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Abstract 

Single-cell transcriptomics enables systematic charting of cellular composition of complex tissues. 

Identification of cell populations often relies on unsupervised clustering of cells based on the 

similarity of the scRNA-seq profiles, followed by manual annotation of cell clusters using 

established marker genes. However, manual selection of marker genes for cell-type annotation is a 

laborious and error-prone task since the selected markers must be specific both to the individual 

cell clusters and various cell types. Here, we developed a computational method, termed ScType, 

which enables data-driven selection of marker genes based solely on given scRNA-seq data. 

Using a compendium of 7 scRNA-seq datasets from various human and mouse tissues, we 

demonstrate how ScType enables unbiased, accurate and fully-automated single-cell type 

annotation by guaranteeing the specificity of marker genes both across cell clusters and cell types. 

The widely-applicable method is implemented as an interactive web-tool (https://sctype.fimm.fi), 

connected with comprehensive database of specific markers. 

 

Introduction 

Accurate identification of distinct cell types in complex tissue samples is a critical pre-requisite for 

elucidating their roles in various biological processes including haematopoiesis and embryonic 

development1,2. Traditionally, cell sorting and microscopic techniques have been extensively used 

to isolate cell types, followed by molecular profiling of the sorted cells using, for instance, mRNA or 

protein measurements3,4,5. Decades of research has led to several collections of cell-specific 
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features, including expression of marker genes, that are being used to distinguish various cell 

types6,7. However, the entire process is manually tedious and technically challenging. Recently, 

single-cell RNA sequencing (scRNA-seq) has been established as an efficient approach to chart 

diverse cell populations in tissue samples and to study various biological processes in disease and 

development2,8,9. The scRNA-seq technology provides an unprecedented view of various cell types 

and is the leading technology in large-scale cell mapping projects such as the Human Cell Atlas.10 

 

Identification of cell populations in a given sample is typically solved by unsupervised clustering of 

cells based on their transcriptomic profiles11,12. In the next step, the most differentially expressed 

genes between a selected cluster and all the other detected clusters are identified as marker 

genes. These marker genes are then manually inspected using available information in the 

literature or cell marker databases6,7 to assign cell-type labels to each detected cluster. However, 

the manual selection of cluster-specific marker genes is a time-consuming and error-prone task, 

since (i) differentially-expressed genes are often expressed in multiple clusters, and (ii) the 

identified genes may be known markers for multiple cell-types. This manual task is further 

complicated by the lack of curated cell marker databases that include both known and de novo 

markers to annotate cell-types with confidence. For example, selection of CD44 as marker gene to 

label any single-cell type may compromise the accuracy of cell annotation as CD44 is expressed in 

various immune cell types.6  

 

To solve these challenges, we developed a data-driven method that requires only scRNA-seq data 

for unsupervised selection of marker gene panels that guarantee maximal specificity across both 

the cell clusters and cell-types. The computational algorithm together with a comprehensive 

marker database enables one to identify marker genes that are uniquely expressed in any given 

cell cluster and are specific to a particular cell type within a tissue. The ScType platform is 

implemented as an open-source and interactive web-tool (https://sctype.fimm.fi), connected to a 

new database to enable fast, accurate and fully-automated cell-type annotation. We carried out a 

systematic benchmarking of ScType across 7 scRNA-seq datasets from 2 mouse and 4 human 

tissues, and showed that that ScType correctly annotated a total of 81 out of 82 cell-types (98.8% 

accuracy), including 8 newly-reannotated cell-types that were originally incorrectly or non-

specifically annotated in the studies.  
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Figure 1. A schematic view of data-driven marker identification and cell-type annotation 
using ScType. (a) ScType requires only the raw or pre-processed single-cell transcriptomics 

dataset(s) as input. Additional quality control (e.g., removal of outlier cells with high mitochondrial 

gene expression) and normalization steps (e.g., removal of technical artefacts) are performed, 

where needed, and followed by unsupervised clustering of cells based on scRNA-seq profiles. 

ScType prioritizes markers among top positively differentially-expressed genes, according to their 

specificity across the clusters and cell-types. Marker genes with the highest specificity are used to 

label clusters using the cell-type information in the ScType database. (b-d) An overview of the 

ScType marker prioritization algorithm. The algorithm selects markers that have the highest 

specificity both for a given cluster (calculated using the input scRNA-seq data) and cell-type 

(calculated automatically using cell-type information in ScType database). (e) An example of cell-

type labelling based on the specific markers in mouse retina extracted by ScType using scRNA-

seq data from Macosko et al.13 (f) Violin plots show the expression levels of selected marker genes 

that were used to assign the cell-type labels to each cluster. For example, ScType identifies 
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PRKCA14,15 and CAR814 as the top specific marker genes that are uniquely expressed in the rod 

bipolar cells.  
Results 

ScType improves annotation of cell-types using solely scRNA-seq data 

We first investigated the performance of ScType by re-analysing a published scRNA-seq study of 

mouse retinal cells13. ScType accurately annotated all the 12 identified retinal cell types (Fig 1e). 

Additionally, it automatically identified the 3 closely-related cell populations of amacrine cell types 

(GABAergic, glycinergic and startbust) that were originally-identified by extensive and deeper 

analysis of selectively-expressed markers13, indicating that ScType enables one to accurately 

discriminate between cell populations with similar transcriptomic profiles. Further, ScType was able 

to distinguish between the subtypes of bipolar cells (rod and cone bipolar cells), that were 

assigned to single group in the original study, therefore enhancing the resolution of cell-type 

annotation.  

 

As an example, ScType ranked PRKCA and CAR8 among the top-5 marker genes specific for the 

rod bipolar cell (RBC) cluster (Fig. 1f); both are known RBC markers14,15. Three additional cell 

clusters were assigned to cone bipolar subtype as they uniquely-expressed SCGN, a well-

established marker for cone bipolar cells16. Interestingly, ScType identified a small sub-type (<1% 

of cells) of rod cells that expressed SCGN (labelled as Rods* in Fig.1f). These cells were originally 

annotated as rod cells in the original manuscript13. These results indicate that ScType 

automatically prioritizes specific markers for accurate annotation of cell-types with distinct 

molecular features.  

 

Systematic evaluation of ScType across multiple scRNA-seq datasets  

We next benchmarked ScType performance in terms of its ability to automatically assign cell-types 

in comparison to the cell-type annotations given by the original authors of 7 published scRNA-seq 

studies. These RNA-seq datasets originated from various tissues including human liver8, 

pancreas17, peripheral blood mononuclear cells (PBMCs)18, brain19, mouse lung20 and retina 

samples,13 as well as a human pancreas mixture of eight previously-published datasets using 

tissue samples from human pancreatic islets spanning 27 donors, five technologies, and four 

laboratories22 (see Methods for details). These varied scRNA-seq datasets were utilized to 

investigate a wider applicability of ScType to various sequencing platforms, tissues types and 

organisms. 

 

ScType correctly annotated a total of 81 cell types, including 8 correctly reannotated cell-types that 

were originally incorrectly or non-specifically annotated (Fig. 2a). The only cell-type it was not able 

to label correctly was fetal cells in the human brain dataset, as there are no fetal cell markers for 
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human brain in the current version of the ScType database. However, ScType correctly identified 

other cell populations of the human brain tissues - oligodendrocytes, astrocytes, microglial cells, 

neurons, endothelial and oligodendrocyte precursor cells - as annotated in the original study19. 

Further, ScType was able to refine the originally-annotated neuron cell population into cholinergic 

(expressing SLC17A7)22 and glutamatergic (expressing ACHE)23 sub-types.  

In the human liver dataset,8 ScType distinguished between B cells and plasma cell-types (Fig 2b). 

The segregated B and plasma cells differed based on their specific expression of CD19, CD20 and 

CD138 markers (Fig. 2c), as CD19+ or/and CD20+ are uniquely expressed in B-cells whereas 

CD138+ (CD19-CD20-) is uniquely expressed in plasma cells24. Further, ScType accurately 

assigned various cell types in the human pancreas dataset, where it correctly labelled the 

subpopulation of macrophages that was incorrectly labelled as acinar cells in the original study17 

(Supplementary Fig. 1a). The cluster- and cell type- specific marker genes identified by ScType 

included, among others, APOC1, C1QA, CD52 and MSR1, which are known canonical 

macrophage markers.25-28 

 

Figure 2. ScType identifies cluster- and cell-type-specific markers across multiple datasets. 

(a) The overall performance of ScType across 7 human and mouse scRNA-seq datasets. ScType 

automatically assigned cell-types similar to the original studies in human datasets, and it also 

correctly reannotated 5 cell types in the brain, liver and pancreas tissues. Similarly, ScType did not 

only enable automated identification all the cell types in mouse lung and retina, but it also correctly 

reassigned three cell types in those datasets. ScType labelled only single cluster (fetal cells) as 
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unknown cell type in the human brain dataset. (b) A more detailed example of cell subtype 

identification by ScType in the liver atlas dataset, where it automatically labelled the same cell-

types as assigned in the original manuscript.8 (c) ScType improved the cell type annotation of 

specific subclasses of liver atlas dataset. Two different cell clusters that were annotated as B-cells 

in the original study were clearly segregated into B-cell and plasma (B) cell types, as plasma cells 

do not express common B-cell markers, such as CD19 and CD20, but instead express CD138. 

ScType improves automated cell type assignment over existing methods 

We further compared how the selection and number of the marker genes affects the accuracy of 

cell-type annotation with both ScType and commonly-used differential expression analysis-based 

approach. For the comparison, we identified an increasing number of differentially expressed (DE) 

genes (standard approach), as well as cell type- and cluster-specific markers (ScType approach) 

for each detected cell cluster (see Methods), both based on the same unsupervised clustering of 

the 7 scRNA-seq datasets. In the standard approach, the identified top DE genes were matched to 

the CellMarker database6, while in the data-driven ScType approach, the top specific marker 

genes were matched to the ScType database to assign the cell-types. In 4 out of 7 datasets, the 

top-4 marker genes from ScType approach were enough for correct cell-type assignment of all 38 

clusters, while top-10 markers (default value) allowed correct cell-type annotation of 81 out of 82 

cell clusters in the 7 datasets (Fig 3a). Sub-optimal performance was observed only in the human 

brain dataset due to mislabelling of fetal brain cells. 

In contrast, when using the top DE genes for each cluster, the median percentage of correctly-

assigned clusters remained below 50% until using the maximum of 50 genes (Fig. 3b).  The 

standard approach also showed more variability between the datasets. For instance, the 

performance of the DE-based approach in the human pancreas dataset17 was higher (74% 

accuracy), as these cell-types selectively expresses specific genes (e.g. insulin by β-cells), which 

have been extensively-studied as markers for decades, and these genes are well-captured by the 

CellMarker database6. Since the standard approach performed best in the human pancreatic cells, 

we compared the cluster-specific expression markers selected using both approaches in the 

human pancreas dataset. The expression heatmaps of the top ScType markers offer a more 

informative visual cluster separation of the distinct cell populations, such as α and β-cells clusters 

(Supplementary Fig. 1a), when compared to expression heatmaps based on the DE marker genes 

(Supplementary Fig. 1b). 

Finally, we compared the unsupervised ScType against a supervised cell-type classification 

method, CellAssign29. Instead of assigning cell-types to clusters defined by unsupervised 

clustering, CellAssign uses a probabilistic Bayesian model to determine the likelihood of each cell 

belonging to a cell-type defined by user-provided set of marker genes. In the human pancreas 

dataset, ScType correctly annotated all the 9 cell types (Fig. 3c), while CellAssign, together with 
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tissue-specific marker genes from CellMarker database,6 was able to correctly annotate only 

gamma, acinar and ductal cells (Fig. 3d). This is because the performance of any prior knowledge-

based cell classifier depends strongly on the selected set of markers30, which are challenging to 

define for certain tissue and cell types. The running time of ScType was only 5 seconds, after 

clustering and DE detection steps that took ca. 6 minutes on a standard desktop machine, 

whereas running of CellAssign took 85 minutes. The CellAssign failed to run in the other 6 

datasets due to the large number of known markers in the CellMarker database and large number 

of cells in the scRNA-seq datasets (see Methods). 

 

 

 

  

 

 

Figure 3: Comparison of ScType with standard analysis and CellAssign to automatically 

label cell-types. (a) Boxplots show the percentage of correctly-assigned cell-types to detected 

clusters using an increasing number of top cell type- and cluster-specific marker genes extracted 

by ScType. (b) Boxplots show the percentage of correctly-assigned cell-types to clusters using an 

increasing number of most differentially-expressed genes (standard approach). (c) Unsupervised 

ScType automatically identified the human pancreas cell subpopulations17 using the top-10 cell 

type- and cluster-specific marker genes for each cell cluster (default option). (d) Supervised 

CellAssign method29 that uses a prior knowledge of known cell markers was able to correctly and 
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specifically annotate only the groups of gamma, acinar and ductal cells in the human pancreas 

dataset17.  

 

Discussion 

We presented ScType, an automated cell type- and cluster-specific marker gene selection method 

which allows accurate single-cell-type annotations based solely on the given scRNA-seq data. To 

promote its wide application, either as a stand-alone tool or together with other popular single-cell 

data analysis tools (e.g., Seurat, MAST, PAGODA), we have implemented ScType both as an 

interactive web-platform (http://sctype.fimm.fi), and as an open-source R implementation 

(https://sctype.fimm.fi/source_code.php). We anticipate the method will accelerate unbiased 

phenotypic profiling of cells when applied either to large-scale single-cell sequencing projects or 

smaller-scale molecular and functional profiling of patient-derived samples. For example, the 

integrative marker information in the ScType database may enable the identification of rare 

molecular cell subtypes that have distinct combinations of markers, suggesting specific 

molecular functions in the body.  

The existing computational methods for automatic identification of cell types can be broadly 

categorized into two groups: (1) supervised methods that require annotated training datasets 

labelled with correct cell populations to train the classifiers (e.g. CaSTLe31 and ACTINN32 that 

annotate cell types based on pre-defined reference set of cell without the need of cell marker 

input), and (2) a prior knowledge-based methods that require either a marker gene set or a pre-

trained classifier for selected cell populations (e.g. Garnett33 that utilizes first marker genes to 

identify representative cell types and then trains a regression model to classify the remaining cells 

to one of the cell types). Although a recent comparison showed that supervised methods 

outperformed prior knowledge-based methods30, supervised methods may have severe limitations 

when annotating rare populations of cells due to lack of reference data to train the machine 

learning algorithms. Furthermore, supervised methods are notoriously time-consuming to train as 

well as error prone, as technical artifacts in the training data affect their prediction ability for new 

scRNA-seq data.  

Similarly, the prior knowledge-based cell classification approaches have certain limitations. For 

instance, their performance heavily depends on the available gene lists provided as markers for 

each cell type, typically obtained from manual literature search or matching to marker databases 

that are still sub-optimal both in coverage and specificity. Ideally, one would like to use an 

appropriate number of specific markers to achieve a maximally accurate and precise cell-type 

classification. However, most existing methods utilize a limited number of markers, thereby 

potentially masking the identification of a subpopulation of cells that do not express the selected 

marker genes. Furthermore, the use of inconsistent cell type markers across experiments and 
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laboratories may compromise the reproducibility of the findings30. These caveats become even 

more pronounced as the number of cell types and samples increases, thus preventing fast and 

reproducible annotations. It has been therefore argued that prior information does improve the 

automated cell-type identifications.30   

ScType implements a number of improvements compared to the existing cell-annotation tools. 

Our unsupervised approach outperformed CellAssign, a marker gene-based probabilistic cell-type 

assignment method, which was recently shown to enable accurate annotation of multiple cell 

types29. Another group of supervised methods, such as CaSTLe31, ACTINN32, SingleR34 and 

CHETAH35, utilize reference bulk or single-cell transcriptomic data for cell type predictions, and 

therefore require comprehensive, manually-annotated and high-quality reference datasets; 

furthermore, these tools do not allow identification of novel cell-type marker genes. In contrast, 

ScType requires neither reference scRNA-seq datasets nor manual selection of marker genes; 

instead, all the background information for established or de novo markers comes from the novel 

ScType database that is to date the most comprehensive database of specific markers for human 

and mouse cells.  

In comparison with many other computational methods that require manual interference,29,33 

ScType takes a data-driven and a marker-independent approach, and it annotates the cell-types at 

once in a single-cell experiment in a totally unsupervised manner. The only input needed for the 

ScType tool is the raw sequencing data file, although uploading of pre-processed scRNA-seq data 

is also an option. This saves considerable time and costs in the scRNA-seq analysis, especially 

when searching for cell-types in a tissue that involves large variety of cell-types with similar 

transcriptomic profiles (e.g. bone marrow samples from mixed lineage leukemia subjects). 

Additionally, ScType score allows identification of novel marker genes with high specificity for 

either known or new cell types. For example, the algorithm enables one to flag those genes that 

show high cluster-specific expression in a particular cell type but which have not yet been reported 

in the cell marker databases.  

Using 7 scRNA-seq datasets from human and mouse tissues, we demonstrated that ScType 

provides scalable and accurate identification of cell-clusters and is compatible with data formats 

from various sequencing techniques (e.g. Drop-seq and Smart-seq). These benchmarking results 

against the existing cell annotation approaches indicated that ScType is a widely-applicable to 

various biomedical problems. Further, the comprehensive ScType database may lead to the 

development of new and improved cell-type detection methods, as well as accelerate the 

implementation of single-cell pipelines for translational applications, such as monitoring of 

therapy resistant cancer cell sub-populations, which require fast and automated analyses. As 

more scRNA-seq datasets from various tissue types become available from the Human Cell Atlas 
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and other projects, the accuracy and coverage of the ScType tool and database is expected to 

increase accordingly.  
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ONLINE METHODS 
 
ScType database construction 
We have built the largest database to date of human and mouse cell-specific markers by 
integrating the information available in the CellMarker database 
(http://biocc.hrbmu.edu.cn/CellMarker/) and PanglaoDB (https://panglaodb.se). CellMarker and 
PanglaoDB are currently the two largest available databases for cell type markers. However, these 
two databases differ in the number of tissues, cell types and marker numbers, as well as in the 
way the markers have been assigned to each cell type. In case of CellMarker database, 13 605 
cell markers for 467 cell types in 158 human tissues/sub-tissues and 9148 cell makers for 389 cell 
types in 81 mouse tissues/sub-tissues were manually collected and curated from more than 100 
000 published papers6. In the PanglaoDB, 6631 gene markers mapping to 155 cell types have 
been identified by differential expression analysis in particular cell types using single cell data and 
a community-based crowdsourcing approach for curation of gene expression markers7. Therefore, 
we firstly converted the non-uniform gene IDs to approved gene symbols within and between the 
databases. Next, we removed the low evidence marker genes from CellMarker database (genes 
having only one reference for being a certain cell type marker), and genes that appeared in less 
than 5 clusters of specific cell type from PanglaoDB. Additionally, we excluded genes showing no 
expression across all the datasets in PanglaoDB. Ultimately, we unified the cell and tissue naming 
from the two databases and excluded tissues comprising less than 5 cell types. Fifteen novel cell 
types with corresponding marker genes were added by manual curation of multiple papers to the 
current version of the compiled ScType database (https://sctype.fimm.fi/database.php), as 
relatively few brain and eye tissue cell types were provided in the first version of the database. For 
instance, the current version of ScType database comprises 3980 cell markers for 194 cell types in 
17 human tissues and 4212 cell markers for 194 cell types in 17 mouse tissues. Cell-type 
specificity was calculated separately for every marker gene across the cell types, hence providing 
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a quantitative measure of how frequently the marker identifies the cell type uniquely within the 
tissue using the cell-type specificity score (Eq. 1). 
 
Publicly available datasets 
In order to benchmark the ScType against the other approaches, we utilized 7 scRNA-seq 
datasets from public domain and re-analysed these data using ScType. Five datasets were 
downloaded from Gene Express Omnibus (GEO): Human Liver (GSE124395), Human Brain 
(GSE67835), Human Pancreas (GSE85241), Mouse Lung (GSE63269) and Mouse Retina 
(GSE63473). Human PBMC dataset was downloaded from the 10x Genomics Dataset Repository 
(https://s3-us-west-
2.amazonaws.com/10x.files/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz). The 
Human Pancreas Mixture dataset is a combination of datasets downloaded using the following 
accession numbers: GSE81076, GSE85241, GSE86469, E-MTAB-5061, and GSE84133. 
 
The scType workflow options 
ScType provides a complete pipeline for single-cell RNA-seq data analysis and cell-type 
annotation. We utilized Seurat v3.1.0 for data processing and normalization. For clustering 
analysis, the default option is Louvain clustering based on a shared nearest neighbour graph 
(using FindClusters function with the resolution parameter set to 0.8 and 20 principal components 
given as input), which was used to generate the current results; however, also SC3, DBSCAN, 
GiniClust and k-means clustering options are available in ScType. The clusters are visualized 
using either principal components analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-
SNE), Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP), Isomap36, 
Diffusion Map37, largeVis38 or by means of expression heatmaps. The differential expression 
analysis between each identified cluster (reference cluster) versus all the other detected clusters 
was performed using MAST39 (default option), or using non-parametric Wilcoxon Rank Sum test 
(non-parametric test). In the current results, we used MAST to identify an increasing number of top 
differentially-expressed genes with the highest positive fold-change (FDR<0.05 or maximum of 50 
genes). Based on these identified genes, separate scores for cell type-specificity (stype) and cells 
cluster-specificity (sclust) were calculated as shown in Eqs. (1) and (2). The top-10 genes among the 
selected genes with the highest marker-specificity scores (��� (Eq. 3) were used to identify cell 
types by matching with the marker-cell type information in ScType database (or using user-
provided custom cell type gene sets as an alternative option). The cumulative sum of marker-
specificity scores of all the genes supporting a cell-type is used as the final score (so-called 
ScType score) to tag a label to the cluster. Sctype score is calculated for each cell-type within the 
tissue, and the cell label with the highest ScType score is assigned to the cluster. In addition to cell 
type assignments, the ScType web-portal (http://sctype.fimm.fi) allows users to view the metadata 
based on which the assignment was made, view the markers that are enriched in each specific 
cluster, and plot the cumulative gene-specificity for different cell types as bar graphs. For the 
integrated, multi scRNA-seq dataset analysis, ScType uses FindIntegrationAnchors and 
IntegrateData functions from Seurat v3.1.0 that were shown to enable an effective identification of 
anchor correspondences across multiple single-cell datasets21. 
 
Identification of specific markers 
For the automated cell type annotation, ScType utilizes the top cluster- and cell type-specific 
marker genes. ScType calculates cell-type-specificity score for a particular gene gi and a user-
specified tissue type (�����

�� � based on information in the ScType database as follows:  
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Cell-type-specificity score (stype) of equals to 0 when the gene is a known marker for all the cell 
types, and 1 when the gene is a known marker only for a specific cell type within the specified 
tissue. Cell-type-specificity score allows selection of genes that are specific to certain cell type 
within a tissue. 
 
The cluster-specificity score (�

��	
���

�� � for gene gi and particular cluster is calculated as follows: 
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Only those cells with a normalized expression above 5th percentile of overall gene expression in 
the dataset (excluding cells with zero expression) are counted as cells expressing the particular 
gene. Cluster-specificity score (sclust) equals to 0 when the gene is expressed in any or all cell 
clusters except for the given cluster, and 1 when the gene is expressed only in the cells of the 
particular cell cluster. sclust allows the selection of genes that are highly expressed uniquely in a 
given cell cluster. 
 
Ultimately, ScType calculates cell type- and cluster-specificity score (��� for each selected gene 
using the geometric mean of the cell-type-specificity (stype) and cluster-specificity (scluster) scores:   
 

�# � ������

��  �
������ 

��                                                                        (3) 

 
 
Comparison with CellAssign 
We compared the accuracy, speed and requirement of hardware resources of ScType against 
CellAssign29 using the 7 scRNA-seq datasets used in the study.  We used default parameters to 
run CellAssign in the human pancreas dataset, and note that CellAssign, implemented using 
Google’s TensorFlow40, failed to execute when applied to other 6 datasets considered in the study, 
where it reported an “Exhausted error” when allocating tensor (on Intel Core i5-8250U 3.4-GHz 
machine with 96 GB RAM, 16GB of RAM plus 80GB of swap space), due to the large number of 
known cell type markers in the CellMarker database6 and a large number of cells in the scRNA-seq 
datasets.  
 
Code and data availability 
The R source-code of the ScType algorithm is freely available at 
https://sctype.fimm.fi/source_code.php to allow reproduction of the results and its further 
comparison against or integration with other algorithms. ScType is also freely available as an 
interactive web-tool at http://sctype.fimm.fi. The ScType database is freely available at  
https://sctype.fimm.fi/database.php.   
 
 
 
SUPPLEMENTARY FIGURES 
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Supplementary Figure 1. Expression heatmaps of markers from ScType and standard 
approach in human pancreas dataset.17 (a) Expression heatmap of the top-10 cell type- and 
cluster-specific marker genes for the detected clusters extracted with ScType. C1QA, APOC1, 
CD52 are the top markers that were used to annotate small macrophages (Mφ) cell population 
(see Fig. 3c). (b) Expression heatmap of the top-10 differentially-expressed genes for the detected 
clusters. 
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