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Abstract 29

Studying the biology of sleep requires the accurate assessment of the state of 30

experimental subjects, and manual analysis of relevant data is a major bottleneck. 31

Recently, deep learning applied to electroencephalogram and electromyogram data has 32

shown great promise as a sleep scoring method, approaching the limits of inter-rater 33

reliability. As with any machine learning algorithm, the inputs to a sleep scoring 34

classifier are typically standardized in order to remove distributional shift caused by 35

variability in the signal collection process. However, in scientific data, experimental 36

manipulations introduce variability that should not be removed. For example, in sleep 37

scoring, the fraction of time spent in each arousal state can vary between control and 38

experimental subjects. We introduce a standardization method, mixture z-scoring, that 39

preserves this crucial form of distributional shift. Using both a simulated experiment 40

and mouse in vivo data, we demonstrate that a common standardization method used 41

by state-of-the-art sleep scoring algorithms introduces systematic bias, but that mixture 42

z-scoring does not. We present a free, open-source user interface that uses a compact 43

neural network and mixture z-scoring to allow for rapid sleep scoring with accuracy that 44

compares well to contemporary methods. This work provides a set of computational 45

tools for the robust automation of sleep scoring. 46

Introduction 47

Sleep is a fundamental animal behavior and has long been the subject of intensive basic 48

and clinical research. Mice are commonly chosen as a model organism for sleep research 49

thanks to the wide range of genetic tools that enable manipulation of sleep-relevant 50

neuronal ensembles and characterization of sleep phenotypes. In order to measure the 51

effect of an experimental manipulation on the quantity or timing of sleep stages, it is 52

necessary to score a subject’s sleep stage at each point in time. In mice, each epoch is 53

typically assigned to one of three stages based on patterns of electroencephalogram 54

(EEG) and electromyogram (EMG) activity (Fig 1): rapid eye movement (REM) sleep, 55

with a high ratio of theta (6-8 Hz) to delta (1-4 Hz) EEG activity and low muscle tone; 56

non-REM (NREM) sleep, with a low theta/delta ratio and low muscle tone; and 57

wakefulness, with high muscle tone and high-frequency, low-amplitude EEG activity. 58

Fig 1. Overview of the signal collection process for sleep scoring in mice. A:
schematic of EEG and EMG recordings. An EEG electrode is inserted over the
hippocampus, a reference electrode is placed in the cerebellum, and an EMG electrode
is inserted into the neck musculature. B: sample EEG and EMG recordings. Scale bar:
1 s, 0.25 mV. C: example EEG spectrograms and EMG activity for each sleep stage.

Manual inspection of the EEG and EMG signals remains the most widely used 59

method for mouse sleep scoring. However, this process is time-intensive and therefore 60

scales poorly with the number of subjects and recordings, motivating efforts to develop 61

scoring methods that are partially or completely automated. Shallow decision trees 62

[1–5], which require a user to define thresholds in a low-dimensional feature space (e.g., 63

theta/delta ratio and EMG activity), are one such approach. However, since the three 64

classes are not entirely separable in these low-dimensional spaces, efforts have been 65

made to build classifiers that use machine learning to exploit a larger number of 66

hand-tuned features [6–8]. Most recently, there have been successes in using models 67

trained directly on EEG/EMG data without feature engineering, either in the form of 68

spectrograms [9, 10] or unprocessed signals [11,12]. The accuracy of these methods on 69

held-out test sets can be close to the inter-rater reliability of expert scorers [10], 70
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suggesting that further feature or architecture engineering of EEG/EMG-based sleep 71

scoring algorithms will yield diminishing returns. 72

Generalization to test datasets that differ from training datasets, however, remains a 73

concern, both for machine learning in general [13] and for automated sleep scoring in 74

particular. Changes in the distribution of test data, called distributional shift, can cause 75

misclassification errors when items of one class in the test set artifactually resemble, due 76

to the shift, items of another class in the training set. Simple forms of distributional 77

shift can be solved by a standardization procedure, such as z-scoring. In a review of 78

automated sleep scoring methods, Katsageorgiou et al. found that the choice of 79

standardization procedure can be more important for classification accuracy than the 80

choice of the classifier itself [14]. 81

Despite the demonstrated importance of distributional shift, methods to mitigate its 82

impact are limited [13]. We address the problem directly, focusing on two sources of 83

distributional shift in the context of sleep scoring: nuisance variability, caused by 84

changes in the way signals are recorded, and class balance variability, caused by changes 85

in the time spent in each sleep stage. Both forms of distributional shift might be present 86

in a single dataset simultaneously. However, unlike nuisance variability, class balance 87

variability should not be removed because the primary motivation for sleep scoring is 88

often to detect altered sleep behavior. 89

We use both a simple model and mouse in vivo data to demonstrate that standard 90

z-scoring, which aims to remove nuisance variability, inappropriately reduces class 91

balance variability. Therefore, classification algorithms using standard z-scoring as a 92

preprocessing step will be biased towards underestimating changes in class balance 93

relative to their training data, which limits their applicability in research settings where 94

the fraction of time spent in each sleep stage is of interest. We developed a method, 95

mixture z-scoring, for standardizing features of the EEG and EMG signals that 96

disentangles nuisance and class balance variability using a small amount of labeled data 97

for each subject. Because this requires brief but non-trivial user interaction with the 98

recordings, we also present a free, open-source user interface that allows for rapid 99

manual sleep scoring for standardization purposes followed by machine learning-based, 100

automated sleep scoring. The software is available at 101

https://github.com/zekebarger/AccuSleep. 102

Results 103

Mixture z-scoring corrects for distributional shift in simulated 104

data 105

In this section, we use a simulated experiment (Fig 2) to model distributional shift in its 106

simplest form in order to illustrate the problems caused by standard z-scoring and 107

resolved by mixture z-scoring. Empirical findings in the next section indicate that these 108

results generalize to a more realistic setting. 109
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Fig 2. Correcting for distributional shift prevents a false negative in a
simple model. A: marginal and class-conditional distributions for a feature, δ,
recorded from synthetic Subject I (solid lines), which is in state 2 70% of the time, and
from synthetic Subject II (dashed lines), which is in state 2 30% of the time. Marginal
distributions are in black, the distribution for state 2 in yellow, state 1 in blue. The
distributions differ in class balance and by an affine shift. Left column, B-E: the results
of applying standard z-scoring to this synthetic data. The x-axis, representing the value
of δ, is shared across B-D. In B and C, the marginal and class-conditional distributions
are plotted after standard z-scoring. D: the output of a logistic classifier trained on the
z-scored data from Subject I (in color; decision threshold represented by gray bar)
compared to the ground-truth state (on the y-axis) for a selection of data points from
Subject II. The y-values are jittered to improve legibility. E: the estimated fraction of
time in state 2 using labels given by the classifier from D. Error bars show approximate
95% confidence intervals (CIs) for this fraction, obtained by boot-strapping. The
symbol “n.s.” indicates that the estimated fraction for Subject II fell within the 95% CI
for Subject I. Right column, F-I: as B-E, but using mixture z-scoring to correct for
distributional shift. Each panel on the right-hand-side shares its y-axis with the
matching panel on the left-hand side. The ∗ symbol indicates that the estimated
fraction for Subject II fell outside the 95% CI for Subject I.

The simulation is designed as follows: two experimental subjects, Subject I and 110

Subject II, spend different amounts of time in each of two states, state 1 and state 2. In 111

order to detect and quantify this difference, a data feature, δ, is measured from each 112

subject and paired observations of δ and ground truth class labels from Subject I are 113

used to train a logistic regression model. This model is then used to classify 114

observations from Subject II. δ is drawn from a mixture of Gaussians, with one 115

Gaussian for each class. This scenario is analogous to an experiment where Subject I is 116

a control mouse, Subject II is a mouse undergoing sleep deprivation, state 1 is 117

wakefulness, state 2 is sleep, and δ is the delta power in the EEG signal recorded from 118

each mouse. The process of training the classifier on Subject I and then applying it on 119

Subject II is analogous to the common practice of developing algorithms on wild-type 120

populations but then applying them on wild-type and experimental subjects. 121

From Fig 2A, which shows kernel density estimates for the marginal and 122

class-conditional distributions for both subjects, it can be seen that the distribution of δ 123

for Subject I differs from that for Subject II. When the distribution of the data on which 124

a classifier is applied differs from the training distribution, we say that there has been 125

distributional shift. Class balance variability and nuisance variability are two major 126

sources of distributional shift in scientific applications of classification algorithms,. 127

Class balance variability is often the substance of the scientific inquiry that a 128

classifier is meant to support. An experimental intervention, such as a drug, is expected 129

to alter the amount of time spent in one or more sleep states and classification 130

algorithms for sleep scoring are to be used to detect this change. The datasets in this 131

simulated experiment have different class balances: Subject II spends 30% of the time 132

in state 2 (blue), while Subject I spends 70% of the time in that state. This difference 133

can be seen in the marginal distributions of δ (black curves) for each subject. 134

In contrast, changes in the distribution of δ due to nuisance variability should be 135

removed so that observations from different subjects can be compared. Common sources 136

of nuisance variability in the context of sleep scoring include the use of different types of 137

recording equipment and different implantation sites for recording electrodes. The 138

simplest form of nuisance variability is an affine transformation. In this example, the 139

data from Subject II have the same class-conditional distributions as in Subject I, 140

except for an affine transformation. 141
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For an otherwise fixed distribution, an affine transformation can be undone by
means of z-scoring. That is, the mean, µ, and standard deviation, σ, of measurements Φ
are calculated for each subject and then values, Z, known as z-scores are computed:

Z =
Φ− µ
σ

. (1)

If the distributions of measurements from two subjects differ only by an affine 142

transformation, then after the application of z-scoring, they will be identical. 143

Furthermore, they will have mean 0 and standard deviation 1, and so this procedure is 144

also called standardization. It is typically beneficial for machine learning algorithms to 145

operate on standardized features [15]. 146

However, as panels B-F of Fig 2 demonstrate, when other sources of distributional 147

shift are present, standard z-scoring is inappropriate. Standard z-scoring uses the 148

marginal statistics of δ, which are dependent on both nuisance and class balance 149

variability. If we view the marginal distribution of δ as a mixture of the 150

class-conditional distributions for each class, its mean and variance are functions of the 151

mixture weights (equivalently, the marginal probabilities of each class label) and the 152

mean and variance of each class-conditional distribution. Its mean is given by the 153

weighted average of the conditional means, while the variance is given by the law of 154

total variance (Eq 13, Methods). 155

After standard z-scoring, the class-conditional distributions of δ from the two 156

subjects do not align as desired (compare the yellow curves in Fig 2B and C). The 157

result is that a classifier trained to high performance on the z-scored data from Subject 158

I will perform poorly on the z-scored data from Subject II (Fig 2D): a large fraction of 159

observations are mislabeled as state 2 as the decision boundary aligns with the center of 160

the distribution for state 1. In this case, the introduced bias is opposite and almost 161

equal to the effect of the change in class balance, leading to the misclassification of a 162

significant fraction of the observations in Subject II as state 2 when they should be 163

state 1. The resulting bias in the estimate of the effect size of the difference leads to a 164

reduction in power and a false negative result for a bootstrapping test (Fig 2E). Because 165

z-scoring is agnostic to class label, it is unable to disentangle the effect of the class 166

balance from the effect of nuisance variability on the marginal statistics of δ. 167

In order to remove nuisance variability but retain class balance variability, we
introduce mixture z-scoring, an alternative form of z-scoring inspired by viewing the
marginal distribution of the measurements as a mixture of class-conditional
distributions. The mixture z-scored values ZM corresponding to measured feature
values Φ are computed as:

ZM =
Φ− w>µ̂√

w>
(
σ̂2 + (µ̂− w>µ̂)

2
) (2)

where µ̂ and σ̂ are vectors of label-conditioned means and standard deviations and w is 168

a fixed vector that sums to 1. The value of the denominator and the value subtracted 169

from Φ in the numerator are the mixture z-scoring parameters, by analogy with the 170

z-scoring parameters. Note that conditioning on labels means that mixture z-scoring 171

requires some labeled data. If w is equal to the actual proportions of class labels for the 172

values Φ, then the mixture z-score parameters are the same as in standard z-scoring. 173

When w is not equal to the class balance, then the mixture z-score parameters are equal 174

to what the z-score parameters would have been, had the class balance of Φ been w. 175

Mixture z-scoring thus removes any effect of affine nuisance variability on the marginal 176

distribution of δ while preserving any effect of class balance variability. We refer to this 177

process as mixture standardization, by analogy with z-score standardization. See the 178

Methods section for further details. 179
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The results of using mixture z-scoring are shown in Fig 2, panels F-I. Panels F and 180

G show the marginal and class-conditional distributions of mixture-standardized δ for 181

Subjects I and II, respectively. Note that the class-conditional distributions are aligned, 182

unlike in panels B and C. The result is that a classifier trained to high accuracy on the 183

mixture-standardized data from Subject I also performs well on the data from Subject 184

II when it is mixture-standardized with the same weights (panel H). A bootstrapping 185

test comparing the time spent in state 2 for the two subjects now returns a true positive 186

(panel I). 187

This example demonstrates that standard z-scoring of features used as inputs to a 188

classifier can, in a simple case, lead to systematic classification errors when the class 189

balance of the data on which the classifier is applied differs from the balance during 190

training. This systematic error can lead to incorrect scientific conclusions. However, 191

mixture z-scoring, which standardizes data without removing class balance variability, 192

substantially reduces the error rate. 193

Mixture z-scoring reduces bias when classifying mouse in vivo 194

data 195

While the above section indicates that mixture z-scoring can correct for distributional 196

shift in a simulated experiment with a simple classifier, it remains to be seen whether 197

distributional shift still poses a problem in a more realistic setting with state-of-the-art 198

methods. To address this question, we applied two automated sleep scoring algorithms 199

to mouse EEG and EMG recordings: 200

1. SPINDLE 201

This algorithm, from [10], comprises a convolutional neural network (CNN) and a 202

hidden Markov model (HMM). The CNN operates on multi-channel EEG and 203

EMG spectrograms and comprises max-pooling, convolution, and max-pooling 204

followed by two fully-connected layers. It has 6.8M parameters, distributed 205

primarily in the first fully-connected layer. The HMM is used to constrain the 206

transitions between sleep stages predicted by the CNN. See [10] for details. EMG 207

activity and individual frequency bands of the spectrogram are log-transformed 208

and, importantly, z-scored on a per-recording basis. 209

2. Sleep Scoring Artificial Neural Network (SS-ANN) 210

We implemented a simple CNN with fewer than 20K learnable parameters that, 211

like SPINDLE, operates on log-transformed EEG and EMG spectrograms. We 212

refer to this network as SS-ANN. It uses three convolution-ReLU-maxpool 213

modules with batch normalization, followed by a linear classifier. See the Methods 214

section for details of the network architecture and a list of the datasets used for 215

training and testing SS-ANN in each experiment. 216

Each algorithm was applied to recordings from three wild-type mice. We applied 217

SPINDLE to recordings from Cohort A in [10]. We applied SS-ANN to a separate set of 218

recordings which we collected and scored (see Methods). This ensured that any 219

observed bias in either method would not be a result of differences between the experts 220

who scored the training datasets. 221

To introduce class balance variability and produce a controlled simulation of the 222

effect of experimental manipulations, we programmatically varied the amounts of 223

NREM sleep, REM sleep, and wakefulness in each recording (Fig 3A). Rebalancing was 224

achieved by randomly removing bouts of each sleep stage until a specified balance was 225

reached. To preserve the natural temporal structure of the bouts as much as possible, 226

we included at least eight seconds of NREM before, and four seconds of wakefulness 227
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after, each REM bout. We considered class balances in the range of 5-95% wakefulness, 228

5-95% NREM, and 0-25% REM because class balances outside this range are unlikely to 229

be observed in practice. 230

Fig 3. Comparison of sleep scoring algorithms on recordings with
programmatically varied class balances. EEG and EMG recordings were
programmatically altered to have different proportions of each sleep stage. A-D: Each
marker indicates the amount of wakefulness and NREM in recordings with a given class
balance, averaged across three mice (one recording per mouse). A: class balances of the
recordings according to ground truth manual labels. B: predictions by SPINDLE for
each recording. Star indicates class balance of training data for SPINDLE. C: as B, for
SS-ANN with standard z-scoring. Star indicates the class balance in the training
dataset for SS-ANN. D: as B, for SS-ANN with mixture z-scoring. E: predicted amounts
of wakefulness in recordings containing 5% REM, according to each algorithm. F: mean
total variation distance between class balances of algorithmic predictions and manual
labels. Error bars show SEM. Asterisk indicates p-value < 0.001 (Student’s t-test).

In order to demonstrate that any observed biases are general to z-scoring, rather 231

than specific to SPINDLE, and that mixture z-scoring can eliminate them, we trained 232

two different versions of SS-ANN. For one, the inputs during both training and testing 233

were preprocessed with standard z-scoring. For the other, both inputs were preprocessed 234

using mixture z-scoring with weight vector w given by the class balance in the training 235

set. Mixture z-scoring requires a small amount of labeled data from each class for each 236

subject, which we took from separate recordings from the three mice in this dataset. 237

The results of these numerical experiments are shown in Fig 3. When using standard 238

z-scoring, both algorithms showed a classification bias that typically made the 239

aggregate label distribution look more like the class balance of their training datasets 240

(Fig 3B,C). The magnitude of the classification error increased as the class balance was 241

shifted further from the balance of the training data (Fig 3E). These results indicate 242

that this bias occurs across classifiers. However, when mixture z-scoring was used as a 243

preprocessing step, there was a dramatic reduction in bias: estimated label fractions 244

were close to the true fractions in all cases (Fig 3E), eliminating the contraction towards 245

the class balance of the training data (Fig 3D). 246

We quantified the bias in estimation by measuring the total variation distance 247

between the ground truth label fractions and the label fractions estimated by each 248

classifier (Fig 3F). The total variation distance, δ, between two distributions q and q′ is 249

δ(q, q′) = ‖q − q′‖1. We found that there was no significant difference between the two 250

algorithms when standard z-scoring was used (mean for SPINDLE: 0.24, mean for 251

SS-ANN: 0.25, Student’s t=-0.22, p = 0.83). We further found that both SPINDLE and 252

SS-ANN had substantially greater bias when using standard z-scoring than did SS-ANN 253

using mixture z-scoring (mean for SS-ANN with mixture: 0.04, SPINDLE vs SS-ANN 254

mixture t=8.19, p� 0.01; SS-ANN standard vs SS-ANN mixture t=10.33, p� 0.01). 255

These results demonstrate that while standard z-scoring introduces substantial bias in 256

state-of-the-art machine learning classifiers in cases when class balance variability is 257

present, methods such as mixture z-scoring can significantly reduce this bias. 258

Validation of SS-ANN 259

To demonstrate the utility of SS-ANN paired with mixture z-scoring for automated 260

sleep scoring, we evaluated their performance using several different metrics (Fig 4). On 261

held-out test data, we found that SS-ANN achieved 96.8% accuracy against expert 262

annotations, comparable to the range of values reported for inter-scorer agreement 263
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(typically in the range of 90-96%) [10,16,17] and to the performance of SPINDLE 264

(95-96%, see Methods), despite SS-ANN having over 300 times fewer parameters. 265

Agreement was also high for each class individually, as evidenced by the high values on 266

the diagonal of the confusion matrix and low values off of it (Fig 4A). The receiver 267

operating characteristic (ROC) curves for each class were far away from the unity line 268

(bootstrap p-value � 0.001) (Fig 4B). 269

Fig 4. Validation of SS-ANN. A: confusion matrix for SS-ANN on held-out data.
The overall accuracy was 96.8%. The number of epochs is shown in parentheses. B:
receiver operating characteristic (ROC) for SS-ANN. The inset panel shows a zoomed-in
view of the upper-left corner. C: generalization across subjects. SS-ANN was trained on
each mouse individually and tested on all mice. D: classification accuracy as a function
of the amount of labeled data used for mixture z-scoring. Gray shading shows SEM, n
= 20 recordings.

The experiment in Fig 3 demonstrated that SS-ANN can generalize across simulated 270

experimental conditions that create different class balances. To determine whether it 271

can also generalize across subjects, we trained and tested the network on data from each 272

individual subject in our cohort (Fig 3C). Classification accuracy was comparable to 273

rates of inter-scorer agreement for all train-test pairs despite the reduced size of the 274

training sets, indicating good generalization. 275

Finally, we investigated the relationship between classification accuracy and the 276

amount of labeled data used for mixture z-scoring. As described in the Methods section, 277

mixture z-scoring requires labeled data from each subject. We held out a number of 278

labeled epochs chosen at random from EEG/EMG recordings and used these to perform 279

mixture z-scoring followed by automatic classification of the remaining epochs. 280

Classification accuracy increased with larger held-out portions until reaching a plateau 281

at approximately 10 minutes of labeled data (Fig 3D). Note that performance is already 282

high for even small sample sizes, under one minute. This should not be taken to 283

indicate that mixture z-scoring is unnecessary to obtain high performance, since the 284

animals in our cohort did not undergo any experimental manipulations and the intent of 285

mixture z-scoring is to account for the possibility of observing altered class balances. 286

Additionally, note that small sample sizes result in uncorrelated errors in the estimation 287

of the z-score parameters for each feature, which have less impact on classification error 288

than do the correlated errors caused by class balance variability. 289

AccuSleep: free, open-source software for automated sleep 290

scoring 291

The benefit of mixture z-scoring for generalization across class balances comes with the 292

requirement that labeled data be provided for each subject. In practice, this means that 293

a user must interact with the data in a non-trivial way. We addressed this issue by 294

creating AccuSleep, a set of MATLAB graphical user interfaces that allow for manual 295

scoring of EEG/EMG data (Fig 5) followed by automated scoring using SS-ANN 296

(Fig 6). The mixture z-scoring parameters, once calculated for a given subject, can be 297

used to score other recordings from the same subject. The workflow for scoring 298

recordings is simple: 299

1. Load EEG and EMG data. In the interface shown in Fig 6, the user selects the 300

data files, enters the sampling rate and epoch length, and sets the output location. 301

2. Set mixture z-scoring parameters. If mixture z-scoring parameters have 302

already been calculated for this subject, they can be loaded. If not, the user scores 303
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a small number of epochs of each state manually using the interface shown in 304

Fig 5. AccuSleep then calculates and saves the parameters. 305

3. Load a trained copy of SS-ANN. The user loads a network for automated 306

classification. The trained network validated in Fig 4 is included with the 307

software, along with MATLAB functions to retrain the network on new data. 308

4. Score sleep automatically. After validating the inputs, AccuSleep uses 309

SS-ANN to perform automatic sleep scoring. 310

For an experienced user, manually scoring the number of epochs required for maximum 311

classification accuracy (Fig 3D) requires roughly 2 minutes, far shorter than it would 312

take to score all of the data from that subject. Thereafter, scoring of additional data 313

from the same subject does not require any manual labeling, preserving the scaling and 314

efficiency benefits of automated scoring. 315

Fig 5. AccuSleep interface for manual sleep scoring. The panels below the
horizontal black line display the EEG and EMG signals as well as the sleep stage labels
for epochs surrounding the current time point. The panels above the line provide
context by displaying the sleep stages, EEG spectrogram, and EMG power on a longer
time scale. For a complete description of the feature set of this software, please see the
included user manual.

Fig 6. AccuSleep interface for automated sleep scoring. This software uses
SS-ANN and mixture z-scoring to perform automated sleep scoring. Green check marks
next to the fields for user input indicate that the inputs are correctly formatted. Once
all fields relevant to an action (such as automated scoring) are validated, the action can
proceed.

Discussion 316

Supervised machine learning is well suited to the task of sleep scoring: labeled data are 317

plentiful, and contemporary algorithms can learn from minimally processed EEG and 318

EMG data to achieve classification accuracy comparable to inter-rater reliability. 319

Nevertheless, machine learning algorithms are still not widely used for sleep scoring in 320

research. We suspect there are two reasons for this: low usability, since applying 321

machine learning methods can require specialized knowledge or skills; and poor 322

generalization, since variability in the EEG and EMG signals due to inter-subject and 323

inter-laboratory differences, or distributional shift, poses a challenge to the 324

generalization of any algorithm. Both of these issues must be addressed if machine 325

learning is to be widely adopted for sleep scoring. 326

We propose mixture z-scoring (Eq 2) as a solution to the problem of generalization 327

posed by distributional shift due to simultaneous nuisance and class balance variability. 328

Standard z-scoring serves this purpose well when class balance variability is low, but 329

not when class balance variability is high, as it often is in scientific settings. In our 330

experiments, which simulated changes in class balance such as might occur in a sleep 331

study, we found that a classifier using standard z-scoring as a preprocessing step 332

performed poorly on data from a subject with a different class balance than its training 333

set (Fig 3B-E). This can produce undesirable results in a research setting because the 334

effect of a manipulation that changes the quantity of sleep or wakefulness would be 335

poorly estimated (Fig 2F). Mixture z-scoring captures the two sources of variability 336

independently, removing only the former. On both simulated (Fig 2E,I) and real 337
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(Fig 3B-F) data with artificially-varied class balance, our method improves 338

generalization and estimation of class balance. We expect that the same is true for real 339

data with natural class balance variability—for example, recordings collected during 340

and after a sleep deprivation protocol where the fractions of wakefulness and sleep are 341

both different from baseline conditions. 342

We also introduce a new classification algorithm for rodent sleep scoring, SS-ANN 343

(Sleep Scoring Artificial Neural Network). This convolutional neural network achieves 344

comparable accuracy to inter-scorer agreement and to another neural network method, 345

SPINDLE [10] (SS-ANN: 96.8%; SPINDLE: 94.8-96.2%, see Methods). This is achieved 346

with 300x fewer parameters, at a higher temporal resolution, and without using a 347

Hidden Markov Model to constrain transitions between sleep states. The vast majority 348

of parameters in both networks are in the fully-connected layer that follows the 349

convolutional component of the architecture. Thus, the difference in parameter count 350

comes from SS-ANN’s greater use of convolution and pooling. The possibility that even 351

simpler models with fewer parameters might achieve comparable performance remains 352

to be explored. 353

While mixture z-scoring dramatically reduces bias due to class balance variability 354

and improves generalization, this comes at a cost: a sample of labeled data from each 355

subject must be provided in order to capture subject-specific variability. Unsupervised, 356

or label-free, methods for handling class balance variability would avoid this 357

requirement, but have other costs. In [17], certain feature values are explicitly assumed 358

to be an ordered mixture-of-Gaussians, allowing for the threshold of a linear classifier to 359

be placed without requiring labels. Mixture z-scoring does not make any assumption 360

about the shape of the class-conditional feature distributions, nor does it rely on the 361

specific form of the downstream classifier. The two methods are equivalent in the case of 362

mixture-of-Gaussians data and a linear classifier. Alternative unsupervised methods that 363

do not involve distributional assumptions might include data augmentation with inputs 364

whose nuisance and class balance variability are altered programmatically or randomly, 365

so long as these augmentation methods are applied upstream of the preprocessing step. 366

One advantage of our supervised method over this alternative is that it applies to any 367

class balance and any affine nuisance variability, rather than only for ranges included in 368

the augmentation step. Further, our method preserves any affine variability that is 369

useful to classification, while data augmentation removes it. For example, applying data 370

augmentation to the linear classification problem in Fig 2 would result in a classifier 371

with poor performance. The success of threshold-based methods [3, 17] indicates that 372

affine features, such as EMG power, are very useful for classification, suggesting that 373

data augmentation would be harmful to performance. Finally, our results indicate that 374

the amount of labeled data required to achieve high accuracy is on the order of minutes 375

(Fig 4D), indicating that the time cost of the labeling step is quite small. 376

To preserve the speed and scalability benefits of automated scoring that includes 377

mixture z-scoring, and therefore some manual labeling, as a preprocessing step, we 378

aimed to make the labeling step as streamlined as possible. To this end, we developed 379

AccuSleep: a free, open-source MATLAB package that provides graphical interfaces for 380

manual and deep learning-based, automated sleep scoring (Fig 6). Within AccuSleep, 381

polysomnographic recordings can be manually scored to provide the labeled data for 382

mixture z-scoring (Fig 5). These mixture parameters can then be used to score all 383

recordings from the same subject automatically. Automatic classification is performed 384

using a copy of SS-ANN trained on the data collected for these experiments (see 385

Methods). 386

While SS-ANN showed good generalization across the 10 mice in our cohort 387

(Fig 4C), it is possible that recordings collected from mice with different genotypes or 388

differently placed electrodes would have substantially different EEG spectra from those 389

October 15, 2019 10/16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/813345doi: bioRxiv preprint 

https://doi.org/10.1101/813345
http://creativecommons.org/licenses/by/4.0/


in our dataset. To account for this possibility, we leverage one of the advantages of 390

end-to-end learning—the fact that training new models is simple given labeled data—by 391

including a module in AccuSleep that can train a new version of SS-ANN based on a 392

sample of labeled data. Such a model could be provided alongside a research study to 393

increase the replicability of its sleep scoring methodology. The time and computational 394

resources required for this training process are minimal, owing to the small number of 395

parameters in SS-ANN. 396

In summary, we developed a standardization procedure, mixture z-scoring, that 397

simultaneously corrects for distributional shift due to both nuisance variability and 398

changes in class balance. We demonstrated that our method improves the generalization 399

of sleep scoring algorithms and provide software to enable its application in sleep 400

research. We expect that this software, available at 401

https://github.com/zekebarger/AccuSleep, will be useful to the research 402

community. More broadly, we note that data standardization that goes beyond 403

textbook z-scoring and accounts for class balance changes across experimental units is 404

ubiquitous in experimental sciences (e.g., z-scoring of electrocorticography recordings 405

from humans [18]). Such methods are less commonly used in a machine learning setting, 406

where algorithms are typically formulated assuming no distributional shift and validated 407

using test sets that have similar class balance to the training set, such as held-out data. 408

As demonstrated here, the practice of training algorithms in this manner on one type of 409

particularly convenient experimental subject and then applying them on another, 410

ignoring class balance variation, can lead to incorrect scientific conclusions. This 411

suggests that mixture z-scoring could improve the accuracy of machine learning 412

algorithms across scientific domains. 413

Methods 414

Polysomnographic recordings 415

All experimental procedures were approved by the Animal Care and Use Committee at 416

the University of California, Berkeley. Animals were housed on a 12-hour dark/12-hour 417

light cycle (light on between 7:00 and 19:00). Adult mice (10-20 weeks old) were 418

anesthetized with 1.5%–2% isoflurane and placed in a stereotaxic frame. Body 419

temperature was kept stable throughout the procedure using a heating pad. After 420

asepsis, the skin was incised to expose the skull, and the overlying connective tissue was 421

removed. For EEG and EMG recordings, a reference screw was inserted into the skull 422

on top of the right cerebellum. EEG recordings were made from two screws on top of 423

the left and right cortex, at anteroposterior –3.5 mm and medio-lateral +/-3 mm. Two 424

EMG electrodes were inserted into the neck musculature. Insulated leads from the EEG 425

and EMG electrodes were soldered to a pin header, which was secured to the skull using 426

dental cement. All efforts were made to minimize suffering during and after surgery. 427

Recordings were made with the mice in their home cages placed in sound-attenuating 428

boxes. Five 4-hour recordings were collected from each of 10 mice, and two 24-hour 429

recordings were collected from five of those mice. For 24-hour recordings, recording 430

started at 19:00 following 24 hours of habituation and lasted 48 hours. For four-hour 431

recordings, recording started at 13:00 following two hours of habituation. The pin 432

header was connected to a flexible recording cable via a mini-connector. Signals were 433

recorded with a TDT RZ5 amplifier for the 24-hour recordings (bandpass filter, 1-750 434

Hz; sampling rate, 1,500 Hz) or an Intan Technologies RHD-2132 amplifier for the 435

4-hour recordings (bandpass filter, 1-500 Hz; sampling rate, 1,000 Hz). Sleep stages 436

were scored manually in 2.5-second epochs by an expert scorer according to standard 437

criteria. The complete dataset is available at https://osf.io/py5eb/. 438
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The data used for training and testing SS-ANN in each experiment are described 439

below. Unless otherwise specified, SS-ANN was trained using three 4-hour recordings 440

from each of the 10 mice. 441

• Fig 3: tested on three programmatically rebalanced 12-hour light cycle recordings 442

(extracted from the 24-hour recordings) from three mice 443

• Fig 4A,B: tested on two held-out 4-hour recordings from each of 10 mice 444

• Fig 4C, off-diagonal: trained on all five 4-hour recordings from each mouse, tested 445

on all five 4-hour recordings from each of the other nine mice 446

• Fig 4C, on-diagonal: five-fold cross-validation using all five 4-hour recordings from 447

each mouse 448

• Fig 4D: as for Fig 4A,B, but with a held-out portion of each test recording used 449

for mixture z-scoring 450

Three mice were not used for recordings due to low signal-to-noise ratio (SNR) in 451

the EEG and EMG signals. One mouse was excluded from our analyses because the 452

SNR of its signals decreased before data collection was completed. 453

Sleep scoring algorithm 454

Data preprocessing 455

EEG and EMG signals were downsampled to 128 Hz. We used the Chronux toolbox [19] 456

to calculate a multi-taper spectrogram of the EEG signal between 0-50 Hz with a 5 457

second window and 2.5 second step. We downsampled by a factor of 2 between 20-50 Hz 458

to reduce the number of parameters in the classifier. To calculate EMG activity, we 459

bandpass filtered the EMG signal between 20-50 Hz and took the root-mean-square of 460

the signal in each epoch. To build the complete feature set for each recording, we 461

concatenated the EEG spectrogram with 9 copies of the EMG activity. Since the 462

spectrogram has 176 frequency components, each recording becomes a 185× n matrix 463

with 185 features for each of n epochs. 464

SS-ANN architecture 465

The inputs to SS-ANN were 185× 13 pixel grayscale images, representing 32.5-second 466

periods of the standardized joint EEG/EMG spectrogram centered on each epoch. We 467

created a basic CNN architecture using the MATLAB Statistics and Machine Learning 468

Toolbox (MATLAB, The MathWorks, Natick, MA): 3 convolution - batch normalization 469

- ReLU - max pooling modules, followed by a fully connected layer, softmax layer, and 470

classification layer. The convolution layers had filter size 3 with 8, 16, and 32 filters per 471

layer. The max pooling layer had size 2 and stride 2. The network was trained using 472

stochastic gradient descent with momentum and a mini-batch size of 256 for 10 epochs. 473

The learning rate was 0.015, reduced by 15% each epoch. Classes were balanced prior to 474

training by randomly oversampling the classes with the fewest examples to reach the 475

number of examples in the largest class. Following the classification step, sleep stages 476

were refined by assigning bouts shorter than 5 seconds to the surrounding stage. 477

Comparison between SS-ANN and SPINDLE 478

Up to 20% of epochs in the recordings used for training or testing SPINDLE were 479

scored as artifacts [10], but inter-rater agreement for artifact detection was low (in the 480

range of 20-30%). The accuracy of SPINDLE reported in [10] was calculated only using 481
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epochs not labeled as artifacts and on which two expert raters agreed. These criteria 482

may remove some of the most difficult-to-classify epochs. We used the SPINDLE online 483

service with artifact detection disabled to re-score the datasets used in that publication, 484

obtaining accuracies of 96.2%, 95.1%, 94.8% on Cohorts A, B, and C versus the labels 485

of Expert 1. 486

Mixture z-scoring 487

For a given set of n+N observations of feature values X, n of which have paired
observations of labels L, and fixed choice of baseline mixture weights w, we perform
mixture z-scoring to obtain standardized observations ZM as follows:

ZM =
X − w>µ̂√
w> (σ̂2 + s)

defining subtraction and division between vectors and scalars and squaring of vectors as
the element-wise versions of their scalar equivalents, where the vectors µ̂, σ̂, and s are
as below, denoting by Xl the set of observations with paired label equal to l:

µ̂l =
1

n

∑
x∈Xl

x (3)

σ̂2
l =

1

n

∑
x∈Xl

(x− µ̂l)
2

(4)

sl =
(
µ̂− w>µ̂

)
(5)

We found that choosing the baseline mixture weights w to be close to the class 488

prevalences in a reference dataset worked well. 489

This algorithm can be motivated as follows: let φ be a random variable
corresponding to the feature value and Y be the random variable corresponding to the
class label. We can break down the distribution of the feature value, P (φ), into a
mixture of the distributions conditioned on the class label, P (φ|Y = i), each with a
corresponding mean µi and variance σ2

i

wi := P (Y = i) (6)

E [φ|Y = i] := µi (7)

σ2
i := V [φ|Y = i] (8)

The overall mean µG and variance σ2
G of this mixture distribution can be written in

terms of the means and variances of its components as follows, writing µ and σ2 for the
vectors of class-conditional means and variances, and w for the vector of class
probabilities:

µG := E [φ] = w>µ (9)

σ2
G := V [φ] = w>(σ2 + s) (10)

V [φ] = w>σ2 + w> (µ− w>µ
)2

(11)

s :=
(
µ− w>µ

)2
(12)

where the expression for µG comes from the linearity of the expectation and the
expression for σ2

G comes from the law of total variance:

V [φ] = E [V [φ|Y ]] + V [E [φ|Y ]] (13)
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The vector s is analogous to a “between sum-of-squares” in an ANOVA. 490

In this representation, we can write the probabilistically z-scored version of φ, which
we write φZ , as:

φZ =
φ− µG

σG
=

φ− w>µ√
w>(σ2 + s)

(14)

The key utility of this representation is that it separates out contributions to the 491

overall mean and variance by the means and variances of each group from contributions 492

to the overall mean and variance from the prevalence of each group. Note that w, µ, σ2, 493

and s all typically need to be estimated from data, which results in the typical, exact 494

form of z-scoring. 495

Now instead suppose we observe a nuisance affected version, φ̃, with the same class
balance w. We presume the nuisance variability acts to, in expectation, scale and shift
the distribution of φ by scaling parameter a and shift parameter b:

µ̃ := E
[
φ̃|Y = i

]
= aE [φ|Y = i] + b (15)

σ̃2φV
[
φ̃|Y = i

]
= a2V [φ|Y = i] (16)

s̃ :=
(
µ̃− w>µ̃

)2
(17)

The method for probabilistic z-scoring remains the same, with the new group means
and variances substituted in:

φ̃Z =
φ̃− µ̃G

σ̃G
=

φ̃− w>µ̃√
w>(σ̃2 + s̃)

(18)

That is, in the absence of changes in class balance, we can remove affine nuisance 496

variability by subtracting off a weighted sum of the class-conditional means and dividing 497

by a weighted sum of the class-conditional variances and the weighted variability of the 498

means. 499

This suggests a method of z-scoring to remove affine nuisance variability for
observations, φ̂, with different class balances ŵ. We compute the equivalent µ̂ and σ̂2,
which are class-specific statistics, then plug them into Eq 14 with the weights given by
w instead of ŵ:

φ̂Zm =
φ̂− w>µ̂√

w>
(
σ̂2 + (µ̂− w>µ̂)

2
) (19)

The result, applied to a finite dataset, is the operation defined by Eq 2. In essence: we 500

try to perform the same nuisance variability-removing z-scoring operation we would 501

have done, had there not been a class balance change. 502

Note that in general the resulting data Zm no longer has mean 0 or standard 503

deviation 1, since that is only true when ŵ = w. 504
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