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Highlights:  

- We present a new model for NRF2 hyperactivation in colorectal cancer cells. 

- AT9283 selectively kills cancer cells with hyperactive NRF2 

- Both genetic and pharmacological activation of NRF2 sensitise cells to AT9283  
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ABSTRACT 

Aberrant hyperactivation of NRF2 is a common event in many tumour types and 

associates with resistance to therapy and poor patient prognosis. The identification of 

ways to overcome the protection provided by NRF2 and selectively kill cancer cells 

addicted to NRF2 is a desirable goal. Exploiting the CRISPR/Cas9 technology, we 

generated colorectal cancer cell lines with hyperactive NRF2, and used them to 

perform a drug screen. We identified AT9283, an Aurora kinase inhibitor, for its 

selectivity towards killing cancer cells with hyperactive NRF2 as a consequence to 

either genetic or pharmacological activation. Our results show that hyperactivation of 

NRF2 presents a potential vulnerability that could be therapeutically exploited, and 

further suggest that AT9283, a drug that is currently in clinical trials, holds promise for 

the treatment of tumours with hyperactive NRF2. 

 

INTRODUCTION 

The transcription factor NRF2 (nuclear factor erythroid 2 [NF-E2] p45-related factor 2, 

encoded by NFE2L2) is the master regulator of oxidative stress responses, which 

allows adaptation and survival during stress conditions. In normal cells under non-

stress conditions, NRF2 levels and activity are kept low by its fast proteasomal 

degradation, which is principally facilitated by KEAP1 (a substrate adaptor for a Cul3-

based E3 ubiquitin ligase)[1,2]. Although NRF2 is a well-characterised cytoprotective 

factor in normal cells, its sustained activation protects tumour cells against 

chemotherapy and promotes metabolic switches that support cell proliferation and 

tumour growth[3-6]. NRF2 hyperactivation has been observed in a variety of tumour 
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types and is linked to poor prognosis. This sustained activation of the NRF2 pathway 

can be due to loss-of-function mutations in KEAP1[3,7]; gain-of-function mutations in 

NFE2L2[7,8]; oncogenic mutations that transcriptionally induce NRF2 (i.e. KRAS, 

BRAF, MYC) or PTEN inactivation [9,10]); as well as epigenetic modifications leading 

to KEAP1 transcriptional inactivation[11,12]. Altogether, this shows that aberrant 

activation of the NRF2 pathway is a common event in many cancer types, and thus, 

the identification of ways to overcome the protection provided by NRF2 and killing 

cancer cells with hyperactive NRF2 is a desirable goal. 

Multiple efforts have been made to identify NRF2 inhibitors and several compounds 

have been described to inhibit NRF2[13], but no specific inhibitor for NRF2 has been 

identified. Furthermore, the safety of a systemic treatment with an NRF2 inhibitor for 

patients is uncertain due to the critical cytoprotective role of NRF2 in normal cells and 

its important role in the immune response[14-16]. An alternative way to overcome the 

NRF2-mediated aggressiveness in cancer is to identify vulnerabilities associated with 

NRF2 hyperactivation. Because such approach is not expected to affect normal cells, 

it will be more specific and consequently safer than inhibiting NRF2 globally.  

Currently, there are several models to study NRF2 hyperactivation in lung cancer, and 

a number of associated vulnerabilities have been identified by using KEAP1-deficient 

or loss-of-function mutant models[17-20]. However, in addition to NRF2, KEAP1 

affects other proteins[21] and there are almost no studies addressing the role of NRF2 

hyperactivation in the presence of wild-type KEAP1. To fill this gap, we generated 

isogenic colorectal (DLD1) cell lines harbouring gain-of-function (GOF) mutations in 

NRF2 using the CRISPR/Cas9 system. Using this model, we screened a panel of 528 

drugs for their ability to kill DLD1 cells with hyperactive NRF2 whilst sparing DLD1 
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cells expressing normal levels of NRF2. From this screen, we identified AT9283, an 

Aurora kinase inhibitor, for its selectivity towards killing cancer cells with hyperactive 

NRF2. Furthermore, we validated this hit, and showed that drug sensitivity to AT9283 

correlates with NRF2 levels/activity, in both a genetic model of NRF2 activation and in 

response to NRF2 pharmacological activation. Importantly, AT9283 is or has been in 

several clinical trials (clinicaltrials.gov), demonstrating the translational potential of our 

finding. 

 

MATERIAL AND METHODS 

Cell culture 

All DLD1 cell lines were grown in DMEM containing 10% FBS at 37°C and 5% CO2. 

The cell lines were validated by STR profiling and were routinely tested to ensure that 

they were mycoplasma-negative. CRISPR-edited NRF2-knockout (NRF2-KO) and 

NRF2-gain-of-function (NRF2-GOF) DLD1 cell lines were produced as previously 

described[22].  

Antibodies and reagents 

Antibody recognizing NRF2 (D1Z9C) was obtained from Cell Signaling Technology 

(Danvers, MA, USA). Anti-Beta-Actin antibody (C4) was from Santa Cruz 

Biotechnology (Dallas, Texas, USA). HRP-conjugated secondary antibodies were 

from Life Technologies (Carlsbad, California, USA). AT9283 was obtained purchased 

from ApexBio Technology (Houston, TX, USA). Dimethyl sulfoxide (DMSO) was from 

Sigma-Aldrich (Dorset, UK). R,S-sulforaphane (SFN) was purchased from LKT 
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Laboratories (St. Paul, MN, USA). (±)-TBE-31 and HB229 were synthesized as 

described[23,24]. 

Quantitative real time PCR (rt-qPCR)  

RNA was extracted using RNeasy kit (Qiagen). RNA (500 ng) was reverse-transcribed 

to cDNA using Omniscript RT kit from QIAGEN (Hilden, Germany) supplemented with 

RNase inhibitor according to the manufacturer’s instructions.  The resulting cDNA was 

analyzed using TaqMan Universal Master Mix II (Life Technologies, Carlsbad, CA, 

USA). Gene expression was determined using an Applied Biosystems 7300 Real-

Time PCR system by the comparative ΔΔCT method. All experiments were performed 

at least in triplicates and data were normalized to the housekeeping gene HPRT1. The 

primers used were obtained from Thermo Fisher Scientific (Waltham, MA, USA) as 

follows: AKR1B10 (Hs00252524_m1), NFE2l2 (Hs00975961_g1) and HPRT1 

(Hs02800695_m1)  

Focused oxidative stress pathway expression analysis 

The Human Oxidative Stress RT2 Profiler PCR Array (QIAGEN) profiles the 

expression of 84 genes related to oxidative stress. The list of genes can be obtained 

from the QIAGEN webpage. The analysis was performed in triplicates, including 

several internal controls and housekeeping genes and analysed using the QIAGEN 

in-house software. 

Cell lysis protocol and western blotting 

Cells were washed and harvested in ice-cold phosphate-buffered saline (PBS), lysed 

in RIPA buffer and sonicated. Lysates were cleared by centrifugation for 15 minutes 
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at 4°C. The supernatant was mixed with SDS sample buffer and boiled for 5 minutes. 

Equal amounts of protein were separated by SDS-PAGE, followed by semi-dry blotting 

to a polyvinylidene difluoride membrane (PVDF, Thermo Fisher Scientific). After 

blocking of the membrane with 5% (w/v) TBST non-fat dry milk, primary antibodies 

were added.  Appropriate secondary antibodies coupled to horseradish peroxidase 

were detected by enhanced chemiluminescence using Clarity™ Western ECL Blotting 

Substrate (Bio-Rad, Hercules, CA, USA). 

Drug screening 

Drug sensitivity and resistance testing (DSRT)[25] was performed on DLD1 NRF2 WT 

and GOF cell lines in collaboration with The FIMM High Throughput Biomedicine unit 

at the University of Helsinki. The compound library included 528 substances consisting 

of conventional chemotherapeutics and a broad range of targeted oncology 

compounds. The compounds were dissolved in dimethyl sulfoxide or water and 

dispensed on 384-well plates (Corning, Corning, NY, USA). Each compound was 

plated at 5 concentrations covering a 10000-fold concentration range. The cells were 

incubated with the compounds, and after 72 h cell toxicity and viability was measured 

with CellToxGreen and CellTiter-Glo assays, respectively (Promega, Fitchburg, WI, 

USA) using a Pherastar FS (BMG Labtech, Offenburg, Germany) plate reader. The 

data were normalized to negative control wells (dimethyl sulfoxide only) and positive 

control wells containing 100 μM benzethonium chloride, which effectively kills all cells 

using Breeze analysis pipeline (Potdar et al, manuscript submitted). To assess 

quantitative drug profiles for each sample, we calculated a drug sensitivity score (DSS) 

based on the measured dose-response curves[26].  DSS is an integrative and robust 

drug response metric based on the normalized area under the curve, which considers 
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all four curve fitting parameters in the logistic model. The complete screening data is 

available in Supplementary Data 1-3. 

Cell viability assay 

Cells were seeded at a density of 2000 cells/well in 96-well plates, using five replicates 

for each treatment condition. On the next day, cells were treated with either 0.1% 

DMSO or different concentrations of AT9283 ranging from 10 nM to 10000 nM. 

Treated cells were incubated for five days at 37°C. Cell viability was determined by 

adding 20µl of Alamar Blue dye (Thermo Fischer scientific) to 200 µl of cell growth 

medium (DMEM). The plates were incubated with the dye for 3-6 hours at 37°C and 

the fluorescence (excitation at 570 nm and emission at 585 nm) was determined using 

a standard plate reader. 

RESULTS AND DISCUSSION 

Validation of a new colorectal cancer NRF2-GOF model 

In order to create a physiologically relevant model of hyperactive NRF2, we used the 

CRISPR/Cas9 system to generate isogenic colorectal DLD1 cells with hyperactive 

(GOF) NRF2. Instead of targeting KEAP1, which in addition to NRF2 would also affect 

other KEAP1-binding partners, we used a gRNA that targets the DLG motif of 

endogenous NRF2. This motif is one of the two KEAP1-binding motifs within NRF2, 

and thus its deletion disrupts the functional interaction between NRF2 and KEAP1. 

Cas9-mediated DNA cleavage may result in out-of-frame DNA repair, leading to 

NRF2-KO clones. However, most of the cell clones in which the DNA has been 

repaired in-frame will result in NRF2-GOF clones (as described in [22]) due to a 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 21, 2019. ; https://doi.org/10.1101/812909doi: bioRxiv preprint 

https://doi.org/10.1101/812909
http://creativecommons.org/licenses/by/4.0/


mutation or deletion of the KEAP1 binding sequence. These gain-of-function (GOF) 

mutations resemble NRF2 mutations found in some tumours[5,8,27].  

Once DLD1 clones with hyperactive NRF2 (GOF) were identified, they were validated 

by measuring the protein levels of NRF2 and their response to the NRF2 inducer 

sulforaphane (SFN) (Fig 1A), and the expression levels of NQO1 and AKR1B10, two 

well-characterised NRF2 target genes (Fig 1B). As we produced isogenic NRF2-KO 

and NRF2-GOF cell lines using the same gRNA, the direct comparison among the 

WT, KO and GOF cell lines confirms that the observed phenotypes are not artefacts 

due to off-target effects of the gRNA. To further characterise and validate these cell 

lines, we performed a pathway-focused gene expression analysis for 86 antioxidant 

genes, comparing NRF2-KO or NRF2-GOF versus NRF2-WT DLD1 cell lines (Fig 1C). 

From this analysis we concluded that a) NRF2-GOF cells have indeed upregulated 

NRF2 pathway, as indicated by the induction of NRF2 target genes; and b) the NRF2-

GOF model is more physiologically relevant (no NRF2 knockout events in tumours 

have been reported) and also more sensitive than the NRF2-KO model to identify 

NRF2 regulated genes. 

Synthetic lethality drug screening  

To identify cytotoxic drugs associated to hyperactive NRF2 in colorectal cancer cell 

lines, we used our newly generated cell-based model. We tested 528 drugs (158 

approved drugs, 285 investigational and 85 probes) for their ability to kill DLD1 cells 

with hyperactive NRF2 without affecting DLD1 control cells (NRF2 WT). From this 

screen, the drug sensitivity score (DSS), which is an integrative and robust drug 

response metric based on the normalized area under the curve, which considers all 

four curve fitting parameters in the logistic model (as explained in material and 
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methods) was obtained (Fig 2A and Supplementary Data 1-3). Only compounds that 

had a difference in DSS between DLD1-GOF and DLD1-WT higher that 5 were 

considered positive hits. From this analysis we identified AT9283 as the top candidate 

with selectivity against DLD1-GOF cells (Fig 2A and 2B). AT9283 is a synthetic small 

heterocyclic molecule that potently inhibits several kinases, including Aurora A (3 nM), 

Aurora B (3 nM), JAK2 (1.2 nM), JAK3 (1.1 nM), and Abl (4.0 nM, T315I)[28]. 

Importantly, AT9283 has shown anti-myeloma, anti-lymphoma, anti-leukaemia and 

anti-colorectal cancer activity in pre-clinical studies[29-34], and its safety and efficacy 

against myeloma, lymphoma and leukaemia has been tested in various Phase I and 

II clinical trials[35-41]. 

Validation of the selectivity of AT9283 against active NRF2 

To validate the result from the screen, we tested the effect of AT9283 on the viability 

of NRF2-WT and NRF2-GOF DLD1 cells (Fig 3A). This assay confirmed the increased 

(by ~10-fold) sensitivity of the NRF2-GOF compared to NRF2-WT cells: AT9283 had 

an IC50 of 28 nM in NRF2-GOF cells versus an IC50 of 320nM in NRF2-WT cells. 

Further evidence that the cytotoxic effect of AT9283 was in fact dependent on the level 

of NRF2 activity was obtained by use of another NRF2-GOF clone with intermediate 

levels of NRF2 activation (GOF-Interm), as determined by NQO1 expression (Fig 3B, 

left panel). This analysis showed that AT9283 successfully discriminates between cell 

lines based on their NRF2 activity: while cells with low NRF2 activity (WT) are resistant 

to the compound, cells with intermediate levels of NRF2 activation (GOF Interm) are 

moderately sensitive to AT9283 (IC50 = 88 nM), and cells with high levels of NRF2 

activation (GOF) are highly sensitive to AT9283. These results indicate that the 
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activation of NRF2 in combination with nanomolar concentrations of AT9283 leads to 

synthetic lethality.  

To evaluate the potential therapeutic value of this synthetic lethality interaction and to 

further ensure that the observed effect is dependent on NRF2 activation and is not a 

consequence of clonal artefacts from the CRISPR-mediated GOF clones, we tested 

whether the selective cytotoxicity could be recapitulated by using pharmacological 

NRF2 activation. For this we compared the effect of three NRF2 activators that differ 

in potency and mechanism of action. Sulforaphane (SFN) and TBE31 are two well-

characterised electrophilic compounds that react with cysteine sensors (primarily 

C151) of KEAP1, impairing its ability to target NRF2 for degradation[42]. By contrast, 

HB229 is a non-electrophilic small molecule that disrupts the KEAP1-NRF2 

complex[24]. When NRF2-WT cells were pre-treated with the NRF2 activators we 

observed a significant sensitisation towards AT9283 (Fig 3C, left panel). Interestingly, 

this effect was enhanced by replenishing the NRF2 activators every 24 hours (multiple 

dose treatments) for the duration of the incubation period (Fig 3D, left panel). Critically, 

the effect on cell viability was completely dependent on AT9283 acting together with 

the NRF2 activator, as at these concentrations, neither AT9283 nor any of the NRF2 

activators by themselves affected the viability of the cells (Fig 3C and 3D, right panels). 

These results demonstrate that, similar to genetic, pharmacological activation of NRF2 

also sensitises DLD1 cells towards AT9283-mediated killing. 

In conclusion, using a new model of a colorectal cancer cell line with hyperactive NRF2 

we have identified a synthetic lethality interaction with the kinase inhibitor AT9283. 

Our data suggest that this drug could have clinical relevance to treat tumours with 

hyperactive NRF2, although further characterisation of this synthetic lethality 
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interaction in other tumour types and in in vivo models is necessary to confirm its 

clinical potential. 
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FIGURE LEGENDS 

Figure 1. Validation of a new colorectal cancer NRF2-GOF model. A) Isogenic 

NRF2-WT and NRF2-GOF DLD1 cell lines were treated with 5 µM of SFN for 3 hours 

and the protein levels of NRF2 were compared. B) The mRNA levels for NQO1 and 

AKR1B10 in the different cell lines were quantified using real-time PCR. The data were 

normalized using β-actin as an internal control. Data represent means ± SD (n=3) and 

are expressed relative to the WT cells. C) Representation of differential expression of 

oxidative stress-related genes in NRF2-KO versus NRF2-WT (left panel) or NRF2-

GOF versus NRF2 WT (right panel). Highlighted either in red (upregulated) or in green 

(downregulated) are genes with more than 2-fold change; only those with p-value< 

0.05 were labelled (n=3). 

Figure 2. Synthetic lethality drug screening. A) Scatter plots showing drug 

sensitivity score (DSS) values of DLD1 WT and GOF cells with cell viability (CellTiter 

Glo, CTG) and of cell toxicity (CellTox Green, CTX) readouts. Labels are shown only 

for compounds which have dDSS (DSS_GOF-DSS_wt) above or below 5. B) Key drug 

response parameters of AT9283 in both WT and NRF2-GOF DLD1 cells are shown. 

TC50 (half-maximal toxic concentration), EC50 (half-maximal effective concentration), 

AUC (area under the curve), and DSS (drug sensitivity score). 

Figure 3. Validation of the selectivity of AT9283 against active NRF2. A) NRF2-

WT and GOF DLD1 cells were exposed to increasing concentrations of AT9283 as 

indicated. After five days, cell viability was measured using Alamar Blue. Data 

represent means ± SD (n=4) and are expressed relative to the DMSO control which 

was set as 100%. B) The expression levels of NQO1 in NRF2-WT, NRF2-GOF and 

NRF2-GOF-Interm (intermediate) DLD1 cells were analysed by qRT-PCR (n=3) (left 
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panel). NRF2-WT, NRF2-GOF and NRF2-GOF-Interm (intermediate) DLD1 cells were 

exposed to increasing concentrations of AT9283 as indicated. After five days, cell 

viability was measured using Alamar Blue (n=4). C) DLD1 cells were pre-treated with 

the indicated concentrations of NRF2 inducers or with DMSO. After 16 hours, cells 

were washed with PBS, and fresh media with either DMSO, 80 nM or 200 nM AT9283 

was added. After three days, cell viability was measured using Alamar Blue (n=3). D) 

DLD1 cells were pre-treated with the indicated concentrations of NRF2 inducers or 

with DMSO as indicated. After 24 hours, fresh media with either DMSO, 80 nM or 200 

nM AT9283 was added, and NRF2 inducers were replenished. On the next day, the 

NRF2 inducers were added again, and 24 hours later, the cell viability was measured 

using Alamar Blue (n=3). 
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