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Abstract 

Feedback inhibitory motifs are important for pattern separation in several species. How 

feedback circuits implement pattern separation of biologically plausible, temporally structured 

input in mammals is poorly understood, partly because the spatiotemporal organization of the 

net output of these circuits has not been characterized. We have quantitatively determined 

key properties of net feedback inhibition in the mouse dentate gyrus, a region critically 

involved in pattern separation. Feedback inhibition is recruited steeply with a low dynamic 

range (0 to 4% of active GCs), and with a non-uniform spatial profile. Additionally, net 

feedback inhibition shows frequency-dependent facilitation, driven by strongly facilitating 

mossy fiber inputs. Computational analyses show a significant contribution of the feedback 

circuit to pattern separation of theta modulated inputs, even within individual theta cycles. 

Moreover, pattern separation was selectively boosted at gamma frequencies, in particular for 

highly similar inputs. This effect was highly robust, suggesting that frequency dependent 

pattern separation is a key feature of the feedback inhibitory microcircuit. 
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Introduction 

Efficiently discriminating similar percepts or experiences is a central capability common to 

invertebrate and vertebrate species. In general terms, such discrimination can be achieved 

by decreasing the overlap in representations by neuronal ensembles between input and 

output patterns, a process termed ‘pattern separation’ 1–4. Numerous studies have proposed 

cellular and circuit mechanisms that could support this computation. For instance, sparse 

divergent inputs and specialized intrinsic properties are thought to generally contribute 1,5,6. 

Another common feature of most of these models and experimental studies is a critical role 

of feedback inhibition 4,6. Feedback circuits can i) implement direct competition between 

active cells through lateral inhibition and can ii) integrate information about the actual global 

activity level in a population allowing efficient normalization 7–9. Indeed, in the insect olfactory 

system a critical role of such a circuit has been causally demonstrated 10,11  

In mammals, substantial evidence points towards a role of the hippocampal dentate gyrus 

(DG) for pattern separation during memory formation and spatial discrimination 12–20. The DG 

is thought to subserve this task by converting different types of inputs to sparse, non-

overlapping activity patterns of granule cells (GCs). However, in contrast to the insect 

olfactory system, the DG feedback circuit is extremely complex, comprising numerous 

interconnected interneuron types (Supplementary Table 1)21–39. For instance, interneurons 

subserving feedback inhibition are also incorporated into circuits mediating feedforward 

inhibition32,35,40 and disinhibition 21,29. This makes it difficult to predict the net inhibition arising 

from GC activity.    

We reasoned that to assess if feedback inhibition is indeed suitable for the purpose of 

pattern separation in the DG, it is necessary to determine how efficiently the activity of 

sparse GC ensembles recruits net inhibition, i.e. the dynamic range and gain of the feedback 

inhibitory microcircuit. It is furthermore necessary to quantify the spatial and temporal 

properties of the elicited inhibition, in order to investigate its impact on biologically plausible, 
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temporally structured input. For instance, the DG shows prominent theta oscillations during 

exploration and distinctive slow-gamma activity during associative memory encoding 41–44. 

Importantly, both sparsity and temporal oscillations will critically affect a proposed pattern 

separation function. For instance, feedback inhibition must by definition occur with a delay, a 

property frequently abstracted away in computational models 45,46, but potentially critical 

during oscillatory activity. 

Here, we combine patch-clamp recordings, multiphoton imaging and optogenetics to provide 

a first quantitative, empirical description of the net input-output function of a feedback 

inhibitory microcircuit. This includes the spatiotemporal organization of net feedback 

inhibition elicited by a spatially restricted GC population and the net short term dynamics 

within the feedback microcircuit. Finally, we integrate our data into a biophysically realistic 

computational model and probe its ability to perform pattern separation. We find a moderate 

feedback inhibition mediated pattern separation effect during theta modulated input but a 

substantial separation, particularly of highly similar inputs, during gamma oscillations. 
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Results 

Input-output relation of the feedback inhibitory microcircuit 

We reasoned that the ultimately relevant parameter for the putative pattern separation effect 

of feedback inhibition is the net inhibition arriving at GCs. We therefore treated the feedback 

microcircuit as a black-box striving to relate only its net input (fraction of GCs active) to its net 

output (feedback inhibition in GCs). To this end we antidromically recruited feedback 

inhibitory circuits, while simultaneously recording GC inhibition and population activity (see 

schematic in Fig. 1A). Electrical stimulation reliably evoked graded IPSCs in dentate GCs, 

that increased with stimulation strength (maximal amplitude of 324.1±99.2 pA, n=8; Fig. 1B). 

Feedback IPSCs were completely blocked by 10µM GABAzine (to 1.5±0.9%, n=7 cells, 

P(df=6, t=117.4)<.001, one-sided t-test), as expected (Fig. 1C). To ascertain that IPSCs 

were mediated by synaptically activated interneurons rather than interneurons directly 

recruited by electrical stimulation, we only included slices where inhibition was successfully 

blocked by glutamatergic antagonists (25µM CNQX and 50µM D-APV, 8 of 21 experiments, 

Fig. 1C). We also tested if inhibition of glutamate release from mossy fibers, which can be 

specifically achieved via mGluR2/3 activation by DCG-IV47,48, reduces feedback IPSCs. 

Indeed, we found that IPSCs were reduced to 16.3±6.1% by 0.5 µM DCG-IV (n=4 cells, 

P(df=3, t=13.73)<.001, one-sided t-test, Fig. 1C). 

In order to relate the measured IPSCs to the fraction of GCs activated by a given stimulation 

strength, we used population Ca2+ imaging with multibeam two-photon microscopy (Fig. 1A, 

see Methods). After bolus-loading GCs with the Ca2+ indicator OGB-1-AM (see Methods), 

antidromic stimulation caused action potential associated Ca2+ elevations in a subset of GCs 

(Fig. 1D, transients indicated by *). Before quantifying population activity, we verified the 

reliable detection of single action potentials under our conditions using simultaneous cell-

attached recordings from dentate GCs (Fig. 1E, Supplementary Fig. 1). Briefly, cells were 

differentiated into true responders or non-responders on the basis of cell-attached recordings 

(Fig. 1E, F; responders green, non-responders grey). A histogram of the peak ΔF/F of non-
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responders upon a single stimulus was fitted with a Gaussian (Fig. 1F right, grey dots, grey 

bars, n=33) and the threshold set to the quadruple standard deviation of this fit (0.94% ΔF/F, 

dashed line in Fig. 1F). We estimated that this threshold would yield approximately equal 

numbers of false positives and false negatives (Supplementary Fig. 1F). We additionally 

controlled for possible errors through variable dye loading and the overestimation of the 

active cell-fraction through accidental detection of adjacent active cells (Supplementary Fig. 

1G, H, respectively). 

Orientation of hippocampal slices may be a critical feature in determining the extent of 

feedback connectivity. We therefore systematically assessed the magnitude of feedback 

activation of GCs using imaging in slices obtained from different dorso-ventral levels of the 

hippocampus (see inset of Fig. 1 G). We found a clear connectivity maximum within 

horizontal slices obtained at a distance of ~1750 µm from the temporal pole (Fig. 1G,H)49. In 

these and all following experiments we therefore used exclusively slices obtained at 1400-

2100 µm from the temporal pole, where the orientation of hippocampal slices matches the 

orientation of mossy fibers.  

Combining the IPSC recordings with population Ca2+ imaging allowed us to probe the input-

output relationship of the feedback inhibitory microcircuit. Inhibition was recorded in a GC 

within or immediately adjacent to the imaging field, and stimulation strength was increased 

gradually (Fig. 1I). The IPSC saturated at 300µA stimulation strength, where the mean active 

cell fraction was 2.2±0.7% and the mean IPSC reached 93.1±3.4% of the maximal IPSC 

(Fig. 1I, J, n=20 for imaging, n=8 for IPSCs including 6 slices with both). Plotting the IPSC 

magnitude vs. the cell fraction showed that the magnitude of feedback inhibition rises 

steeply, reaching ~90% with less than 3% of GCs active and complete saturation at 

3.7±1.7% of cells (Fig. 1K).  
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Fig. 1, Recruitment of feedback inhibition assessed using population Ca2+ imaging. 
Combined population Ca2+ imaging and IPSC recordings of GCs during antidromic electrical 
stimulation. A) Schematic illustration of the experimental setup. Dashed lines represent cuts to 
sever CA3 backprojections. B) Top: reconstruction of the dendritic tree of a representative GC. 
Bottom: Feedback IPSC at increasing stimulation strength during stratum lucidum stimulation. C) 
IPSCs were completely blocked by GABAzine and CNQX + D-APV and largely by DCG-IV. D) left: 
overlay of exemplary OGB1-AM loaded GC population (green) with a ΔF/F map (white). right: 
traces of ΔF/F over time of a subpopulation of cells depicted on the left. E) Simultaneous cell 
attached recording and calcium imaging to measure the action potential induced somatic calcium 
transient amplitude. F) Scatterplot and histogram of the calcium fluorescence peaks of cells which 
either did (green) or did not (grey) fire action potentials, as assessed by cell attached recordings. 
G) Illustration of the anatomical localization of maximum connectivity plane slices. Short black 
dashed lines indicate depth at which the slice plane is aligned to the dorsal brain surface. H) 
Antidromic stimulation elicited Ca2+ transients primarily at this depth (black bars). I) Normalized 
IPSC amplitude and activated cell fraction both increase with increasing stimulation strength 
(example from a single slice). J) Summary of all slices K) Summary data plotted to show the 
increase of inhibition as a function of the active GC fraction. 
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Optogenetic quantification of the recruitment of feedback inhibition 

These experiments yielded a first quantitative estimate of the input-output relation of the 

feedback-inhibitory microcircuit in the DG. We then decided to verify these findings using an 

alternative method, which allowed spatially controlled and less synchronous GC activation. 

Mice selectively expressing ChR2(H134R)-eYFP in GCs were created by crossing Prox1-Cre 

mice with Ai32-mice (Fig. 2A, see methods). Focal optogenetic stimulation was achieved 

through a laser coupled into the microscope light path, yielding an 8 µm stimulation spot (Fig. 

2B). Brief (20 ms, 473 nm) light pulses within the molecular layer approximately 40 µm from 

the dentate GC layer elicited reliable IPSCs in GCs (Fig. 2C). Increasing the light intensity 

evoked larger IPSCs that showed clear saturation (Fig. 2C, D, Power=7 AU corresponding to 

1.7 mW, see Methods). Inhibition was completely blocked by combined application of 40µM 

CNQX and 50µM D-APV (Fig. 2E, n=9), confirming that it is recruited via glutamatergic 

collaterals. The maximal IPSC amplitude obtained optically vs. electrically in experiments in 

which both stimulations were performed were similar (Fig. 2F, paired t-test, P(df=3, 

t=1.568)=.2148, n=4), indicating that similar maximal inhibition is recruited despite the 

differences in the activated GC population (distributed vs local; synchronous vs. less 

synchronous).  

In order to relate feedback inhibition to the underlying GC activity levels, we performed 

systematic cell attached recordings of GCs in the same slices in which inhibition was 

recorded (~2 cells per slice, Supplementary Fig. 2). Briefly, we recorded the spatial firing 

probability distribution in response to focal stimulation for each laser power. We then 

estimated the mean firing probability of GCs throughout the section, which is equivalent to 

the expected active GC fraction, by incorporating measurements of the light intensity 

distribution throughout the slice (Fig. 2G, black). We additionally estimated an upper and 

lower bound by assuming either no decay of firing probability with slice depth or isometric 

decay (Fig. 2G, grey dashed lines). Combining the input-output relations of IPSCs (Fig. 2D) 

and the estimated active cell fraction (Fig. 2G) again revealed that inhibition is recruited 

steeply, saturating when approximately 4% of GC are active (Fig. 2H). Importantly, the 
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resulting recruitment function of inhibition is unlikely to be affected by voltage escape errors 

(Supplementary Fig. 3). This is because such errors scale linearly with synaptic 

conductance and will thus affect the absolute but not the relative amplitude of the somatically 

measured IPSC. Next, we compared the focal light activation with global activation via a light 

fiber positioned over the surface of the slice (with powers up to 50 mW, Fig. 2I). Under global 

stimulation all cells tested fired APs with 100% reliability and independent of location, even 

though focal stimulation in direct proximity to the cell led to much lower maximal firing 

probabilities (Fig. 2I, middle, 100.0±0.0 versus 31.2±7.1% respectively, paired t-test, P(df=7, 

t=9.74)<.001, n=8). At the same time, the maximal IPSC amplitude did not increase further 

upon global stimulation (Fig. 2I, right, 356.9±76.2 versus 344.3±77.5 pA, paired t-test, 

P(df=9, t=1.112)=.29, n=10). This implies that additional activation of remote GCs cannot 

recruit interneurons beyond those activated by local GC populations. Thus the recruitment of 

feedback inhibition in the DG is steep, with a dynamic range tuned to sparse populations of 

GCs (up to 3-4% of cells). 

Lower limit of feedback recruitment 

Previous work has addressed the lower limit of the recruitment of feedback inhibition in 

various cortical areas 50–53. The authors report the ability of even a single principal cell to 

activate feedback inhibitory interneurons and a supralinear increase of inhibition as the 

second and third principal cells are co-activated 50. Given our findings so far we asked 

whether single GCs might also suffice to elicit feedback inhibition in the DG. To this end we 

performed dual patch clamp recordings and elicited short trains of ten action potentials at 

100 Hz in one cell while monitoring inhibition in the other (Supplementary Fig. 4, n=15). 

However, in contrast to the neocortex 50,52 and area CA3 51, we did not find single GC-

induced feedback inhibition in any of these experiments, consistent with a recent large scale 

study reporting that such connections are extremely sparse (0.124%) 22.  
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Fig. 2, Recruitment of feedback inhibition assessed optogenetically. A) EYFP fluorescence in 
dentate GCs of Prox1/ChR2(H134R)-EYFP transgenic mice. The field of view for rapid focal 
optogenetic stimulation is indicated by a blue square. A typical stimulation site approx. 40 µm from 
the GC layer (two short black lines) is indicated by a blue dot. B) Schematic of the microscope 
setup used to achieve spatially controlled illumination. The inset shows the intensity profile of the 
laser spot. C) Top left, reconstruction of an Alexa594 filled GC.  Left, illustration of optical 
stimulation. Right, IPSCs following 20ms light pulses at increasing laser power (P = 1 to 7 AU). 
Each trace represents an average of 3 trials. D) Summary of IPSC amplitudes from cells in the 
superior blade (n=7 cells). IPSC amplitudes were normalized to the maximum amplitude within 
each cell. E) Optogenetically elicited IPSCs are abolished by glutamatergic blockers (40µM CNQX 
+ 50µM D-APV, n=9). F) Left, Schematic of focal optical and electrical stimulation. Dashed lines 
indicate cuts to sever CA3 backprojections. Middle, Example traces for IPSCs following electrical 
or focal optogenetic stimulation. Right, maximal IPSC amplitude for the two stimulation paradigms 
(361±37 vs. 410±13 pA for electrical and optogenetic stimulation respectively, paired t-test, p=0.28, 
n=4) G) The optogenetically activated GC fraction responsible for recruiting the IPSC at the 
respective laser powers was estimated from systematic cell attached recordings (see Fig. S1 for 
details). The best estimate (black) incorporates measurements of the 3D light intensity profile in the 
acute slice. Upper and lower bounds were estimated by assuming no firing probability decay with 
increasing slice depth (upper grey dashed line) or isometric firing probability decay (lower grey 
dashed line. H) Data from (D) and (H, best estimate) plotted to show the recruitment of feedback 
inhibition. I) Comparison of focal optogenetic stimulation to global (light fiber mediated) optogenetic 
stimulation. Left, Schematic illustration. Middle, Comparison of the AP probability of individual 
GCs at maximal stimulation power for focal and global stimulation assessed by cell attached 
recordings. Right, Comparison of the maximal IPSC amplitude under focal and global stimulation 
for individual GCs. 
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Spatial distribution of feedback inhibition 

Recent evidence indicates that inhibition by individual PV+ fast spiking hilar border 

interneurons is non-uniformly distributed over space, with decreasing connectivity and 

inhibition at greater distances from the interneuron 22,54. To test whether feedback inhibition 

by the entire ensemble of feedback inhibitory interneurons also displays a spatial gradient we 

activated cell populations at 100 µm intervals along the GC layer while recording inhibition in 

individual GCs (Fig. 3A). Spatial profiles were recorded for increasing laser powers in cells in 

the superior as well as inferior blade of the DG (Fig. 3B, C respectively; n=8 cells for each 

blade). IPSC amplitudes across locations and powers were normalized to the maximal IPSC 

amplitude in each respective cell. This maximal amplitude did not differ between cells in 

different blades (366±40 vs 390±84 pA for superior and inferior blades respectively; t-test, 

P(df=14, t=0.258)=.0686). Next, we investigated the spatial organization of feedback 

inhibition at stimulation powers at which inhibition had saturated (Fig. 3D, E). In all GCs 

tested, the inhibition was greatest when stimulating in the direct vicinity of the recorded cell. 

Activating cells at increasing distances led to monotonically decreasing IPSC amplitudes for 

both blades. Importantly, the term distance here refers to the functional distance along the 

GC layer and not to Euclidean distance. However, inhibition was observed even at the most 

remote stimulation sites, indicating that even the most remote cells from the contralateral 

blade can contribute to the activation of feedback inhibition in a given GC. In order to 

statistically compare the relation of local versus remote inhibition between blades we defined 

a remote location in the contralateral blade at 800 µm from the recorded cell (measured 

along the GC layer and equidistant in all slices; Fig. 3D, E; grey lines) and compared it to the 

local IPSC (black lines). Remote inhibition was significantly smaller than local inhibition while 

no difference between blades or significant interaction was observed (Fig. 3F; two-way RM 

ANOVA; Distance: F(1,14)=3.341, P<.001; Blade: F(1,14)=2.615, P=.128; Interaction: 

F(1,14)=3.341, P=.089). Posttests suggested inhibition of inferior GCs by superior activation 

might be greater than vice versa. However, the difference was not significant (Sidak’s 
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multiple comparison corrected posttest, P(df=28)=.932, P(df=28)=.051 for local and remote 

respectively). 

Next, we investigated whether there are differences in the steepness of recruitment of local 

versus remote inhibition between blades (black and grey, respectively; Fig. 3G, H). To this 

end, we calculated the active cell fraction which produces half-maximal inhibition during local 

or remote stimulation for each individual slice. Comparison of the recruitment between the 

four groups revealed no differences between blades (Fig. 3I, two-way RM ANOVA; Distance: 

F(1,14)=7.889, P=.014; Blade: F(1,14)=0.5506, P=.470; Interaction: F(1,14)=0.0976, 

P=.759). However, local inhibition was significantly more steeply recruited than remote 

inhibition (1.99 ± 0.22% vs.  3.17 ± 0.57 % active cells for half-maximal inhibition).  

Next, we tested if IPSCs elicited by increasing active GC populations differed between local 

and remote activation with respect to their kinetic properties. Since all previous data showed 

no indication of blade specific differences the analysis of the kinetics of feedback IPSCs were 

performed on the pooled data for both blades. Interestingly, local and remote inhibition 

differed in all tested respects (Fig. 3J–M, two-way RM ANOVAs with dfDistance=1,183, dfcell 

fraction=6,183 and dfinteraction =6,183). Local IPSCs occurred with shorter latency and lower jitter 

than remote IPSCs (Fig. 3J, K; Latency: P<.001, <.001 and =.031 for distance, cell fraction 

and interaction, respectively; Jitter:  P<.001, =.037 and =.707 for distance, cell fraction and 

interaction, respectively). Furthermore, both latency and jitter decreased as larger 

populations were activated. IPSCs were also significantly slower in remote versus local 

inhibition. IPSC rise time was slightly shorter in the larger local IPSCs but did not correlate 

with the active cell fraction (Fig. 3L: P=.010, =.633 and =.388 for distance, cell fraction and 

interaction, respectively). Similarly, decay times were significantly shorter in local versus 

remote inhibition while they progressively increased with increasing stimulation power (Fig. 

3M; P<.001, <.001 and =.124 for distance, cell fraction and interaction, respectively). These 

data demonstrate that remote inhibition shows greater delay, greater jitter and slower kinetics 

than local inhibition. 
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Short term dynamics in the feedback inhibitory microcircuit 

Different connections within the feedback inhibitory microcircuit have been shown to variably 

facilitate or depress during trains of activity21 (Supplementary Table 1). This makes it 

difficult to predict the net effect on the short term dynamics of GC feedback inhibition. We 

therefore characterized the frequency-dependence of net feedback inhibition using 

antidromic electrical stimulation as described above (Fig. 4A-C). In marked contrast to the 

CA1 region of the hippocampus 55, feedback IPSCs showed strong frequency dependent 

facilitation (Fig. 4C, n=10 cells, one-way RM ANOVA; Frequency: F(2.69, 29.54)=13.99, 

P<.001; Wilcoxon signed rank tests for deviation from unity at each frequency with Bonferroni 

corrected p-values; P=1, =.004, .002 and .002 for 1, 10, 30 and 50Hz, respectively). We 

found no evidence for a spatial gradient of net feedback inhibitory short term dynamics 

(Supplementary Fig. 5). 

Because this unusual degree of facilitation may be important in allowing sparse activity of 

GCs to recruit significant inhibition over time, we further examined the underlying circuit 

mechanisms. Interestingly, previous literature on the DG feedback microcircuit almost 

exclusively reports short term depression of dentate interneuron inputs to GCs 

(Supplementary Table 1, blue rows), rendering our finding of pronounced facilitation at the 

circuit level even more striking. We therefore measured feedback excitation of hilar neurons 

Fig. 3, Spatial organization of feedback inhibition. Feedback IPSCs recorded from an individual 
GC while GCs at varying distances were activated. A) Schematic illustration of the stimulation 
paradigm and example IPSC traces of an individual trial (P=3). B, C) Distribution of normalized 
IPSC amplitudes as a function of laser power and distance from stimulation spot for superior and 
inferior blade GCs (n=8 for each blade). The relative location of the DG apex ± standard deviation 
is indicated by the black bar and grey area respectively.  D, E) IPSC distribution over space at 
saturation (P≥5). Black and grey bars indicate a local and a remote location at 800 µm from the 
recorded cell respectively. F) Comparison of the amplitude of the locally and remotely activated 
IPSCs at saturation (two-way RM ANOVA, overall test significance indicated by §) G, H) 
Comparison of the recruitment curves during local (black) or remote (grey) stimulation for superior 
and inferior blade respectively. I) Comparison of the cell fraction required for halfmaximal IPSC 
activation between stimulation sites and blades (two-way RM ANOVA overall test significance 
indicated by §). J-M) Temporal properties of IPSCs between local (black) and remote (grey) 
stimulation. To test for systematic variations of kinetic parameters with increasing active cell 
fractions as well as stimulation site two-way RM ANOVAs with no post tests were performed. 
Overall significance indicated by §. K) Latency from beginning of light pulse to IPSC L) temporal 
jitter of IPSCs (SD of latency within cells) M) 20% to 80% rise time N) IPSC decay time constant.  
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by stimulating mossy fiber axons as described above (Fig. 4D-L). Mossy cells and 

interneurons were classified according to their morpho-functional properties31 (Fig. 4D, E, G, 

H, J, K). Cell classification was confirmed using unbiased k-means clustering (Fig. 4K). We 

found that feedback excitation of hilar cells displayed marked facilitation, which was similar 

for both INs and MCs (Fig. 4F, I, L; n=9, 12 respectively, two-way RM-ANOVA, Frequency: 

F(3,57)=6.642, P<.001; Cell type: F(1,19)=0.0075, P=.932; Interaction: F(3,57)=0.743, 

P=.531). Facilitation indices of hilar cells significantly deviated from one for all frequencies 

tested (Fig. 4E, F; n=23 cells; Wilcoxon signed rank tests with Bonferroni corrected p-values; 

P<.001 for all frequencies). These data demonstrate a pronounced frequency dependent net 

facilitation of the feedback inhibitory microcircuit, which is supported by strongly facilitating 

mossy fiber inputs to hilar cells.  
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Quantitative properties of the feedback circuit predict frequency dependent pattern 

separation  

Together, these data indicate that the dentate feedback circuit is able to deliver strong, 

spatially graded inhibition with a high gain and the ability for temporal integration. To probe 

how these quantitative properties of the feedback circuit affect the pattern separation 

capability of the DG, we incorporated them into a biophysically realistic model of the lamellar 

microcircuit (Fig. 5) based on Santhakumar et al. (2005)56,57, making use of their carefully 

experimentally constrained DG cell-types (Fig. 5A, Supplementary Fig. 6A). To maximize 

our models inferential value we clearly separated a tuning phase, in which we constrained 

the model by our experimental data, and an experimental phase, in which pattern separation 

was tested without further changes to the model. In the tuning phase, we first scaled up the 

model four-fold to contain 400 perforant path afferents (PPs), 2000 GCs, 24 basket cells 

(BCs), 24 hilar perforant path associated cells (HC) and 60 MCs (Fig. 5A, B). BCs, HCs and 

MCs comprise the feedback inhibitory circuit and BCs receive direct PP input thereby 

additionally mediating feedforward inhibition32. We then adapted the spatial extent of the 

target pools of BC and HC outputs to produce local and global inhibition respectively, 

reproducing the experimentally determined spatial tuning of net feedback inhibition (Fig. 5C). 

We further adjusted synaptic decay time constants and weights in order to reproduce the 

measured PSCs of hilar neurons and GCs and the empirical recruitment curves (Fig. 5D, 

Supplementary Fig. 6). Finally, we incorporated facilitation of the experimentally determined 

Fig. 4, Short term dynamics in the feedback inhibitory microcircuit. Trains of ten antidromic 
electrical stimulations at 1, 10, 30 or 50 Hz were applied to elicit disynaptic feedback inhibition or 
excitation of hilar cells (electrical stimulation artifacts were removed in all traces). A, D, G) 
Schematic illustration of the experimental setup and example traces of voltage responses to 
positive and negative current injections of GC and hilar cells (dashed lines indicate cuts to sever 
CA3 backprojections) B) Exemplary GC feedback IPSCs before (black) and after (grey) 
glutamatergic block (n = 7).  C) Facilitation indices (mean of the last three IPSCs normalized to the 
first; n=10 cells) D-L) Hilar cells were manually classified into putative interneurons (blue) or mossy 
cells (green) based on their morpho-functional properties. E) Reconstruction of biocytin filled hilar 
interneuron (axon in red). F) Interneuron EPSCs in response to stimulation trains. H) 
Reconstruction of biocytin filled mossy cell (axon in red). I) Mossy cell EPSCs in response to 
stimulation trains. J) Quantification of intrinsic properties of hilar cells (see methods). K) k-means 
clustering based on intrinsic properties of hilar cells (coloring according to manual classification). L) 
Facilitation indices of classified hilar cells. (§ indicates significance in one-way RM ANOVA, * show 
significance in Bonferroni corrected Wilcoxon signed rank tests for deviation from 1). 
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magnitude into feedback excitatory mossy-fiber outputs, leading to GC IPSC facilitation in the 

experimentally observed range (Fig. 5E, Supplementary Fig. 6B). Together, these minimal 

adaptations resulted in a model with remarkably similar properties to our experimental 

findings (Fig. C-E). We therefore concluded the tuning phase of the model and proceeded to 

an in silico pattern separation experiment without further changes to the model. 

 

 

To investigate the implications for pattern separation we probed the ability of this model to 

separate PP input patterns with behaviorally relevant temporal structure and varying degrees 

of overlap 46,57. Specifically, we created input trains with constant mean rate, but with either 

theta (10 Hz) or slow-gamma (30 Hz) modulation (Supplementary Figs. 6C, 7A), which are 

prominent during exploration and novelty exposure respectively 41,44. To model rapid pattern 

separation in behaviorally relevant timescale we chose an input duration of approximately 

five theta cycles (600ms, corresponding to the approximate duration of place cell spiking 

during traversal of its place field). To obtain a range of input similarities, we generated input 

Fig. 5, Computational model of the DG feedback circuit. A biophysically realistic model of DG 
was tuned to capture the key quantitative features of the feedback circuit. All analyses were 
performed as for the real data (including IPSC normalization to maximal IPSC over space and 
power within each respective cell) A) Schematic of the model circuit. GC: granule cell, BC: basket 
cell, HC: hilar perforant path associated cell, MC; mossy cell.  B) Intrinsic responses of model cell 
types to positive and negative current injections. C) Spatially graded net feedback inhibition 
following simulated focal GC activation. D) Local and remote recruitment curves of the feedback 
inhibitory circuit (left) and the resulting saturated IPSC amplitudes and GC fractions recruiting 
halfmaximal inhibition (right). E) Facilitation indices resulting from simulated, 10 pulse, frequency 
stimulation of GCs as above. 
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patterns in which 24 of 400 PP afferents were activated (Fig. 6A, Supplementary Fig. 6) 

and compared pairs of such patterns ranging from no overlap (two separate sets of afferents) 

to complete overlap (identical trains in the same 24 afferents in both patterns). Each model 

network was run with 25 input patterns leading to a total of 325 comparisons (data points in 

Fig. 6C). To quantify pattern separation we compared input correlation (Rin ) to output 

correlation (Rout ; Fig. 6B) both measured as Pearson’s R between the population rate 

vectors over the full 600ms time window 9,12. Our full, tuned model reliably decreased the 

population vector correlations for similar patterns (0<Rin<1) thereby demonstrating robust 

pattern separation over the whole range of input similarities (Rout<Rin; Fig. 6C, left). Next, we 

isolated the contribution of feedback inhibition to pattern separation by rerunning the same 

input pattern combinations on the network in which mossy fiber outputs to interneurons were 

removed (Fig. 6C, middle). This eliminated HC activity and reduced BC spiking by nearly 

50% (not shown). Note that removing mossy fiber outputs also eliminates BC activity through 

cooperative activation by summating feedforward and feedback inputs32.  Removal of all 

inhibitory outputs led to a further decrease in pattern separation, demonstrating the effect of 

additionally removing feedforward inhibition (Fig. 6C, right). As expected these manipulations 

increased both the fraction of active GCs and the activity per GC (Supplementary Fig. 7B, 

C). In order to quantify the respective pattern separation effects over the full range of input 

similarity, we computed the bin wise mean Rout (Fig. 6C, Rin bin-width: 0.1, dashed line) and 

measured the area to the identity line (Fig. 6C, black lines). The resulting mean ΔRout was 

calculated for seven separate random networks, each challenged with theta as well as slow-

gamma modulated inputs in each of the three conditions. Both the frequency of the input 

modulation as well as network manipulatons significantly affected pattern separation (Fig. 

6D; two-way RM ANOVA with both factors matching, condition: F(2,12)=145.1, P<.001; 

frequency: F(1,6)=31.48, P=.001; interaction: F(2,12)=11.77, P=.002; n=7 random network 

seeds for these and all subsequent analyses). Specifically, both feedback and feedforward 

inhibition significantly contributed to pattern separation (Sidak’s multiple comparison posttest, 

P(df=12, t=11.33)<.001 and P(df=12, t=5.36)<.001, respectively). 
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To quantify the isolated effects of feedback and feedforward inhibition we computed the 

difference in Rout between the respective conditions for each individual comparison (i.e. data 

point in Fig. 6C). For instance, the individual comparison shown in Fig. 6A, will lead to a 

single Rout value in the network with MF inputs to interneurons (full model), which is 

subtracted from the corresponding Rout value in the same network without this input (no FB). 

This procedure isolates the effect of interest (ΔRout) for each individual comparison, 

controlling for other sources of variability. A single pattern separation measure was then 

obtained as before, as the area under the curve of bin-wise means of these ΔRout values 

(Fig. 6E, inset). We found a significant effect of both inhibitory motif and frequency domain 

(Fig. 6E; two-way RM ANOVA with both factors matching, Motif: F(1,6)=15.58, P=.008; 

Frequency: F(1,6)=9.91, P=.020; Interaction: F(1,6)=76.37, P<.001). Posttests revealed that 

the frequency dependence of pattern separation was driven by feedback inhibition (Sidak’s 

multiple comparison posttest: FB: P(df=6, t=13.68)<.001; FF: P(df=6, t=1.33)=.412. 

Interestingly, this frequency dependence of feedback inhibition mediated pattern separation 

was particularly pronounced for highly similar input patterns (0.9<Rin<1; Fig. 6E, right; Motif: 

F(1,6)=261.7, P<.001; Frequency: F(1,6)=108.1, P<.001; Interaction: F(1,6)=109.5, P<.001; 

Sidak’s multiple comparison posttest: FB: P(df=6, t=15.78)<.001; FF: P(df=6, t=0.98)=.595). 

It has recently been emphasized, that the assessment of pattern separation can depend 

critically on the pattern similarity measure used8,58. Therefore we tested the robustness of 

this result for two alternative similarity measures, namely normalized dot product (NDP, also 

known as cosine similarity) and pattern overlap (# of coactive/ # of totally active cells; 

Supplementary Fig. 7). The frequency dependence of feedback inhibition mediated pattern 

separation, especially for highly similar inputs, proved robust for all three similarity measures 

(see figure legend for statistics). 

Effect of spatial tuning and facilitation of net feedback inhibition  

Next we investigated the specific effects of two interesting empirical findings of the present 

study, 1) the spatial tuning and 2) the facilitation of the feedback circuit (Supplementary Fig. 

8). To this end we undertook two targeted, minimal manipulations of the full tuned network. 
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To probe the effect of spatially graded inhibition, we redistributed BC output synapses to a 

global target pool (the whole GC population), leading to spatially uniform inhibition (global 

FB; Supplementary Fig. 8B; 8E, left). To probe the effect of facilitation, we removed 

facilitation from mossy fiber outputs (Supplementary Fig. 8C; E, right). We isolated the 

effects of these manipulations by pairwise comparison to the corresponding full tuned 

networks as described above (Supplementary Fig. 8F-I). The results showed a small but 

significant contribution of facilitation (~20% of the isolated FB effect for both frequency 

paradigms), but not spatial tuning to pattern separation (Supplementary Fig. 8G, left; 

Wilcoxon signed rank test for deviation from 0, n=7, Bonferroni corrected P-values: P=.031 

and P=1 respectively for 10Hz; P=.031 and P=1 respectively for 30Hz). We noted that while 

spatial tuning did not affect mean pattern separation, it appeared to reduce its variability 

(CoV) for a given input similarity (Supplementary Fig. 8G, right; Wilcoxon signed rank test 

for deviation from 0, n=7, Bonferroni corrected P-values: P=.031 and P=.750 for tuning and 

facilitation respectively at 10Hz; P=0.438 and P=1 respectively at 30Hz). 
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Frequency dependent pattern separation is robust over analysis scales 

So far, all pattern separation analyses were conducted on the population rate vectors during 

a 600 ms time window. However, many neural computations are likely to occur on shorter 

timescales, such as within individual theta cycles (~100 ms)19,59. Indeed, the time window in 

which correlation is recorded can nontrivially affect the resulting correlation, depending on 

the timing of spikes within it58. We therefore computed the networks pattern separation ability 

within 100 ms time windows, revealing i) the pattern separation ability within such short 

timescales and ii) the temporal evolution of pattern separation throughout a 600 ms stimulus 

presentation (Fig. 6F, G). We find that pattern separation occurs even within a single theta 

cycle, including a contribution of feedback inhibition in both frequency paradigms (mean 

ΔRout significantly different from 0 within the first 100 ms bin, Wilcoxon signed rank test with 

Bonferroni corrected p-values: P=.031, =.031 for full and FB effect respectively in both 

paradigms). While mean ΔRout did not differ between frequency paradigms within this first 

time window, it was significantly elevated in the 30 Hz paradigm in all subsequent time 

windows (full model effect, two-way RM ANOVA, P<.001, <.001 and =.004 for time-bin, 

Fig. 6, Frequency dependent pattern separation of temporally structured inputs. The 
quantitative DG model was challenged with theta (10Hz) or slow gamma (30Hz) modulated input 
patterns with defined overlap to probe its pattern separation ability. A) Pair of theta modulated 
perforant path input patterns in which 50% of afferents overlap (grey area). B) Resulting pair of GC 
output patterns of the full tuned network. Bottom: Representative individual GC underlying the 
observed patterns. C) Comparison of 325 input pattern pairs and their resulting output pattern 
pairs. Each pair is characterized by its rate vector correlation for inputs (Rin) and outputs (Rout), 
where rates are measured over the full 600 ms time window. Dashed black lines represent the bin-
wise mean Rout (in Rin bins of 0.1). Left: full tuned model, middle: model without mossy fiber inputs 
to interneurons, right: model without inhibitory synapses. D) Full pattern separation effects (mean 
ΔRout) of all three conditions for both frequency domains quantified as the area enclosed by the 
dashed and unity lines in (C). Black lines represent individual network seeds. Two-way RM ANOVA 
indicated significance of condition, frequency and interaction, * indicate significance in Sidak’s 
posttests between individual conditions. E) Isolated effects of feedback and feedforward motifs 
obtained by pairwise subtraction of Rout between conditions for each individual comparison. The 
inset shows the resulting ΔRout for each Rin bin. The area under the curve quantifies the mean 
ΔRout as in (D). Two-way RM ANOVA indicated significance of condition, frequency and interaction. 
*** indicate p<0.001 in Sidak’s posttest. F). 100ms time-resolved pattern separation effects of the 
full model, isolated FB or FF inhibition for theta modulated input (10Hz). All analyses were 
performed as above but with rate vector correlations computed for 100 ms time windows. The 
bottom insets show ΔRout as a function of input similarity for each time window. The bottom right 
insets show the evolution of the mean ΔRout over time. G) Same as (F) but for slow gamma (30Hz) 
modulated inputs. Arrow indicate the region of selectively increased pattern separation. Data in D-
G represent mean ± SEM of n=7 random network seeds. 
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frequency and interaction respectively, Sidak’s posttest P=.234 for 1st bin and P<.001 for all 

subsequent bins). Again, the selective increase during slow-gamma modulated inputs was 

driven by feedback inhibition (isolated FB effect, two-way RM ANOVA, P=.007, <.001 and 

=.041 for time-bin, frequency and interaction respectively, Sidak’s posttest P=.708 for 1st bin 

and P<.002 for all subsequent bins), including a contribution from MF facilitation 

(Supplementary Fig. 8). As above, the effect was predominantly driven by the separation of 

highly similar input patterns (isolated FB effect, Rin>0.5; two-way RM ANOVA on last time-

bin, P<.001, =.010 and <.001 for Rin-bin, frequency and interaction respectively, Sidak’s 

posttest on differences between frequency paradigms for each input similarity: P=1 for 

Rin<0.6 and P=.032 to P<.001 for Rin= 0.6 to 0.9). These results were robust when analysis 

time windows were decreased even further (33 ms, Supplementary Fig. 9). This 33 ms 

resolved analysis additionally reveals that the pattern separation effect, particularly of 

feedback inhibition, ramps up within a 100 ms window, becoming effective only at the end of 

a theta cycle (Supplementary Fig. 9B). 

Next we asked if the frequency dependence of feedback inhibitory pattern separation was 

sensitive to variations of the inhibitory decay time constants and if there might be an 

interaction between these decay time constants and the frequency range at which pattern 

separation is most effective (Supplementary Fig. 10). Remarkably, we found the differential 

effect between 10 & 30 Hz to be highly robust across a range of different decay time-

constants (0.5x to 5x the experimentally matched decay, Supplementary Fig. 10A-C, Table 

2). Furthermore, the selective enhancement of feedback inhibitory pattern separation of 

highly similar inputs was robust over the entire gamma range (up to 100Hz, Supplementary 

Fig. 10D, E).  

Finally, we tested if our main results were robust to alterations in the relative strengths of 

feedforward vs. feedback inhibition. Since, our model is closely constrained with respect to 

the recruitment and functional properties of the feedback circuit, we are confident about the 

resulting computational inferences concerning this circuit. However, the model does not allow 
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strong inferences about the relative roles of feedback and feedforward inhibition, and it is 

thus necessary to probe if extremely powerful feedforward inhibition might occlude the 

effects described here. We therefore selectively enhanced the feedforward inhibitory circuit in 

our model by increasing the PP to BC circuit 2x (Supplementary Fig. 11). This robustly 

increased the feedforward inhibitory contribution to pattern separation above that of feedback 

inhibition (Supplementary Fig. 11B). However, it did not affect the frequency dependence of 

the feedback inhibitory effect. Indeed, for highly similar input patterns, the feedback inhibitory 

effect was so prominently enhanced during gamma input, as to again dominate the 

feedforward inhibitory effect (Supplementary Fig. 11C). 

Together these results suggest that frequency dependence is a key feature of the feedback 

inhibitory microcircuits and predict that feedback inhibition selectively boosts the separation 

of highly similar input patterns during gamma oscillations. 
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Discussion 

Across brain regions and species, inhibitory circuits contribute critically to regulating the 

sparsity and overlap of neural representations 1,10,11,20. In most, if not all brain regions, 

feedback inhibition is viewed as important in these capabilities, by directly mediating 

competition between active cell ensembles 46,60,61. In the mammalian DG, feedback inhibition 

is implemented by an intricate network of interneurons that is capable of delivering 

spatiotemporally defined inhibition to the principal cell population. How net feedback 

inhibition is functionally organized in mammals, and how it may contribute to pattern 

separation of biologically relevant, temporally structured input patterns is, however, poorly 

understood.  

Quantitative physiological properties of DG feedback inhibition 

We have therefore quantitatively described the recruitment of net feedback inhibition by 

defined GC population sizes in space and time in the hippocampal DG, a structure in which 

sparse activity and inhibition are thought to critically contribute to the function of pattern 

separation 14–16,20,62. The proposed role of the feedback inhibitory circuit depends critically on 

its dynamic range, i.e. the relation between the number of active principal cells and the 

resulting feedback inhibition. This property of the feedback circuit is determined by complex, 

mainly hilar cellular connectivity patterns 21,22 (Supplementary Table 1). While delving into 

detailed cell-cell connectivities is clearly important, such studies do not allow the quantitative 

determination of the gain and dynamic range of net feedback inhibition 50,52. Using two 

complementary experimental approaches, we found that net feedback inhibition is steeply 

recruited by sparse populations of GCs (<4%). Accordingly, the gain and sensitivity of the 

circuit are well suited to strongly modulate feedback inhibition within the range of GC activity 

reported in vivo42,63. Additionally, we have described in detail the temporal and spatial 

distribution of inhibition delivered by feedback circuits in the DG.  
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Frequency-dependent effects of feedback inhibition on pattern separation 

How do the properties of feedback circuits influence the pattern separation capability of the 

dentate gyrus? To address this question we adapted an established biophysically realistic 

computational model of the DG circuitry 56,57. We first carefully constrained the model to 

match the spatial and temporal properties of net feedback inhibition as assessed in our 

physiological data. We then fixed all model parameters, and proceeded to probe the ability of 

this circuit to perform pattern separation on temporally complex oscillatory inputs. The major, 

highly robust, result of this computational study was that the impact of feedback inhibition on 

pattern separation is frequency-dependent. Specifically, we find that the separation of input 

patterns during gamma oscillations >30 Hz is powerfully and selectively enhanced by the 

feedback circuit. Remarkably, this mechanism was particularly efficient for very similar input 

patterns. Such an effect has not been discovered in earlier modeling studies, because most 

models have discretized time, calculating the pre-inhibition population activity, the resulting 

inhibition, and the inhibition-corrected population activity in a single time step, sometimes 

assuming an average corrected population rate within this time step 46,64,65. Thus, they do not 

capture temporal features of feedback circuits. On the other hand, a number of spike based, 

temporally resolved models have considered only temporally unstructured (Poisson) inputs 

57,66–68. We suggest that the precise spatiotemporal organization of the feedback circuit, 

together with the temporal structure of DG inputs is a crucial determinant of pattern 

separation. Indeed, the DG and its inputs have a strong, behaviorally relevant, temporal 

structure 42,69,70. Novelty experience can induce increased gamma and beta range activity 

41,71,72, and explorative activity with rearing is also associated with increased gamma 

oscillations 73. A recent model has addressed how fast, rhythmic gamma-frequency feedback 

inhibition may implement a type of ‘k-winners-take-all’ operation, a basic computational 

component of pattern separation models60, though this model relies on faster synaptic 

timescales than we observed in our compound IPSCs. Perhaps most interestingly, the 

occurrence of oscillations in the slow-gamma range has recently been reported to be 

causally related to associative memory formation 41,44, a process thought to require pattern 
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separation. Consistent with this finding, Hsiao et al. 43 report DG driven gamma entrainment 

of CA3, the presumed primary storage location of associative memories. Together, this 

suggests that the dentate pattern separator may be optimized to rapidly detect subtle 

degrees of difference within the environment in gamma-dominated exploratory brain states, a 

capability likely to support successful memory encoding of novel environmental features, and 

potentially aiding in rapid discrimination during recall.  

Importantly, the frequency-dependent pattern separation was driven by the feedback circuit, 

and was highly robust to various alterations to the model. For instance, increasing the level 

of feedforward inhibition enhanced its contribution to pattern separation, but did not affect 

feedback inhibitory frequency-dependence. This effect was also robust when varying the 

decay time constants of the inhibitory synaptic conductances, the time windows of analysis, 

or the similarity measure employed. Together this suggests that frequency-dependent 

pattern separation is a key property of the local inhibitory feedback circuit. Importantly, this 

does not preclude that additional, long range projections may add further complexity74. Also 

note that in addition to the instantaneous pattern separation mechanisms investigated here, 

potentially complementary mechanisms at much longer time scales have been proposed 

involving ongoing neurogenesis 75–80.  

Spatiotemporal organization of inhibition and pattern separation 

The model also allowed us to examine the impact of the spatiotemporal organization of 

inhibition on pattern separation. Facilitation of feedback circuits produced a small but robust 

enhancement of pattern separation, while spatial tuning of feedback inhibition did not. The 

facilitation of feedback inhibition is a remarkable feature of the DG, which we to our 

knowledge have described for the first time. It is in marked contrast to area CA1, where 

somatically measured feedback inhibition shows strong depression 55,81 and is particularly 

surprising given the prevalence of depression in the literature on pairwise connections 

(Supplementary Table 1). Our physiological and modeling data suggest that the strong 

facilitation of the mossy fiber input to the feedback circuit is the principal mediator of this net 
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facilitation. The effect of facilitation on pattern separation is intuitive, since this allows the 

feedback circuit to integrate GC activity over time, and convert it to inhibition.   

In our model, spatial tuning of feedback inhibition had no effects on pattern separation. This 

may derive from the fact that PP inputs were spatially broad and random82,83. In general, the 

effect of localized inhibition could be more relevant if synchronously activated populations of 

GCs are locally clustered 84. For instance, GCs in the inferior and superior blades of the DG 

are known to be differentially active 85,86. Accordingly, localized inhibition might be important 

for independent processing between the two blades. An alternative function of spatially 

graded inhibition has been proposed by 54, who suggest that it is more effective in promoting 

synchronous gamma oscillations. Accordingly, spatial tuning may play a role in creating the 

oscillatory dynamics, found here to critically impact the feedback inhibitory pattern separation 

performance. 

Together, this study provides the first comprehensive, quantitative description of the 

spatiotemporal properties of the DG feedback inhibitory microcircuit, and predicts that these 

properties will selectively enhance the separation of highly similar input patterns during 

learning- related gamma oscillations. This mechanism may be relevant for understanding 

disease states in which there is a coincidence of dentate gyrus-centered pathology with 

abnormal oscillatory activity, and memory and pattern separation deficits (i.e. temporal lobe 

epilepsy, Alzheimer’s disease, schizophrenia)14,87–89. 
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Materials and Methods 

Animals and Slice Preparation: All animals were treated according to the University of Bonn 

Animal Experiment Guideline, minimizing unnecessary pain and discomfort. Experiments 

were performed on horizontal hippocampal slices of 21 to 97 day old mice. Ca2+ imaging and 

a subset of dual recording experiments were performed in C57/Bl6 mice obtained from 

Charles River Laboratories (Wilmington, Massachusetts, USA). Optogenetic experiments 

and the remaining dual recording experiments were performed on double transgenic 

offspring of Tg(Prox1-cre)SJ39Gsat/Mmucd) obtained from MMRRC UC Davis as 

cryopreserved sperm and rederived in the local facility 90,91 and Ai32-mice (B6;129S-

Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J, Jackson Laboratory, Bar Harbor, USA). For 

preparation the animals were deeply anesthetized with Isoflurane (Abbott Laboratories, 

Abbot Park, USA) and decapitated. The head was instantaneously submerged in ice-cold 

carbogen saturated artificial cerebrospinal fluid (containing in mM: NaCl, 60; sucrose, 100; 

KCl, 2.5; NaH2PO4, 1.25; NaHCO3, 26; CaCl2, 1; MgCl2, 5; glucose, 20) and the brain 

removed.  

Horizontal 350 µm thick sections were cut with a vibratome (VT1200 S, Leica, Wetzlar, 

Germany, 300 µm sections for hilar recordings). To obtain maximum-connectivity-plane 

slices the brain was glued to its dorsal surface (compare Bischofberger et al., 2006). The 

slicing depth at which the temporal pole of the hippocampus first became visible was noted 

(depth = 0 µm). From here the first four sections were discarded (up to a depth of 1400 µm). 

The following two to three sections were secured such that one further section before the 

beginning of the dorsal hippocampus (approximately 2400 µm) could be discarded. Slices 

were incubated at 35 °C for 20 to 40 minutes and then stored in normal ACSF (containing in 

mM: NaCl, 125; KCl, 3.5; NaH2PO4, 1.25; NaHCO3, 26; CaCl2, 2.0; MgCl2, 2.0; glucose, 15) 

at room temperature. Recordings were performed in a submerged recording chamber at 33- 

35 °C under constant superfusion with carbogen saturated ACSF (3 ml/min). Experiments 

were performed in the superior blade unless otherwise indicated.  
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Electrophysiological Recordings: Hippocampal dentate GCs were visually identified using 

infrared oblique illumination contrast microscopy in a 20x or 60x water immersion objective 

(Olympus, XLumPlanFl, NA0.95W or Nikon, N60X-NIR Apo, NA1.0W) on an upright 

microscope (TriMScope®, LaVision Biotech, Bielefeld, Germany or Nikon Eclipse FN1, 

Tokyo, Japan). For IPSC measurements the whole-cell patch-clamp configuration was 

established with a low chloride cesium-methane-sulfonate based intracellular solution 

(intracellular solution containing in mM: CH3O3SCs, 140; 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES-acid), 5; ethylene glycol tetraacetic acid (EGTA), 

0.16; MgCl2, 0.5; sodium phosphocreatine, 5; glucose, 10). For GC current clamp 

experiments a low chloride solution (CC-intracellular solution containing in mM: K-gluconate, 

140; 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES-acid), 5; ethylene glycol 

tetraacetic acid (EGTA), 0.16; MgCl2, 0.5; sodium phosphocreatine, 5) was used. GCs with 

input resistances greater than 300 MΩ were discarded in order to exclude immature GCs 92. 

Hilar cells were recorded with intracellular solution containing in mM: K-gluconate, 140; KCL, 

5; HEPES-acid, 10; EGTA, 0.16; Mg-ATP, 2; Na2-ATP, 2; pH adjusted to 7.25; 277mmol/kg 

without biocytin. 0.3% biocytin (Sigma-Aldrich, B4261). In all imaging experiments and a 

subset of optogenetic experiments the intracellular solution additionally contained 100 µM 

Alexa 594 hydrazide sodium salt (Life Technologies, Carlsbad, USA). The identity of visually 

and electrophysiologically identified mature GC was confirmed by their dendritic morphology 

after dye filling in every case tested. Pipette resistance of the patch pipettes was 3 – 7 MΩ. 

Voltage-clamp recordings were performed with a Multiclamp 700B (Molecular Devices, 

Sunnyvale, USA) or a BVC-700A amplifier (Dagan Corporation, Minneapolis, USA). Current-

clamp recordings were performed with a Multiclamp 700B. Voltage or current signals were 

digitized with a Digidata 1322A (Molecular Devices) or (Instrutech ITC-16, Heka Electronics, 

Ludwigshafen, Germany) at 10 or 50 kHz and recorded using Clampex 10.2 (Molecular 

Devices) or Igor Pro 6 (Wavemetrics, Lake Oswego, USA) on a PC running Windows XP. 

For IPSC measurements cells were held at 0 mV including liquid-junction potential correction 

(estimated at 16 mV). To aid the voltage clamp throughout the cell, this depolarized 
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membrane potential was slowly approached during a 15min pre-equilibration period, during 

which Cs+ entered the cell. For CC-recordings liquid junction potential was not corrected. 

IPSCs were normalized to the maximally elicited IPSC over space and power for each 

respective cell. Importantly, this normalization does not require prespecification of the 

location or power at which a respective cell’s maximum occurs. Note, that due to this 

procedure all normalized IPSC values are by definition below 100%. Chemicals for 

electrophysiological experiments were obtained from Sigma-Aldrich (St. Louis, USA). All 

drugs were purchased from Tocris Bioscience (Bristol, UK). 

Dual Patch Experiments: Two GCs within 100 µm of each other were recorded. To test for 

single GC induced feedback inhibition 10 to 15 trains of 10 APs at 100 Hz were elicited by 

brief (3 ms) current injections in one cell. Inhibition was monitored either in VC, while holding 

the cell at 0 mV to allow the detection of small IPSCs (Supplementary Fig. 2, n=7 cell pairs, 

7 directions) or current clamp while holding the cell at -60 mV, allowing to probe for inhibition 

in both directions (not shown, n=4 cell pairs, 8 directions).  

Ca2+ Imaging: Dye loading was modified from 93 and performed in the submerged chamber at 

35°C under constant superfusion. Briefly, a dye solution containing: 1 mM Oregon Green® 

488 BAPTA-1 acetoxy-methyl ester (OGB-1 AM); 2% pluronic F-127;150mM; 2.5mM KCl; 

10mM HEPES). The dye was injected into the slice along the superior blade of the GC layer 

using standard patch pipettes (4-5 locations, 100 µm intervals, 30µm depth, 3 minutes at 500 

mbar per location). Recordings were started at least 45 minutes after the staining procedure. 

Population Ca2+ Imaging was performed using a multibeam two-photon fluorescence 

microscope (TriMScope®, LaVision Biotech, Bielefeld, Germany) with excitation light at 810 

nm. Images were acquired with a digital CMOS camera (ORCA-Flash, Hamamatsu) through 

a high numerical aperture 20x water immersion Objective (XLumPlanFl, NA-0.95, Olympus). 

This allowed imaging of a large field of view (320 x 240 µm) with high spatial and temporal 

resolution (1920 x 1440 pixels, 20 Hz) at acceptable signal to noise ratios. Time series were 

processed with ImageJ 1.48o and IGOR Pro 6.3 in a semiautomatic manner. Regions of 
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interest were manually placed onto all well loaded cells which remained visible throughout 

the experiment. Ca2+ fluorescence increase normalized to baseline (ΔF/F) traces of individual 

cells were calculated without background subtraction. The fraction of responders for each 

time series was extracted by automatic thresholding at ΔF/F = 0.94%. The threshold was 

determined by combined cell-attached and Ca2+ imaging experiments. Note, that for these 

experiments the stimulation electrode was placed into the hilus in order to obtain a sufficient 

number of true positive responders. The imaged cell population comprised on average 46 ± 

18 (standard deviation) cells (n = 23 slices). The active cell fraction corresponds to the 

fraction of responders normalized to the dye loaded population within each section. To 

assess the spatial distribution of cell activation in imaging experiments, ΔF/F projections 

were created by averaging and smoothing four frames during the transient and four frames at 

baseline fluorescence and then calculating the pixel wise ΔF/F.  

Antidromic electrical stimulation was achieved using a bipolar cluster microelectrode (FHC, 

Bowdoin, USA) connected to a digital stimulus isolator (AM-systems, Sequim, USA), placed 

into stratum lucidum in the CA3 region. IPSCs at individual powers were elicited 5 to 13 

times at 0.1 Hz and averaged (0.1 ms pulse time). The amplitude beyond which the stimulus 

isolator could not pass the full current, determined the maximal stimulation amplitude for 

each experiment. 

In order to obtain the input-output relationships of the feedback inhibitory circuit data, each 

variable was averaged over slices by power. This was necessary since only a small subset of 

experiments in which inhibition was completely blocked could also be successfully imaged (6 

of 8 sections). Due to the small numbers of active cells throughout the entire dataset with 

sufficient dye loading (n = 23 slices) analysis of only these 6 slices leads to a very piecemeal 

recruitment curve. A more accurate estimation of the recruitment of feedback inhibition was 

obtained by averaging the cell activation and inhibition over all respectively appropriate slices 

and relating them by power. Note that while the fraction of activated cells in non-MCP 
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sections (not included in the quantitative analysis) was mostly zero, IPSCs were almost 

always present (in 28 of 29 cells in non-MCP sections).  

Optogenetic Stimulation: Focal optogenetic stimulation was achieved through a 

galvanometer driven spot illumination device coupled to a 473 nm DPSS Laser (UGA-40, DL-

473, Rapp Optoelectronics, Hamburg, Germany) on an upright microscope (Nikon Eclipse 

FN1, Tokyo, Japan). The width of the resulting stimulation spot at the focal plane was 8.36 ± 

0.04 µm (full width at half max; Nikon 10X Plan Fluor, NA 0.3 Laser powers are given in 

arbitrary units from 1 to 7 corresponding to 15 ± 1 µW, 107 ± 14 µW, 292 ± 42 µW, 762 ± 105 

µW, 1433 ± 49 µW, 1729 ± 165 µW and 1660 ± 163 µW at the objective (n=5 

measurements). All illumination spots were placed at approximately 40 µm into the ML at the 

slice surface. Stimulation pulses were of 20 ms duration.  

Light Intensity distribution: To measure the light intensity distribution throughout a slice the 

setup was modified to image the slice from below while the laser beam was focused to its 

surface (Fig. S1C-F). This was achieved by focusing a surgical Microscope with 36x 

magnification (M695, Leica Microsystems, Wetzlar, Germany) to the lower slice surface. 

Images were taken with a CCD camera (Nikon D60). Acute sections of 100, 150, 200, 250, 

300 and 350 µm thickness were cut from Prox1-ChR-eYPF mice as described above. The 

laser was focused to the surface of the slice in the molecular layer and an image was taken 

at every laser power (P = 1 to 7 AU). The stage was moved for every image to avoid 

bleaching or phototoxicity. Linear profiles of the resulting isometric light distribution were 

measured in several directions and averaged to obtain an x profile per section. The x-profiles 

of slices of different thickness were then stacked to obtain the xz-profile. Values below 100 

µm depth were obtained through fitting a Gaussian function in x-direction at 100 µm depth 

and an exponential function in z-direction. Complete three-dimensional intensity profiles of 

three different locations of two slices within the dentate molecular layer were averaged. 

Calculation of the Optogenetically Activated Cell Fraction: To assess the active fraction of 

GCs, approximately two GCs were recorded in cell-attached mode in each slice in which an 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/813188doi: bioRxiv preprint 

https://doi.org/10.1101/813188
http://creativecommons.org/licenses/by-nc/4.0/


36 

 

IPSC was recorded. Illumination spots were placed along the GC layer at 100 µm intervals 

(Fig. S1). The entire profile was probed in triplicate with 1 s intervals between individual 

locations. When the stimulation spot was in sufficient proximity to the recorded cell clear APs 

were generally visible (in 25 of 26 cells), and otherwise could be induced through 

simultaneous cell attached depolarization. Cell-attached spikes were detected by automatic 

thresholding at 6x standard deviation of the baseline. The spatial profile of firing probabilities, 

centered on the recorded cells, was averaged within each section. To test if cell activation 

properties differed between blades the maximum firing probabilities (at P = 7) as well as the 

slopes (increase in firing probability from P = 1 to 7) when simply averaging over all location 

of a given cell were compared by t-test (n=7 sections per blade, p = 0.490 and 0.684 for max. 

AP probability and slope, respectively). Since no difference was observed a single firing 

probability distribution as a function of the distance along the GC layer (x – distance) was 

calculated for each power (Fig. S1B, n = 14 sections, 7 per blade). However, the firing 

probability of cells in the vicinity of the illumination spot is likely to increase not only as a 

function of the laser power and spread at the surface, but also of the penetration depth of the 

light cone. In order to calculate the firing probabilities throughout the slice, the firing 

probability distribution at the surface was related to the measured light intensity distribution 

throughout the slice (Fig. S1C-F; see above) utilizing a ‘virtual distance’ measure. Since cells 

were measured at random distances from the molecular layer border, the light intensity 

distribution, like the firing probabilities were collapsed to two dimensions, x-distance along 

the GC layer and z-distance with increasing slice depth. The ‘virtual distance’ was calculated 

as the mean distance from a given slice-surface pixel to all other pixels of the light intensity 

distribution weighted by the intensity within those pixels (Fig. S1G). Assigning the firing 

probabilities of pixels at the slice surface to their respective virtual distance yields the firing 

probability distribution as a function of virtual distance, which was well approximated by a 

gaussian fit (Fig. S1H). This fit was used to also calculate the firing probabilities of 

pixels/cells deeper in the slice using the measured light intensity distribution as input. The 

active cell fraction then corresponds simply to the mean firing probability throughout the slice. 
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This calculation is independent of the size and number of GC and was performed for every 

power individually. We noted that a large fraction of the recorded spikes occurred with larger 

latency than the typical IPSC following the beginning of the 20 ms stimulation pulse (Fig. S1I, 

example from a single slice). Since only APs preceding the IPSC can participate in its 

recruitment, we calculated the fraction of total spikes which preceded mean IPSC latency for 

every power, and fitted the resulting relation with an exponential function (Fig. S1J). All 

active cell fractions were corrected by this factor (Fig. S1J, bottom). Note that this does not 

take account of the disynaptic delay between mossy fiber output and GC input, thereby 

potentially slightly overestimating the true recruiting population. For comparison, the active 

cell fraction was also computed with alternative assumptions about the decay of the firing 

probability with increasing slice depth. If no firing probability decay with increasing depth is 

assumed, the active cell fraction throughout the slice is given simply by the average of the 

measured firing probabilities at the slice surface (Fig. S1K, upper grey dashed line). 

Alternatively, the firing probability decay with depth was assumed to be identical to the 

measured decay along the slice surface (isometric firing probability distribution; Fig. S1K, 

lower grey dashed line). In this case, Gaussian functions were fit to the probability 

distributions at the surface and these Gaussian functions were then assumed to extend also 

in the z-dimension. The active GC fraction was then calculated by numerical integration 

under the two dimensional Gaussian (with the bounds from 0 to 350 µm in z and -888 to 888 

µm in x, which corresponds to the mean GC layer length) normalized to the same area with a 

uniform firing probability of one. The best estimate of the active GC fraction, incorporating 

light intensity measurements (Fig. S1K, black line), was within these upper and lower bound 

estimates. 

Comparison of Focal and Global Activation:, To globally activate the GC population a 

multimode light fiber (BF-22, Thorlabs, New Jersey, USA) coupled to a 473 nm laser 

(Omicron Phoxx, Rodgau-Dudenhofen, Germany) was placed above the slice surface, non-

specifically illuminating the entire hippocampus. Analogous to focal stimulations, the 

activated cell fraction was calculated as the firing probability of individual cells following 20 
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ms pulses. Here no spatial normalization is necessary since cells were sampled from random 

locations with respect to the light fiber. Firing probabilities for the focal stimulation in these 

sections was calculated as the simple average of all stimulation locations.  

Spatial distribution of feedback inhibition: The same stimulation paradigm which was used to 

assess cell activation was used to assess the spatial distribution of feedback inhibition. For 

individual cells, IPSCs at each location and power were averaged. The entire profile was 

normalized to the largest measured IPSC of that cell, independent of the power and 

stimulation location at which it occurred. For analysis, all IPSC profiles were spatially aligned 

to the recorded cells. The mean distance to apex ± one standard deviation was 356 ± 163 

µm and 322 ± 97 µm for cells from the superior and inferior blade respectively (n = 8 cells in 

each blade). In order to test whether there were any distinct effects of the apex, such as a 

steep decay of inhibition, which would be masked by alignment to the recorded cells, we also 

aligned the profiles to the apex (not shown). However, no such effects were visible. To 

analyze the saturated IPSC profiles, normalized IPSC amplitudes from P=5 to 7 were 

averaged for each cell. In order to analyze the effects of local versus remote stimulation for 

each blade a distance was chosen such that each remote location was still within the DG but 

in the other blade (800 µm from the recorded cell). Normalized IPSCs of the three locations 

surrounding the recorded cell or this remote location were averaged within each power to 

obtain the IPSC amplitudes for further analysis. The cell fraction required for the activation of 

a half-maximal IPSC in each section was assessed for each cell by linear interpolation 

between the measured values. Since no differences were found between superior and 

inferior inhibition, recordings of both blades were pooled to analyze the kinetic properties of 

IPSCs. All parameters were calculated on the multiple trials of individual cells. The latency 

was measured as the time from the beginning of the pulse to when the IPSC superseded 6 

fold standard deviation of the baseline. The jitter was calculated as the standard deviation of 

these latencies for individual cells. The rise time was calculated as the mean 20 to 80 rise 

time of each cell and the decay time constant was obtained from an exponential fit to the 

decaying phase of the compound IPSC. 
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Hilar recordings: Intrinsic properties of hilar cells were quantified based on 4.6s long 

depolarizing current steps or 500ms hyperpolarizing current steps. AP threshold and fast 

AHP amplitude were measured from the first AP in the first current step in which an AP 

occurred within the first 10ms. Clustering fraction and mean AP time were calculated from 

the current injection that elicited the maximum average AP frequency. The Clustering fraction 

represents the fraction of APs that occur within 60ms before or after another AP 31. Mean AP 

time was calculated as the mean AP time point normalized to the duration of the current 

injection (4.6s). Input resistance was calculated as the slope of the IO curve from the 

hyperpolarizing current ladder. Cells were manually classified as mossy cells or interneurons 

based on these intrinsic properties. To objectively confirm classification we performed 

unsupervised k-means clustering using scikit-learn 94. For clustering all six measures were 

normalized by mean and variance. Two cells with conflicting classification were not included 

in further analysis. 

After recording, slices were fixed for 1h in 4% PFA and stored overnight in 0.25% PBS-T at 

room temperature. The following day they were transferred to PBS for short term storage or 

immediately stained. For biocytin staining sections were washed with PBS and incubated 

with Streptavidin-Alexa-Fluor-555 Conjugate (Invitrogen, S32355), 1:1000 in 0.25% PBS-T 

overnight at 4°C. The following day they were co-stained with DAPI 1:1000 in PBS for 30 

minutes and mounted with Aqua-Poly/Mount. Cells were imaged with the Leica SP8 Confocal 

Microscope of the Microscopy Core Facility at the University Clinic Bonn using a 40x water 

immersion objective. 

Short term dynamics: Short term dynamics of GCs and hilar cells were assessed using 

antidromic electrical or optogenetic stimulation at minimal power (the smallest stimulation 

power that yielded reliable responses). Trains of 10 pulses at 1, 10, 30, 50Hz were delivered 

in triplicate and averaged (excluding sweeps with action currents for hilar cells). In all GCs 

and a subset of hilar cells we confirmed that PSCs could be blocked by at least 90% with 
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40µM CNQX + 50µM D-APV (n=12, 23 for GCs and hilar cells respectively). Facilitation 

indices were obtained by normalizing the average of the last three PSC peaks to the first.  

To test for differential dynamics between local and remote inhibition analogous trains of 

optogenetic 20 ms pulses at powers below saturation (usually P=2 for local inhibition and 

P=3 for remote inhibition) were delivered. For each power and frequency five repeats were 

recorded and averaged.  AP probabilities were assessed by cell-attached recordings with the 

stimulation site close to the recorded cell. Cell-attached spikes were detected by automatic 

thresholding as above. 

Voltage escape estimation model. 

A simple multicompartmental passive ‘ball and stick’ model with number of segments 

following the d_lambda rule95 and passive properties Ra = 181 Ωcm, Cm = 1 uFcm-2 and a 

leak conductance  = 0.0002 Scm-2, which gave an Rin of 165 MΩ, were adopted from 95,96.  A 

soma (20 µm diameter) contained one dendrite (3 µm diameter, 200 µm length) with an 

alpha synapse point mechanism (Erev -90mV) placed at 180 µm from the soma. The range 

of synaptic conductances (0.1 – 50 nS; adopted from 97) elicited IPSC amplitudes in the 

model, which covered the range of somatic IPSC amplitudes that were experimentally 

measured (3pA – 1nA). Voltage clamp experiments were simulated using a single electrode 

point mechanism at the soma (Rs 5 MOhms, to model a Rs of 15 MΩ compensated 70%) 

with a holding potential of 0 mV.  The transfer (Zc) and input impedance (Zn) were 

determined from the model and used to calculate the actual peak IPSC amplitude at the 

soma for a given synaptic conductance. Simulations were run in the Neuron 7.5 simulation 

environment. 

Biophysically Realistic Dentate Gyrus Lamella Model: Simulations were run in python 

2.7.with NEURON 7.4 95 on Windows 7/10. We created a generic python-NEURON interface 

(ouropy, Daniel Müller) which wraps NEURON’s python module, into which we ported the 

conductance based DG model by 56. Model code is available at 

https://github.com/danielmuellernai/pyDentate. 
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We first tuned the original model to capture our experimentally determined properties in the 

most parsimonious way. During tuning we also updated some model properties to better 

reflect current data and our experimental paradigm in an individual DG lamella: 

We introduced a T-type Ca2+ channel mechanism into MCs to more realistically reflect the 

depolarizing envelope at the onset of a positive current step observed in real MCs.  

Furthermore, while the original model placed the perforant path input at the distal dendrite of 

GCs, we moved all perforant path synapses to the middle compartment of the dendrite. In 

order to be able to capture the results of convergent and divergent synaptic inputs in 

sufficient resolution to produce the empirically observed activity gradations, we up-scaled cell 

numbers by a factor of four. To model space, we assumed all cell types to be spread out on 

a 2mm DG lamella. Since MCs project to GCs primarily outside the lamellar plane, we 

removed the MC to GC connection. To allow patterned PP input we adapted PP input 

specifications from 57.  

We then proceeded in a first phase of model adjustment, and adapted several parameters to 

reproduce our in vitro findings regarding spatial and temporal feedback inhibition 

(Supplementary Table 2). To model frequency dependent facilitation on mossy fiber 

outputs, we implemented a simple frequency dependent synapse model (tmgsyn) 98, and 

matched the facilitation time constant as well as the decay time constants of individual PSCs 

to our experimental observations. As in the original model, each cell gives rise to a fixed 

number of synaptic connections which are spatially restricted to a target pool of adjacent 

cells. We tuned the size and spatial extent of this target pool to reproduce our spatial data. 

To provide local inhibition we implemented a ‘local’ interneuron type (BC), whose inputs and 

outputs were spatially restricted to an ~600µm area (as described by 54). To provide global 

inhibition we implemented a second class of inhibitory interneurons (HC) whose inputs and 

outputs connect to GCs independent of space. This simple formulation allowed us to 

reproduce the recruitment curves seen for local, remote and global GC activation paradigms. 

To achieve plausible activity levels, we further adapted synaptic weights similar to 57. We call 
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the network incorporating both spatially restricted BC synapses and mossy fiber facilitation 

the full tuned network. To isolate the contribution of intrinsic GC properties to pattern 

separation we created a disinhibited network by setting the synaptic weight from all 

interneurons to zero. We also isolated feedforward inhibition by decreasing the mossy fiber 

to interneuron synaptic weight to zero. To evaluate the effect of spatially constrained 

inhibition, we created a global network, where the target pool of all interneuron was the entire 

GC population. To evaluate the effect of mossy fiber facilitation we set the facilitation time 

constant to zero, effectively eliminating facilitation. Details on the model parameters are 

summarized in Supplementary Table 2). 

To study pattern separation, we generated 400 PP inputs. Each PP synapsed onto 100 

randomly chosen GCs with the spatial connection probability being governed by a gaussian 

probability distribution with standard deviation 1mm and random peak position, modeling a 

full, nearly uniform input connectivity of individual afferents 82.  To generate theta modulated 

spike patterns we used the inhomogeneous poisson generator from Elephant 0.5.0-

Electrophysiology-Analysis-Toolkit with a 10 Hz (theta) sinusoidal rate profile with a peak of 

100 Hz, a minimum of 0 Hz and a duration of 600 ms. To generate input patterns with 

varying overlap from PP afferents i = 1 to 400, we activated afferents i to i+23 in increments 

of i = 1 per run. We performed 25 runs for each condition resulting in 300 unique 

comparisons, excluding self-comparisons. The random seed was held constant between 

different runs of the same condition, resulting in differing input patterns being fed into the 

same network. All randomness was generated with the python module numpy.random. 

To quantify pattern similarity we used Pearson’s product moment correlation coefficient R of 

the population rate vectors for input and output patterns. The population rate vector refers to 

the vector of the mean firing rates of all cells in the population within the entire 600 ms 

simulation, or 100 or 33 ms time windows for the time resolved analyses. All statistical 

analyses of the model were performed with n=7 different random network seeds. 
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To compute full pattern separation effects (Fig. 6D) we calculated the mean Rout within Rin 

bins of 0.1 and measured the area to the unity line (computed as the mean of the binwise Rin 

– Rout differences). To compute isolated pattern separation effects of specific manipulations 

we subtracted the respective Rout values with and without the manipulation, thereby obtaining 

a ΔRout value for each individual Rin. We then again computed the bin-wise mean and 

quantified the area under the curve, yielding the mean ΔRout analogous to the full effects. 

Note, that the sequence of averaging and subtracting is irrelevant, and was inverted only to 

match the figure panels. Data are displayed as mean ± SEM for each Rin bin (Fig. 6E, G). 

The coefficient of variance (CoV) was calculated by normalizing the standard deviation of 

ΔRout within each bin by the mean of that bin, and then averaging over bins, analogous to the 

previous analyses. However, only bins within 0.2<Rin<0.8 were included, since at the borders 

very small means led to unreliable results. ΔCoV represents the difference between the 

mean CoV of the global (or nonfacilitating) and the tuned network models. For the temporally 

resolved pattern separation analysis all measures were computed as above, but on 

population vector correlations within 100ms time bins.  

Statistics and Data Analysis: Analyses were performed using ImageJ, Microsoft Excel, 

Python and Igor Pro. Fits were performed using Igor Pro. Statistical analyses were performed 

using GraphPad Prism 6 or Igor Pro. Comparisons were two-tailed whenever applicable. 

Replicates refer to cells unless otherwise indicated (slices for imaging experiments and 

network seeds for modeling data). Statistical significance in Analysis of Variance (ANOVA) is 

indicated by §. F-values and degrees of freedom are given as F(DFn, DFd). When ANOVAs 

were followed by specific comparisons these are indicated by asterisks, where *P<.05, 

**P<.01 and ***P<0.001. Bargraphs and XY plots show means where error bars indicate 

standard error of the mean. In boxplots error bars represent the data range and boxes the 

upper and lower quartiles and the median. 
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Supplementary Materials 

 

Fig. S1 Detection of single action potential induced calcium transients, A section of the dentate gyrus was 

loaded with OGB1-AM and imaged with multibeam two-photon microscopy while antidromically eliciting action 

potentials and recording from individual cells in cell-attached mode. A) A schematic illustration of the 

experimental setup. B) Example of OGB1-AM loaded GCs. Scale bar: 10 µm C) Cells were stimulated with a 

single pulse (left) or bursts of 5 pulses at 30 Hz (middle) or 100 Hz (right). Cell attached recordings revealed the 

exact number of induced action potentials (bottom) which could then be correlated with the intracellular 

calcium signal (middle). D) Superposition of the calcium fluorescence traces of 49 recorded cells constituted of 

cells identified as responders (green) or non-responders (grey) by cell attached recordings. E) Peak ΔF/F for 

single APs of identified responders and non-responders plotted against their respective baseline fluorescence 

(left). A histogram of the peak ΔF/F of both groups fitted with a Gaussian distribution of the non-responders 

(right, scale bar = 5 cells). The dashed line indicates detection threshold at the quadruple standard deviation of 

this fit (0.94% ΔF/F). F)  False positive (gray) and false negative (green) rates were plotted as a function of the 

detection threshold and fitted with sigmoidal functions. A detection threshold of 0.94% leads to exactly equal 

numbers of false positives and false negatives at a true positive rate of 3% (inset, dashed lines). G) To test for 

potential effects of variable dye loading on detection efficacy, we tested for a correlation between peak ΔF/F of 

responders and baseline fluorescence intensity (p>0.05). H) -To test if increasing numbers of responders at 

increasing stimulation power led to increases of false positives in the densely packed GC layer we correlated 

peak ΔF/F of non-responders with stimulation power (p>0.05). Dashed lines in (G) and (H) represent the 95% 

confidence intervals of linear regressions. 
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Fig. S2, Optogenetically activated cell fraction. A) Schematic illustration of the experimental 
setup. Cells were recorded in cell attached mode (2 per slice), while systematically stimulating at 
varying distances. Traces from a representative trial at P = 3. B) Mean firing probability of every 
location over trials and cells for each laser power (3 example powers shown). C) Schematic of the 
modified setup to record the 3 dimensional light intensity profile in an acute slice. In order to avoid 
saturation a neutral density filter (ND4) was inserted into the light path. D) Cross section of the light 
intensity profile of the laser spot at increasing slice depth. The dashed white lines indicate the 
location of the cross sections shown in (E) and (F). Depths below 100 µm were extrapolated from 
fits to (E) and (F). G) top, Illustration of the calculation of the virtual distance for a particular 
cell/pixel 440µm lateral to the laser focus. The distances between the given cell/pixel and all other 
pixels (individual xz-distances) were weighted by the intensity at those pixels. Bottom, This 
weighting is illustrated by a histogram displaying the intensities for each respective xz-distance. 
The virtual distance corresponds to the intensity weighted mean of xz-distances. H) The measured 
firing probabilities were assigned to the respective virtual distances. The resulting firing probability 
distribution was well approximated by a Gaussian fit (black lines). I) Example of the IPSC and AP 
latencies upon a stimulation pulse from an individual slice. Laser Powers are color coded. J) Top, 
Example Histogram of the distribution of all AP latencies for P = 3 (blue). The black bar indicates 
the mean IPSC latency ± standard deviation at that power. Bottom, The fraction of action 
potentials that precede the mean IPSC for each power was well approximated by an exponential fit 
(black line). Light stimulation in (I) and (J) was from 0 to 20 ms. K) black, Estimated active cell 
fraction in the slice calculated from the light intensity profiles in (D) and the virtual firing probability 
distributions in (H) and corrected by the fraction of APs occurring after the mean IPSC (J). The 
estimated active cell fraction is identical to the mean firing probability throughout the slice. For 
comparison the cell fraction was also estimated assuming no firing probability decay with 
increasing depth (upper grey dashed line) or assuming isometric decay (lower grey dashed line). 
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Fig. S3, Error in somatic IPSC measurements with increasing inhibitory conductance. A 
simple ball and stick model was used to estimate the impact of voltage escape errors for dendritic 
IPSCs (soma diameter 20um; dendrite diameter and length 3 µm and 200 µm, respectively). To 
estimate the maximum errors the inhibitory synapse was placed at a distal site (180 µm from the 
soma) and inhibitory currents were measured using a single electrode voltage-clamp at the soma.  
A) Illustration of the model and an attenuated somatic IPSC measurement. B, Peak amplitudes of 
the measured IPSC over a range of distal synaptic conductances (measured peak IPSC), as well 
as the actual peak IPSC in the absence of voltage errors, calculated from the transfer and input 
impedances of the model. C) Error in somatically measured peak IPSC as percentage of the actual 
peak IPSC (I syn, % error) at a given synaptic conductance. Errors in estimating synaptic inhibitory 
currents were linear. D, Illustration of corrected and uncorrected recruitment curves of absolute 
IPSC amplitudes for varying degrees of voltage error (using data from the recruitment curve in Fig. 
2H).  Note that due to the linearity of voltage escape errors, absolute IPSC amplitudes change, but 
the saturation point does not. E) This is illustrated by the normalized recruitment curves, as shown 
throughout the manuscript (see i.e. Fig. 2H). Note that normalized curves are practically unaffected 
by voltage escape errors. 

 

Fig. S4, Absence of single GC induced feedback inhibition. Pairs of juxtaposed GCs (< 100µm 
distance) were recorded to test for single GC induced feedback inhibition. A) Schematic illustration 
of the experimental setup. B) Example of a paired recording where cell 1 is fired at 100 Hz in 
current clamp mode while cell 2 is recorded in voltage clamp mode in order to detect IPSCs. (gray, 
10 individual trials; black, average). 
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Fig. S5, Frequency dependence of feedback inhibition over space. Trains of 10 focal optic 
stimulations (20ms duration) were applied either locally (1) or remotely (2) to elicit feedback 
inhibition. A) Schematic of the experimental paradigm and example traces of elicited cell attached 
spikes or IPSCs. B) Example traces for stimulation at 1, 10, 30 Hz or continuously for 200 ms of a 
local or remote GC populations (black and grey, respectively). C) The AP probability index (mean 
probability during the last three pulses normalized to the first pulse (one-way RM ANOVA, P<.001 
for frequency, Bonferroni corrected Wilcoxon signed rank test for deviation from 1; P=.024, =.008, 
=.008 and =.008 for 1Hz, 10Hz, 30Hz and continuous stimulation respectively). D) Facilitation 
indices of local (dark grey) and remote (light grey) stimulation (two-way RM ANOVA; P=.635, =.314 
and =.687 for location, frequency and interaction respectively). 
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Fig. S6, Model Tuning and Validation. A) Frequency responses to somatic current injections of 
model celltypes (GC: granule cells, BC: basket cells, HC: hilar perforant path associated cells, MC: 
mossy cells). All model cells were matched to data by Santhakumar et al., (2005). B) Simulation of 
synchronous frequency stimulation of GCs and the resulting PSCs in modelled cell types, 
analogous to Fig. 4. C) Representative theta modulated PP input and population responses 
(scatterplots) of all modelled cell types. Following each scatterplot are three examples of spiking 
cells of the respective type. D) Same as (C) but for slow gamma modulated inputs. 
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Fig. S7, Robustness over different Similarity Metrics, To test if the main finding of frequency 
dependent pattern separation, particularly for highly similar inputs, depended on the similarity 
metric used, the original data was reanalyzed with two alternative similarity metrics. As in the main 
figures data points in bar graphs represent the 7 independent network seeds. For each network 
(seed) we ran sets of patterns for the full model, a network without feedback inhibition (no FB) and 
a model with no inhibition (no inh.). A) Examples of the theta (10Hz) and gamma (30Hz) modulated 
perforant path (PP) input spike patterns. B) Mean number of APs per active PP afferent. C) 
Fraction of active GCs across the different conditions. D) Mean number of APs per active GC 
across conditions. E) Pearson’s correlation coefficient R (as in Fig. 6) left: exemplary scatterplots 
of pattern separation effects. right: bargraphs of the mean pattern separation effect over the full 
input similarity range (0<Rin1) or only highly similar input patterns (0.9<R<1). Full effects measure 
the mean pattern separation effect for each network condition: full model, no feedback (no FB) and 
no inhibition (no inh.). Isolated effects measure the pattern separation contribution of individual 
circuit motifs: feedback inhibition (FB) and feedforward inhibition (FF). F) same as (E) but using 
normalized dot product (NDP) as similarity metric for input and output comparisons. G) Same as 
(E) but using population overlap as similarity metric. Overlap is defined as the number of cells 
active in both patterns (logical and) divided by the number of cells active in either pattern (logical 
or). The full effects were tested with 2x3 ANOVAs followed by Sidak’s postests for differences 
between conditions. Isolated effects were tested with 2x2 ANOVAs followed by Tukey posttests for 
differences between frequencies. Asterisks indicate significance in posttests given significant 
overall effects (*P<.05,**P<0.01,***P<0.001). 
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Fig. S8, Isolated pattern separation effects of spatial tuning and MF facilitation, Effects of 
isolated manipulations were computed for the DG model as in Fig 6. A) Schematic of the full tuned 
network and the resulting spatial profile of inhibition (as in Fig. 5). B) Schematic of the global 
network (with unrestricted BC target pool) and the resulting spatial profile of inhibition. C) 
Schematic of the non-facilitating network. D) Isolated mean feedback effects of the global, tuned 
and non-facilitating models. Two-way RM ANOVA showed: p<0.001, =0.020, =0.402 for frequency, 
condition and interaction respectively with * indicating significance in Dunnett’s posttest against the 
full tuned effect. p=0.742 and 0.020 for global and non-facilitating, respectively at 10Hz; p=0.650 
and 0.001 for global and non-facilitating, respectively at 30Hz. E) Exemplary pattern separation 
plots of theta modulated inputs when spatial tuning (left) or MF facilitation (right) was removed. F) 
Isolated pattern separation effects of the given manipulation for theta (blue) or gamma (green) 
modulated inputs as a function of input similarity. G) Isolated effect of the given manipulation on 
mean ΔRout (left) and the coefficient of variance (ΔCoV) of pattern separation between individual 
comparisons (right). H, I) Time-resolved analyses of isolated effects of  spatial tuning (left) and MF 
facilitation (right) for theta (top row) and slow gamma (bottom row) modulated inputs. In each 
subpanel the bottom left and middle insets show ΔRout as a function of input similarity of the first 
and last time windows respectively. The bottom right insets show the evolution of the mean ΔRout 
over time. 
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Fig. S9 Robustness for shorter analysis time-window, A). 33ms time-resolved pattern 
separation effects of the full model, isolated feedback (FB) or feedforward (FF) inhibition for theta 
modulated input (10Hz). All analyses were performed as above but with rate vector correlations 
computed for 33 ms time windows (instead of 100 ms or 600 ms, as in Fig.6). The bottom insets 
show ΔRout as a function of input similarity for the first and last three time windows. The bottom 
right insets show the evolution of the mean ΔRout over time. B) Same as (A) but for slow gamma 
(30Hz) modulated inputs. Data represent mean ± SEM of n=7 random network seeds. 
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Fig. S10, Robustness over various IPSC decay time-constants and over the full gamma 
range, A-C) To test if the frequency dependence of feedback inhibitory pattern separation 
remained robust for different IPSC decay time constants we probed a range of altered time 
constants (our experimentally matched time constant x0.5, x1, x2 and x5) while maintaining total 
inhibitory conductance in the network constant by complementary adjustment of IPSC amplitude. 
As we expected a potential interaction between IPSC decay and modulation frequency, we probed 
model runs for each factor with 10Hz, 30Hz and 60Hz modulation. The isolated feedback inhibitory 
effects were computed and impacts of decay and frequency were examined with 4x3 ANOVAs 
followed by Tukey posttests for differences between frequencies. Asterisks indicate significance in 
posttests given significant overall effects (*P<.05,**P<0.01,***P<0.001).A) Illustration of modified 
IPSC time-courses. B) Mean pattern separation effect of isolated feedback inhibition over the full 
input similarity range (0<Rin<1). C) Same as (B) but only for highly similar input patterns. Analyses 
in A-C were performed on 7 new network seeds with simulation and analysis otherwise identical to 
Fig.6. D-E) To probe the robustness of frequency dependent feedback inhibitory pattern separation 
over an even larger range of frequency modulation we next simulated the effects over a range from 
10 to 100Hz in 5Hz steps. To provide computational tractability we performed only 8 runs per 
frequency (instead of 24 runs as in all other simulations) leading to fewer pattern comparisons, and 
somewhat noisier readouts. For the majority of frequencies, no input comparisons with R>0.9 
occurred so we defined (0.8<Rin<1) as highly similar input patterns, potentially leading to a slight 
underestimation of our effects.  
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Fig. S11, Robustness for increased feedforward inhibition, To test if the frequency dependent 
enhancement of feedback inhibitory pattern separation of highly similar inputs was sensitive to the 
changes in the relative strengths of feedforward and feedback inhibition, we increased the 
perforant path (PP) to basket cell (BC) synapse weight 2x. A) Illustration of the network alteration. 
B) The resulting full pattern separation effects (left) and isolated feedback (FB) and feedforward 
(FF) effects (right) as mean over all input similarities. C) Same as (B) but only for highly similar 
input patters. Full effects were tested with 2x3 ANOVAs followed by Sidak’s postests for 
differences between conditions. Isolated effects were tested with 2x2 ANOVAs followed by Tukey 
posttests for differences between frequencies. Asterisks indicate significance in posttests given 
significant overall effects (*P<.05,**P<0.01,***P<0.001). 
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Supplementary Table 1, Literature review for DG circuit short term dynamics, Studies 
reporting short term dynamics within the DG circuit were reviewed with a main focus on facilitation 
or depression of synaptic connections defined by pre and postsynaptic cell types. Note the 
abundance of depressing synapses (quantitative descriptions of depression blue). Also note the 
complexity of direct connections between Interneurons (lower third of the table).  
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Supplementary Table 2, Model Parameters, Overview of synaptic and intrinsic parameters 
between model cell-types. First row includes modeled cell number per type. PP: perforant path, 
GC: granule cell, MC: mossy cell, BC: basket cell, HC: Hilar perforant path associated cell; Weight: 
maximal synaptic conductance, Facilitation Max.: maximal fold increase of synaptic conductance, 
Decay Tau: synaptic decay time constant, Facilit. Tau: facilitation time constant, Delay: latency to 
postsynaptic event after presynaptic action potential, Target pool: range of n closest cells 
potentially receiving an output, Divergence: number of output synapses per cell stochastically 
picked from target pool, Target segments: cellular compartment receiving the synapse. Values in 
brackets are values for robustness analyses in Figs. S10, S11. 
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