effects in each subgroup of T2D patients taking a 

T2D medication in Table 1A. All medications in Table 1A were tested across each comorbidity in Table 

1.  (C) High-resolution association between nutritional deficiency and high-risk T2D medications. 

Significant associations between diseases coded by ICD-9, and T2D medications (p < 0.05) clarified the 

type of nutritional deficiency. a Ingredient. 

Table S8. Balance of covariates before and after propensity score matching in the additive effects 

analysis. 

Table S9. All association between T2D comorbidities and SNPs related to predicted protective 

medications (p < 0.05). 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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