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Summary 

Dynamic cellular processes such as differentiation are driven by changes in the 

abundances of transcription factors (TFs). Yet, despite years of studies we still do 

not know the protein copy number of TFs in the nucleus. Here, by determining the 

absolute abundances of 103 TFs and co-factors during the course of human 

erythropoiesis, we provide a dynamic and quantitative scale for TFs in the nucleus. 

Furthermore, we establish the first Gene Regulatory Network of cell fate 

commitment that integrates temporal protein stoichiometry data with mRNA 

measurements. The model revealed quantitative imbalances in TFs cross-

antagonistic relationships that underlie lineage determination. Finally, we made the 

surprising discovery that in the nucleus, corepressors are dramatically more 

abundant than coactivators at the protein, but not at the RNA level, with profound 

implications for understanding transcriptional regulation. These analyses provide 

a unique quantitative framework to understand transcriptional regulation of cell 

differentiation in a dynamic context. 
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Introduction 

Quantitative changes in TF abundances drive dynamic cellular processes 

such as differentiation by activating lineage-specific gene expression programs 

and simultaneously repressing competing lineages (Graf and Enver, 2009; Orkin 

and Zon, 2008). At the mechanistic level, biochemical studies have shown that TFs 

function through the recruitment and/or stabilization of cofactors such as chromatin 

modifiers to target genes (Brand et al., 2019; Demers et al., 2007). On a more 

global scale, genomic and transcriptomic studies have uncovered intricate gene 

regulatory relationships whereby specific combinations of TFs cooperate or 

compete to regulate cell-specific gene programs (Reiter et al., 2017). The 

complexity of these relationships is best captured using gene regulatory networks 

(GRNs) to model the activating and repressing roles of TFs, which underlie lineage 

fate decisions in multipotent cells such as hematopoietic progenitors (Gottgens, 

2015; Novershtern et al., 2011; Rothenberg, 2019; Swiers et al., 2006). 

In contrast to the current profusion of transcriptomic data, large-scale 

quantitative proteomic information is scarce for low abundance proteins such as 

TFs and cofactors, particularly in human stem/progenitor cells. This critical lack of 

quantitative proteomic data is a major impediment to addressing fundamental 

questions in transcriptional regulation, such as TF and cofactor availability in the 

nucleus (Schmidt et al., 2016). Lack of quantitative proteomic data is also 

problematic for understanding dynamic processes such a cell fate decisions or 

differentiation that are based on changes in the stoichiometry of lineage-specifying 
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(LS)-TFs (Graf and Enver, 2009; Orkin and Zon, 2008; Palii et al., 2019). In that 

regard it is particularly striking that none of the current GRNs for hematopoiesis 

incorporate quantitative protein abundance data for TFs. 

Integration of proteomic data into GRNs is a significant challenge as it 

requires the ability to measure the abundances of multiple proteins relative to one 

another (i.e. stoichiometry) within the same sample (Vitrinel et al., 2019), 

information that cannot easily be obtained with antibody-based methods. 

Moreover, for dynamic GRNs, the same proteins must be repeatedly measured 

over time in different samples. While mass spectrometry (MS) is a powerful method 

for protein identification, absolute quantification is more challenging. A number of 

approaches have been described for absolute quantification, including the use of 

synthetic isotopically labeled (SIL) peptides as internal standards, which are 

typically used for quantification of relatively small numbers of proteins, and label-

free methods for large scale quantification [see (Liu et al., 2016) for review]. Both 

stable isotope dilution (SID) and label-free approaches can be used in conjunction 

with targeted MS approaches, such as selected reaction monitoring (SRM) which 

are well-suited for reproducible and quantitative measurements of a defined set of 

analytes over a wide dynamic range of abundances. However, thus far no one has 

developed and deployed protein detection methods with the required sensitivity 

and reproducibility to systematically determine the absolute abundances of 

endogenous TFs and cofactors in rare stem and progenitor cells. 
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Here, we developed targeted SRM assays in hematopoietic and erythroid 

nuclear extracts and applied these assays along with SIL peptides as internal 

standards. This allowed us to systematically determine the absolute abundances 

of 103 endogenous TFs and co-factors at 13 sequential time points as human 

hematopoietic stem and progenitor cells (HSPCs) differentiate along the pathway 

to erythroid cells. In addition to defining the range of protein concentration (copy 

number per nucleus) for master regulators of hematopoiesis and erythropoiesis, 

the data revealed surprising differences in stoichiometry and dynamics between 

TFs, coactivators and corepressors that occur at the protein level, but not at the 

RNA level with important implications for understanding gene regulation during 

differentiation. Finally, through mathematical modeling we generated for the first 

time a dynamic regulatory network of erythroid commitment from hematopoietic 

stem cells (HSCs) that integrates quantitative changes in RNA and protein levels 

(stoichiometry) of TFs over time. 

 

Results 

Absolute Quantification of Transcription Factors during Human 

Erythropoiesis 

While proteomic studies have been performed in erythroid cells (Amon et al., 2019; 

Brand et al., 2004; Gautier et al., 2016 ; Jassinskaja et al., 2017; Liu et al., 2017), 

no previous study has used targeted MS approaches to provide systematic and 

absolute quantification of TF proteins with simultaneous mRNA measurements 
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during the dynamic process of erythroid differentiation. Furthermore, previous MS-

based studies have not measured TFs prior to lineage commitment, preventing the 

study of quantitative changes in TFs that underlie cell fate decisions. To address 

this, we employed a well-characterized ex vivo culture system in which cord blood-

derived human multipotent HSPCs are induced to differentiate along the erythroid 

lineage (Giarratana et al., 2005; Palii et al., 2011a). Previously, using single cell 

mass cytometry, we showed that in this system, cells recapitulate all sequential 

stages of erythropoiesis over time, including multipotent progenitors (MPP) at day 

0, common myeloid progenitors (CMP) and megakaryocyte-erythroid progenitors 

(MEP) at days 2-4, erythroid progenitors “colony-forming-unit erythroid” (CFU-E) 

at days 6-11, followed by terminally differentiating precursors: pro-erythroblasts 

(ProEB) at day 12, basophilic erythroblasts (Baso_EB) at day 14 and 

polychromatophilic erythroblasts (Poly_EB) at day 16 (Palii et al., 2019). Thus, this 

provides an ideal system for quantitative proteomic and transcriptomic analyses. 

Cells were harvested at 13 sequential time points and processed in parallel for 

RNA sequencing (RNAseq) and nuclear protein extraction (Figure S1A). First, 

RNAseq analysis revealed a main trajectory along two principal components from 

day 0 to day 16 (Figure S1C). Furthermore, a correlation heatmap indicated that 

the transcriptome changes gradually throughout the time series with sharper 

changes at day 2 (transition to CMP/MEP), day 11.5 (transition to ProEB) and day 

14 (transition to Baso_EB) (Figures 1E and S2A). For proteomic analyses, nuclear 

extracts were first analyzed using an unbiased data-dependent MS approach with 
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isobaric 8-plex iTRAQ reagents (Ross et al., 2004) which led to the identification 

and relative quantification of 3,905 proteins over time (Tables S1 and S2, Figure 

S1E). Analysis of iTRAQ data allowed identification and relative quantification of 

3,905 proteins, including 655 TFs, over time (Table S1). K-means clustering with 

gene ontology (GO) analyses revealed groups of proteins with enrichment in 

erythroid-related categories (e.g. “O2 transport” in Baso_EB (cluster 8), “cell cycle” 

in the highly proliferative CFU-E populations (cluster 6)) (Figure S1E and Table 

S2). Furthermore, the GO term “eukaryotic translation initiation” was found 

enriched in proteins that increase at the ProEB stage (day 12), consistent with the 

importance of protein translation in terminal erythroid differentiation (Alvarez-

Dominguez et al., 2017). Interestingly, we found that proteins involved in oxidative 

phosphorylation (cluster 3) increase at day 2, which coincides with MPPs 

commitment to the myeloid/erythroid lineage. Given that oxidative phosphorylation 

correlates with lineage commitment (Oburoglu et al., 2016), this finding further 

supports the relevance of our ex vivo differentiation system to reveal molecular 

events that occur in early hematopoietic progenitors.  

To systematically determine the absolute concentration of TFs and 

cofactors, we employed SRM-based targeted MS together with SIL peptide-based 

quantification (Figure 1A). First, we established an Erythroid SRM TF Atlas 

consisting of parameters needed to monitor 411 isotopically heavy and light 

peptide pairs, corresponding to 150 proteins (1-4 peptide pairs per protein) (Tables 

S3, S4 and Methods). SRM assay development, including selection of proteotypic 
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peptides, transition ions, and the linear ranges of quantification is described in 

Methods. Absolute quantification was then achieved by a combination of SID and 

label free quantification for 103 proteins that span various categories (e.g. DNA 

binding TFs, co-activators, co-repressors, chromatin modifiers) at 13 sequential 

time-points from MPP to basophilic erythroblasts (Figure 1A, S2B, S3; Table S4; 

see Methods). Comparing SRM results with iTRAQ measurements, we found a 

good correlation in protein changes during differentiation (Figure S2C). 

Importantly, SRM measurements covered a wide dynamic range of nuclear protein 

abundances, ranging from less than 500 copies for some factors (e.g. BACH1, 

GATA2, KAT2A) to above 100,000 copies for others (e.g. CTCF, TRIM28/KAP1, 

CHD4) (Figure 1B).  

Using clustering analysis, we identified several groups of temporally-

regulated proteins (Figure 1F). Interestingly, all master regulators of erythropoiesis 

(GATA1, TAL1, KLF1, KLF3, GFI1B, STAT5A) are characterized by a gradual 

increase from MPP to late CFU-E, followed by a sharp decline starting at the ProEB 

stage that marks the beginning of terminal erythroid differentiation (Figure 1D, F). 

This decrease was confirmed by Western blot (Figure S1D). While most factors 

are present at low levels in terminally differentiated erythroid cells, some TFs are 

more abundant, including NFE2, MAFG, FOXO3, SOX6, STAT1,2 and 3 

suggesting additional roles during erythroid maturation. In contrast, TFs that play 

critical roles in HSC or in promoting non-erythroid lineages (e.g. ETV6, ERG, PU.1, 

FLI1, RUNX1) are expressed at higher levels at early stages (days 0-4), consistent 
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with lineage priming, and gradually decrease as the cells progressively commit 

towards the erythroid lineage. Thus, our differentiation system faithfully mimics the 

dynamics of erythropoiesis from early to late stages. 

 

Major Discrepancies in Protein versus mRNA Abundances for Master 

Regulators of Hematopoiesis and Erythropoiesis 

Having quantified protein and mRNA abundances simultaneously for 

multiple TFs (see for example GATA2 in Figure 1C,D), we explored the correlation 

between mRNA and protein levels. Consistent with previous studies in other cell 

types (Liu et al., 2016; Vogel and Marcotte, 2012), we found a good protein vs 

mRNA correlation in cells starting at day 2, with Spearman coefficients ranging 

from 0.40 to 0.56 (Figure 2A). In contrast, the correlation between mRNAs and 

proteins is extremely low (<0.25) in early progenitors at day 0 (Figure 2A). This 

finding, which may be explained by the low protein translation rate in HSCs (Liu et 

al., 2017; Signer et al., 2014), indicates that post-transcriptional regulation may be 

particularly important to determine protein abundance in stem/progenitor cells. 

Next, we measured the correlation of mRNA and protein levels over time 

(Figure 2B). We found that for most genes there is a positive correlation (green 

bars), indicating that changes in protein levels result in large part from changes in 

their mRNAs abundance during erythroid differentiation. However, some genes 

display low or negative correlations (orange bars). Among genes that display a 

high correlation between mRNA and protein, we found the non-erythroid TFs FLI1 
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and PU.1 (also called SPI1) both of which decrease gradually during 

erythropoiesis, but also SOX6, HOXB4 and GATA2 that increase during 

differentiation (Figure 2C). In contrast, other genes display major discrepancies in 

protein vs mRNA dynamics (e.g. KAT2A, RUNX1). Interestingly, all master 

regulators of erythropoiesis (i.e. GATA1, KLF1, KLF3 and TAL1) display a similar 

pattern of changes with protein levels increasing faster than mRNA levels until the 

ProEB stage (day 11.5) when they decrease by 40 to 50% even though their 

transcripts continue to increase (Figure 2C,D). This sharp decline in TF protein 

levels in the nucleus starting at the ProEB stage was also detected by iTRAQ 

(Table S1) and Western blot (Figure S1D) and coincides with a drastic change in 

the transcriptome (Figures 1E and S2A) as the cells enter terminal differentiation. 

All genes can be explored in Figure S4 or on our website 

(https://trena.systemsbiology.net/app/srm_rna_combined_v2). 

An important aspect of transcriptional regulation is the change in relative 

abundances between TFs. Examining master regulators of hematopoiesis, our 

results reveal major differences in stoichiometry. For instance, at the transcript 

level, KLF1 is the most highly expressed TF in erythroid cells (Figure 2D). 

However, at the protein level, GATA1 is the most abundant TF with over 41,000 

copies per nucleus in late CFU-E compared to fewer than 18,000 copies for KLF1, 

TAL1 or NFE2 (Figure 2D and Table S4). This high abundance of GATA1 protein 

is likely due to enhanced translational efficiency as shown by polysome profiling 

(Khajuria et al., 2018; Liu et al., 2017).  
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In addition to erythroid-specifying TFs, we also quantified TFs that are 

involved in stem cell maintenance (e.g. ERG, ETV6, RUNX1) and/or specification 

of alternate hematopoietic lineages (e.g. PU.1, FLI1, CEBPb). Interestingly, even 

though these non-erythroid factors gradually decrease during differentiation, they 

are still detectable at the protein and RNA level until late CFU-Es (Figure 2 C,D 

and Table S4) which suggests some degree of lineage plasticity in late progenitors. 

In particular, we examined the relative levels of two antagonist TFs GATA1 and 

PU.1, which promote mutually exclusive hematopoietic lineages (Huang et al., 

2007). As expected, we observed a gradual change in the GATA1/PU.1 ratio, at 

both the RNA and protein levels (Figure 2E) showing that for some factors, RNA 

levels can be used as a surrogate for protein levels. Another TF switch necessary 

for erythroid maturation is the GATA1/GATA2 switch (Katsumura et al., 2017). It 

has been shown that during hematopoiesis GATA2 is expressed earlier than 

GATA1. As erythroid differentiation proceeds, GATA1 progressively represses 

GATA2 transcription such that when the cells reach the ProEB stage, GATA1 

replaces GATA2 on target genes (Huang et al., 2016). It is currently believed that 

this exchange of GATA2 for GATA1 genomic binding is mediated through a 

reversal of the GATA2/GATA1 ratio with GATA1 becoming more abundant. 

Interestingly, even though this hypothesis is consistent with our RNA-based data 

(Figure 2F top), it is not supported by the proteomic data that shows GATA1 protein 

abundance largely exceeding that of GATA2 from the earliest CFU-E stage (Figure 

2F bottom). Thus, it is highly unlikely that the GATA2/GATA1 switch is mediated 
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through a reversal of GATA1 and GATA2 protein abundances as previously 

proposed. Rather, our proteomic data (Figure 2F) together with ChIP-seq data 

(Huang et al., 2016) suggest that GATA2 binds to specific genomic sites even in 

the presence of an excess of GATA1 and that the switch to GATA1 genomic 

binding at GATA2 sites occurs only upon the decrease in GATA2 protein levels at 

day 11.5 (ProEB stage). Notably, our finding of a high GATA1/GATA2 protein 

abundance ratio is consistent with previous data showing both a higher 

translational efficiency and a higher protein stability of GATA1 compared to GATA2 

(Khajuria et al., 2018; Lurie et al., 2008; Minegishi et al., 2005). Thus, while in 

some cases, transcripts can be used as a surrogate for proteins, in other cases, 

they cannot, strongly emphasizing the importance of direct protein quantification.  

 

Quantitative Gene Regulatory Model of Erythroid Lineage Commitment 

Gene Regulatory Networks (GRNs) provide a useful way to represent 

complex regulatory relationships that underlie important processes such as cell 

fate decisions (Dore and Crispino, 2011; Gottgens, 2015; Novershtern et al., 2011; 

Rothenberg, 2019). However, because of the lack of quantitative proteomic data 

on TFs, it has not been feasible to build networks that integrate quantitative 

changes in TF protein levels. Having quantified hematopoietic and erythropoietic 

TFs at multiple sequential time points, we sought to build a temporal GRN that 

integrates quantitative changes in protein and mRNA abundances of key TFs 

(Figure 3). We used both “core” hematopoietic factors with known functions in cell 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/812123doi: bioRxiv preprint 

https://doi.org/10.1101/812123


 13 

fate decisions (e.g. PU.1, GATA1, GATA2, FLI1, KLF1) and other factors (e.g. 

ERG, E2F4, KLF3, HOXB4), for a total of 14 genes. Focusing on transcriptional 

regulation, mathematical modeling with differential equations was used to explain 

the observed mRNA trajectory of each gene as a function of the observed protein 

trajectories of candidate regulators. The model is quantitative in that it estimates 

the relative contribution(s) of distinct TFs to the regulation of their respective 

targets (represented as transparency of the links - also see Figure 4A). Unique to 

our model, the parameters that quantify regulatory strength are linked to the 

absolute abundance of the proteins. This allows us to discriminate, for example, 

between a strong activator at low abundance and a weak activator at high 

abundance (represented as the thickness of the links). First, we found that the 

model correctly recapitulates the sequential cross-antagonisms between LS-TFs 

that underlie cell fate decisions, with the GATA1:PU.1 antagonism that regulates 

erythroid vs myeloid lineage choice (Huang et al., 2007) being detected first (day 

0) followed by the KLF1:FLI1 antagonism (day 2) that regulates a subsequent 

erythroid vs megakaryocyte fate (Frontelo et al., 2007; Palii et al., 2019) (Figure 

3B,C,D and Movie S1). Strikingly, these cross-antagonisms are not “equilibrated”, 

with for instance the repression of PU.1 by GATA1 being 3 times stronger than the 

reverse reaction at day 0, and 19 times stronger at day 4 (Figure 3C). This 

quantitative imbalance has not been described in previous network models and 

may reflect an early (but reversible) bias towards the erythroid lineage. Most 

importantly, our finding that antagonistic relationships between TFs are 
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quantitatively imbalanced provides a mechanism to explain the observed instability 

of multipotent progenitors that do not exist as stable states but rather as constantly 

changing entities (Laurenti and Gottgens, 2018). Similarly, our model revealed the 

dynamics of the FLI1:KLF1 cross-antagonism that starts at day 2, decreases at 

day6, and finally disappears at day 8 (Figure 3D). Thus, our proteomic-based 

network was able for the first time to capture the temporal and quantitative aspects 

of gene regulation to model the dynamics of erythroid lineage commitment. To 

facilitate visualisation of the network, an interactive version is provided in 

BioTapestry format (Paquette et al., 2016) at: 

http://grns.biotapestry.org/HumanErythropoiesisGRN/. 

In addition to TF cross-antagonisms, the model confirmed a number of 

previously known regulatory links including the GATA1/GATA2 regulatory loop 

with GATA2 activating GATA1 and GATA1 progressively repressing GATA2 

(Katsumura et al., 2017), the ERG-mediated activation of RUNX1 (Taoudi et al., 

2011), the TAL1-mediated activation of GATA1, GFI1b and FLI1 (Gottgens, 2015), 

the KLF1-mediated activation of KLF3 (Ilsley et al., 2017), the GATA2-mediated 

activation of HOXB4 (Fujiwara et al., 2012) and others (Figure 3B). Furthermore, 

the model identified novel putative links such as TAL1- and KLF1- mediated 

activation of E2F4, E2F4-mediated activation of KLF3, TAL1-mediated activation 

of HOXB4 and others. These novel regulatory links are likely important for 

erythropoiesis. For instance, E2F4 has been shown to promote erythropoiesis 

(Kinross et al., 2006) and our results suggest that this may be mediated at least 
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partially through the activation of KLF3. Most importantly, the model offers a 

temporal and quantitative view of these regulatory relationships. For instance, we 

found that over the entire time course, the contribution of TAL1 to the activation of 

the GATA1 gene is greater than the contribution of GATA2 (with GATA2 being 

more important at early stages) (Figure 4A). Interestingly, this is not because TAL1 

is a stronger activator of GATA1 but instead, this is due to the fact that the TAL1 

protein is on average 3 times more abundant than the GATA2 protein (Figure 4B). 

Thus, the model is able for the first time to quantitatively dissect the relative 

contributions of different factors to the regulation of their target genes.  

To validate our network model, we induced the knockdown of four different 

TFs (i.e. GATA2, GATA1, TAL1 and KLF1), followed by qRT-PCR assessment of 

their target genes. All regulatory relationships tested were validated, including 

“activating” links (e.g. GATA2-mediated activation of RUNX1) and “repressive” 

links (e.g. GATA1-mediated repression of PU.1) (Figure 4C). 

An important aspect of our model is that it was built without requiring data 

on TF genomic binding. Thus, the links within the model could reflect direct or 

indirect regulation. To estimate the extent to which the identified gene regulatory 

relationships are mediated through direct TF binding, we re-analyzed previously 

published ChIP-seq datasets that were available for 8 out of the 14 tested TFs in 

HSPCs and/or ProEBs (Methods). We found that 82% of the links for which ChIP-

seq data was available can be explained by direct TF binding to either the gene 

promoter or an associated enhancer. 
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In summary, we established the first GRN that integrates quantitative 

changes in mRNA and protein abundance to model erythroid lineage commitment. 

The model correctly recapitulated known regulatory relationships and identified 

new links while providing information on the relative contribution of different TFs to 

the regulation of their targets. Most importantly, incorporation of protein 

concentration (i.e. stoichiometry) revealed quantitative imbalances in TFs cross-

antagonistic relationships that may underlie hematopoietic progenitors’ instability 

and drive cell lineage commitment. 

 

Co-repressors are Present in Large Excess while Co-activators are Limiting 

Compared to TFs in the Nucleus 

The function of a TF is defined by its capacity to recruit cofactors (co-

activators and/or co-repressors) to target genes (Reiter et al., 2017). Thus, the 

function of a TF depends on the availability of cofactors in the nucleus. Yet, we do 

not know whether cofactors are present in excess or in limiting amounts compared 

to TFs. To address this, we used SRM to quantify various types of cofactors, 

including co-activators such as histone acetyltransferases (e.g. CBP, P300, 

KAT2A (also called GCN5)), histone methyltransferases (e.g. MLL1, MLL3, MLL4, 

SETD1B, DOT1L), histone demethylases (e.g. UTX) as well as co-repressors such 

as histone deacetylases (e.g. HDAC1,2,3), chromatin remodeling enzymes (e.g. 

CHD4 (also called Mi2b) of the NuRD complex), histone methyltransferases (e.g. 

SETDB1), histone demethylases (e.g. LSD1), DNA methyltransferase (e.g. 
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DNMT1) and others (e.g. ETO2, TRIM28). First, we found that co-repressors are 

present in excess compared to TFs with for instance CHD4 being present at > 

500,000 copies per nucleus versus 42,000 copies for the most abundant TF 

GATA1 at day 10 (Figure 5A,C and Table S4). Histone deacetylases are also 

highly abundant (e.g. HDAC1 > 63,000 copies per nucleus at day 10). In contrast, 

co-activators are surprisingly scarce with the histone acetyltransferase P300 

representing less than 10% of the nuclear amount of 10 TFs combined (Figure 5B) 

with 7,000 copies at day 10. This surprising finding reveals a vast quantitative 

imbalance in HDACs versus HATs in the nucleus (Figure 5C). Examining 

additional co-activators and co-repressors, we found that this is a general trend 

with co-activators being on average 100 times less abundant than co-repressors, 

for all factors we have examined (Figure 5C and Table S4) and at all time-points 

during hemato/erythroid differentiation (Figure 5D and Figure S5A). Strikingly, 

these differences in abundance exist mostly at the protein (not at the RNA) level 

(Figure 5D,E and Figure S5A) suggesting a post-transcriptional regulatory 

mechanism. Consistent with this, we found that co-activators are more sensitive to 

cycloheximide treatment than co-repressors (Figure S5B) suggesting that 

increased protein degradation could be responsible for the scarcity of co-activators 

in the nucleus. Thus, our quantitative measurements revealed that the nucleus is 

a highly repressive environment with co-activators being exceedingly rare 

compared to both co-repressors and TFs. 
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TFs do not work in isolation, but instead upon binding to DNA, they form 

highly organized structures at enhancers to facilitate the recruitment of co-

activators (Catarino and Stark, 2018). Thus, we asked whether co-activators are 

limiting or in excess compared to active enhancers. To estimate the number of 

active enhancers in erythroid cells, we performed ATAC-seq (Buenrostro et al., 

2013) followed by HINT-ATAC (Li et al., 2019) at three time-points to identify TFs 

footprints within regions of open chromatin. These regions were then intersected 

with predicted enhancers from the GeneHancer database (Fishilevich et al., 2017). 

Since enhancers are characterized by specific histone modifications (H3K27ac 

and H3K4me1), we compared the number of identified enhancers with the number 

of molecules of co-activator enzymes responsible for these histone marks, 

including UTX (that demethylates H3K27), CBP and P300 (that acetylate H3K27) 

as well as MLL3 and MLL4 (that monomethylate H3K4). Interestingly, we found 

that the copy number of histone-modifying enzymes is on the same order of 

magnitude as the number of active enhancers (Figure 5F), suggesting that 

enhancer formation is dependent on co-activator molecules availability in the 

nucleus and that enhancers must compete with each other to recruit rare and 

unstable co-activators in a highly repressive nuclear environment (Figure 5G).  

 

Discussion 

In this study, by measuring absolute abundances of TFs during the course 

of erythropoiesis, we uncovered major discrepancies between mRNA and protein 
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levels for master regulators of hematopoiesis. Integration of protein stoichiometry 

data with mRNA measurements over time allowed us to establish a dynamic GRN, 

which revealed quantitative imbalances in TFs cross-antagonistic relationships 

that underlie lineage determination. Furthermore, comparing the abundances of 

coactivators and corepressors in the nucleus, we made the unexpected discovery 

that corepressors are dramatically more abundant, which has profound 

implications for understanding transcriptional regulation.  

 

A central question in biology is how TFs control gene expression programs 

to direct cell processes such as lineage commitment. A pre-requisite for 

understanding the general principles of transcription is to define the key 

components (i.e. transcription factors and cofactors) quantitatively in absolute 

terms. Yet, despite years of studies we still do not know the copy number of TFs 

and cofactors in the nucleus during dynamic cellular processes. We also do not 

know the relative abundances of coactivators, corepressors and TFs. Here, 

through the use of targeted MS combined with spiked-in protein-specific standards, 

we offer an unprecedented view of the transcriptional machinery in the nucleus, 

providing an abundance scale for 103 major players in transcriptional regulation, 

including TFs, chromatin-modifying enzymes, coactivators, corepressors and 

subunits of the general transcriptional machinery at different stages of 

differentiation from HSPCs to erythroid cells. In addition to providing a quantitative 

scale for TFs in the nucleus, the protein data has changed our view on key aspects 
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of erythroid differentiation. For instance, based on mRNA measurements, it was 

believed that the switch that occurs at the ProEB stage between GATA2 and 

GATA1 genomic binding to activate an erythroid gene program was due to GATA1 

becoming more abundant than GATA2 at this stage (Katsumura et al., 2017). 

However, our protein data show that GATA1 is more abundant than GATA2 from 

the early stages of hematopoiesis. Thus, in contrast to the prevailing view, GATA2 

is able to bind to its target genes despite an excess of GATA1, and the 

GATA2/GATA1 switch in genomic binding is not mediated through an inversion in 

the ratio between these proteins.  

 

Another major finding is that in the nucleus, corepressors are highly 

abundant (e.g. >500,000 molecules per nucleus for CHD4) whereas coactivators 

such as P300 or CBP are comparatively very rare (<8,000 molecules per nucleus) 

with TFs being present at intermediate levels. Our finding that coactivators are 

limiting compared to TFs is consistent with the concept of “cofactor squelching” 

(also called “transcription interference”)(Meyer et al., 1989) which proposes that 

TFs compete for a limited number of cofactors in the nucleus. The squelching 

model was suggested 30 years ago based on reporter assays(Meyer et al., 1989) 

but had remained controversial due to the lack of data on TFs vs cofactors 

stoichiometry in cells (Schmidt et al., 2016). Our finding that coactivators are 

limiting compared to TFs in the nucleus provides strong support for a model 

whereby TFs compete with each other to recruit a limiting number of co-activators. 
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Furthermore, this is compatible with emerging models of enhancer function that 

involve multiple weak interactions between coactivators, TFs and their genomic 

binding sites to achieve specificity in gene regulation (Farley et al., 2015; Hahn, 

2018) (Figure 5G). In this regard, it is also interesting that the number of coactivator 

molecules and active enhancers are roughly equivalent in the nucleus, suggesting 

that the formation of active enhancers may depend on coactivator availability. 

Although the squelching model proposes passive repression as a mechanism for 

genes to remain inactive due to a lack of available coactivators, the high amounts 

of corepressors we detected indicate that the nucleus is a highly repressive 

environment with the recruitment of corepressors to target genes likely facilitated 

by their high abundance (Figure 5G). Consistent with this, NuRD has been shown 

to repress transcription of fetal ß-like globin genes in adult erythroid cells (Yu et 

al., 2019), and to suppress transcriptional noise during lineage commitment 

(Burgold et al., 2019). Based on these data, we propose that restricting the 

abundance of coactivators in a highly repressive nuclear environment is an 

important yet under-appreciated mechanism for concerted gene regulation during 

cellular processes such as cell fate decision, by ensuring only a limited number of 

genes can be expressed, and thus preventing high level co-expression of lineage-

specific genes in multipotent progenitors.  

 

Cell fate decisions are thought to be mediated through competition between 

LS-TFs that are co-expressed in multipotent progenitors (Huang et al., 2007; Palii 
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et al., 2019). These regulatory relationships are typically represented by GRNs 

wherein LS-TFs inhibit each other within a stable progenitor state (Dore and 

Crispino, 2011; Gottgens, 2015). However, recent single cell analyses at the RNA 

(Zheng et al., 2018) and protein (Palii et al., 2019) levels have suggested that 

hematopoietic progenitors do not exist as a stable state but instead are gradually 

differentiating along lineage trajectories. Thus, there are uncertainties about how 

well previous GRN models capture lineage commitment. A major limitation of 

previous network models is that they did not incorporate quantitative changes in 

TF protein levels and instead used mRNA as a proxy for proteins. This can 

negatively affect the utility of GRNs as post-transcriptional regulatory mechanisms 

can result in major discrepancies between RNA and protein abundances (Liu et 

al., 2016). In contrast, we have integrated complementary measures on mRNA 

and protein abundances to build a temporal GRN of erythroid lineage commitment. 

Our model is unique in that it is both dynamic, allowing us to capture changes in 

regulatory relationships over time, and quantitative as it measures the strength of 

each regulatory relationship and the relative contribution(s) of different TFs to the 

regulation of their target genes (Figures 3 and 4 and Movie S1). Notably our model 

was able to accurately recapitulate the known cross-antagonisms between LS-TFs 

in their correct sequential order. Most importantly, the model revealed that these 

cross-antagonisms are quantitatively imbalanced and that these imbalances 

become more pronounced with time. This suggests that lineage commitment can 

be quantified by measuring the imbalance between LS-TFs’ cross-antagonistic 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/812123doi: bioRxiv preprint 

https://doi.org/10.1101/812123


 23 

relationships. In summary, our GRN offers the first protein-based quantitative view 

of dynamic changes in gene regulatory relationships that underlie erythroid lineage 

commitment from HSPCs. We expect it will serve as a framework for integration of 

additional parameters such as other TFs/cofactors, post-translational 

modifications and/or genomic DNA binding data to allow for a more comprehensive 

understanding of transcriptional regulation during erythropoiesis. 

Through the simultaneous measurement of RNA and proteins at multiple 

time points during erythropoiesis, we reveal major principles of transcriptional 

regulation that underlie lineage commitment. It is likely that the regulatory 

principles established here for erythropoiesis will be generally applicable to other 

cell types. 
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FIGURE 1 

 

Figure 1. Absolute Quantification of Transcription Factors and Co-factors during 

Human Erythropoiesis.  
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(A) Schematic of SRM assay development to quantify TFs and cofactors during 

hemato/erythropoiesis. Absolute abundance was determined at each time-point 

using either the SIL-based or the Anchor protein–based quantification method. 

Two biological replicates were performed. SIL, stable isotope labeled; IS, internal 

standard. 

(B) Range of protein abundances in the nucleus averaged for all time points.  

(C) RNA-seq coverage of the GATA2 gene over time as displayed by the UCSC 

genome browser. Replicate 1 is shown as a representative example. 

(D) Quantification of the GATA2 protein over time by SRM. Ion chromatograms of 

endogenous (red) and SIL (blue) EVSPDPSTTGAASPASSSAGGSAAR peptide 

from the Skyline software. Replicate 1 is shown as a representative example. 

(E) Correlation matrix between RNA-seq experiments at the indicated days. The 

heatmap displays Pearson correlations. The stages of differentiation (indicated on 

the right) were attributed to the time-points using CyTOF as previously described 

(Palii et al., 2019). 

(F) k-means clustering analysis of normalized protein abundances at the indicated 

days. Protein abundances were measured by SRM and are shown as a heatmap 

after normalization. 

See also Figures S1, S2, S3 and Tables S1, S2, S3 and S4. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/812123doi: bioRxiv preprint 

https://doi.org/10.1101/812123


 27 

FIGURE 2 

 

Figure 2. Major Discrepancies in Protein versus mRNA Abundances for Master 

Regulators of Hemato/Erythropoiesis 
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(A) Correlation between mRNA and protein abundances at the indicated days. The 

left panel shows a representative example of a dot plot at day 8 with each dot 

representing a protein-mRNA pair. The right panel shows the calculated correlation 

at each day. 

(B) Correlation between the changes in mRNA and protein levels over time during 

differentiation from day 0 to day 14. Positive correlations are in green. Negative 

correlations are in orange. 

(C) Protein (blue) and mRNA (orange) abundances for the indicated genes during 

differentiation. See Figure S5 for all 103 measured genes.  

(D) mRNA (top) and protein (bottom) stoichiometry for the indicated genes during 

differentiation.  

(E) mRNA (top) and protein (bottom) stoichiometry for the indicated genes during 

differentiation. 

See also Figure S4 and our Human Erythropoiesis TFs website 

(https://trena.systemsbiology.net/app/srm_rna_combined_v2). 
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FIGURE 3 

 

Figure 3. Quantitative Gene Regulatory Network of Erythroid Commitment 
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(A) Modeling approach: mRNA dynamics are modeled depending on regulator 

protein abundances. Transcriptional activation is represented as a ratio of two 

linear functions, corresponding to activation and repression, with constant rates 

multiplied by protein abundances. mRNA degradation is modelled as a linear 

decay. 

(B) Quantitative Network diagrams depicting dynamic changes in transcriptional 

regulation of erythroid commitment. Blue and red links indicate activation and 

repression, respectively. Link transparency indicates the relative contribution of a 

TF to the regulation of its targets (more transparent links represent weaker effects, 

depending on regulatory parameter and regulator abundance). Link thickness 

indicates the regulatory effect per TF protein molecule (thicker links indicate 

greater regulatory effect per TF protein molecule). 

The network is also available in BioTapestry format (Paquette et al., 2016) at 

http://grns.biotapestry.org/HumanErythropoiesisGRN/ 

(C,D) Quantitative imbalance in the GATA1-PU1 (C) and KLF1-FLI1 (D) cross-

antagonistic relationships over time. Excerpt from the network in (B). The strengths 

of the regulatory relationships are indicated at each time point. Regulatory strength 

or transparency score was determined from the parameters Ki and Ri as 

log2(1+Ki*Ri). 

See also Movie S1. 
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FIGURE 4 

 

Figure 4. Quantitative Regulatory Relationships 
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(A) Relative contribution of each TF to the activation of its targets within the GRN. 

The average activation of a regulator X on target gene Y is computed as AX*KXY, 

where AX is the average protein expression of gene X over the days 0, 2, 4, 6, 8 

and 10, and KXY is the GRN's regulatory parameter quantifying its effect on gene 

Y. The activation percentage is AX*KXY divided by the sum of average activations 

from all activators of Y. 

(B) The activation strength of each TF for its target gene is plotted relative to its 

abundance. For each gene Y in the GRN, the average protein abundance AX and 

regulatory parameter KXY are plotted for all activators X. 

(C) The knockdowns of GATA1, GATA2, TAL1 and KLF1 were induced separately 

by lentiviral delivery of shRNA in cells at day 8. Expression of putative target genes 

was tested by qRT-PCR after 48h. Expression is shown relative to GAPDH as 

mean +/- standard error of the mean (SEM). n=3. Two-tailed t-test: * p < 0.05. **p 

< 0.01. *** p < 0.001. 
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FIGURE 5 
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Figure 5. The Nucleus is a Highly Repressive Environment with a Large Excess 

of Co-Repressors and Limiting Amounts of Co-Activators 

(A) Relative abundance of CHD4 protein compared to 10 erythroid TFs. 

(B) Relative abundance of P300 protein compared to 10 erythroid TFs. 

(C) Top panel: Quantitative imbalance between histone acetyltransferases (in red) 

and histone deacetylases (in blue). Bottom panel: Quantitative imbalance between 

co-activators (in red) and co-repressors (in blue). 

(D) Left panel: Box plots depicting protein abundances (in copy numbers) of 

transcription factors (TFs, black), co-activators (coAs, red) and co-repressors 

(coRs, blue) at the indicated days. Right panel: Box plots depicting mRNA 

abundances (in FPKM) of TFs, coAs and coRs at the indicated days. For a list of 

TF, coA and coR, see Table S4. Two-tailed t-test: n.s. (non-significant), * p < 0.05. 

**p < 0.01. *** p < 0.001. **** p < 0.0001.  

(E) Average of protein/transcript ratio for TFs, coAs and coRs at each day of 

differentiation. 

(F) Estimated number of active enhancers compared to protein copy numbers of 

the indicated coAs in the nucleus at the indicated days. 

(G) Model of gene regulation in a highly repressive nuclear environment. In this 

model, the same TFs are able to interact with both coAs and coRs (Lambert et al., 

2018). However, due to the scarcity of coAs in the nucleus, TFs must compete to 

recruit them, and they do so by creating an environment that allows multiple low 

affinity interactions as observed on enhancers (Farley et al., 2015; Hahn, 2018). 
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In contrast, the high abundance of coRs increases their availability, which 

facilitates their recruitment to genes even in case of a small number of low affinity 

interactions with TFs. 

See also Figure S5. 
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Supplemental Figures 

FIGURE S1 

 

Figure S1. (Related to Figure 1) RNA and Protein Quantification of Transcription 

Factors and Co-factors during Ex Vivo Human Erythropoiesis.  
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(A) Schematic of sample collection at different time-points followed by analyses at 

the RNA and protein levels. Erythroid differentiation was induced ex vivo from cord 

blood-derived CD34+ HSPCs. Giemsa-stained cells are shown at representative 

days (magnification 40x). 

(B) Cell amplification during ex vivo erythropoiesis. 

(C) Principal component analysis (PCA) monitoring gene expression changes over 

time as measured by RNAseq. 

(D) Western blot analysis of GATA1, TAL1 and TFIIHp89 proteins at the indicated 

days during ex vivo erythropoiesis. Molecular masses (in kDa) are indicated on the 

left. 

(E) k-means clustering analysis of iTRAQ data at different time-points. The top 

enriched Gene Ontology terms for each cluster are indicated. 
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FIGURE S2 

 

Figure S2. (Related to Figure 1) RNA and Protein Quantification of Transcription 

Factors and Co-factors during Ex Vivo Human Erythropoiesis.  
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(A) k-means clustering analysis of normalized mRNA expression (measured by 

RNA-seq) at the indicated days. 

(B) Correlation matrix of normalized protein expression (measured by SRM) at the 

indicated days. 

(C) Correlation of protein changes over time as measured by iTRAQ and SRM. 

Positive correlations are in green. Negative correlations are in orange. 
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FIGURE S3 
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Figure S3. (Related to Figure 1) SRM Related Plots  

(A) Representative ion chromatograms of core network transcription factors 

measured by SRM. The main picture shows endogenous, isotopically light-labeled 

peptides (red) co-eluting with exogenous SIL peptides (blue). Inset pictures show 
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specific transitions measured for each peptide isotope (H = heavy, L = light). 

Images were generated in Skyline and use Savitzky-Golay smoothing. 

(B) Dose-response linear regression plots for all IS peptide standards (in solvent) 

(C) Standard curves used for label free absolute quantification. Separate curves 

and regression parameters were generated for each time point of differentiation. 
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FIGURE S4 
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Figure S4. (Related to Figure 2) Comparison between mRNA and Protein 

Abundances during Hemato/Erythropoiesis 

Protein (blue) and mRNA (orange) abundances for the indicated genes during 

differentiation. 

  

0 2 4 6 8 10 12 14

time (days)

1

1.5

2

2.5

3

p
ro

te
in

 (
co

p
ie

s/
n
u
cl

e
u
s)

104

50

60

70

80

R
N

A
 (

fp
km

)

PSIP1

0 2 4 6 8 10 12 14

time (days)

4

5

6

7

8

9

10

11

p
ro

te
in

 (
co

p
ie

s/
n

u
cl

e
u

s)

104

15

20

25

30

35

40

45

50

R
N

A
 (

fp
km

)

CTCF

0 2 4 6 8 10 12 14

time (days)

4000

5000

6000

7000

8000

9000

10000

11000

p
ro

te
in

 (
co

p
ie

s/
n

u
cl

e
u

s)

80

90

100

110

120

R
N

A
 (

fp
km

)

ETF1

0 2 4 6 8 10 12 14

time (days)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

p
ro

te
in

 (
co

p
ie

s/
n
u
cl

e
u
s)

104

45

50

55

60

65

70

75

R
N

A
 (

fp
km

)
OGT

0 2 4 6 8 10 12 14

time (days)

4

6

8

10

12

14
p

ro
te

in
 (

co
p

ie
s/

n
u

cl
e

u
s)

104

40

60

80

100

120

140

160

180

R
N

A
 (

fp
km

)

PARP1

0 2 4 6 8 10 12 14

time (days)

0

2000

4000

6000

8000

10000

p
ro

te
in

 (
co

p
ie

s/
n

u
cl

e
u

s)

5

10

15

20

25

R
N

A
 (

fp
km

)

WDHD1

0 2 4 6 8 10 12 14

time (days)

2000

3000

4000

5000

6000

p
ro

te
in

 (
co

p
ie

s/
n

u
cl

e
u

s)

30

35

40

45

50

55

R
N

A
 (

fp
km

)

ZC11A

9

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/812123doi: bioRxiv preprint 

https://doi.org/10.1101/812123


 67 

FIGURE S5 

 

Figure S5. (Related to Figure 5) Co-activators are Less Stable than Co-

Repressors in the Nucleus. 
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(A) Left panels: Box plots depicting protein abundances (in copy numbers) of TFs 

(black), coAs (red) and coRs (blue) at the indicated days. Right panels: Box plots 

depicting the mRNA abundances (in FPKM) of TFs, coAs and coRs at the indicated 

days. Two-tailed t-test: n.s. (non-significant), * p < 0.05. **p < 0.01. *** p < 0.001. 

**** p < 0.0001. For a list of TF, coA and coR, see Table S4.  

(B) Western blot analyses of nuclear extracts from erythroid cells (day 8) treated 

with cycloheximide (CHX) to inhibit translation or a vehicle control. Molecular 

masses (in kDa) are indicated on the left. 
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Supplemental Movie 

Movie S1. (Related to Figure 3) Dynamic gene regulatory network model of 

erythroid commitment 

 

Experimental Procedures 

Antibodies 

Antibodies used for FACS: 

CD34 (CD34-PE, clone 581, BD Biosciences, cat# 555822, RRID:AB_396151), 

CD36 (CD36-PE, clone CB38, BD Biosciences, cat# 555455, RRID:AB_395848), 

CD71 (CD71-FITC, clone YDJ1.2.2, Beckman Coulter, cat# IM0483U, 

RRID:AB_2756301), GPA (CD235a-PE, clone GA-R2, BD Biosciences, cat# 

555570, RRID:AB_395949). 

 

Antibodies used for Western blot: 

P300 (Clone RW128, Millipore, cat# 05-257, RRID:AB_11213111), DNMT1 

(Polyclonal, Abcam cat# ab87656, RRID:AB_2041078), HDAC1 (Polyclonal, 

Abcam cat# ab7028, RRID:AB_305705), HDAC2 (Clone Y461, Abcam cat# 

ab32117, RRID:AB_732777), CHD4 (Polyclonal, Abcam cat# ab72418, 

RRID_AB_1268107), KAT2A (L. Tora; IGBMC; Polyclonal, RRID:AB_2616158), 

TRIM28 (Polyclonal, LifeSpan Biosciences, cat# LS-C287177, 

RRID:AB_2811026), UTX (F.J. Dilworth; OHRI; Polyclonal, RRID:AB_2811027). 
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Primers for qRT-PCR 

GATA2 For: 5’-CTC CCA CCT TTT CGG CTT C-3’ 
GATA2 Rev: 5’-CGT GGT GCT AGG GTC AGG A-3’ 
 
RUNX1 For: 5’-CCA ATA CCT GGG ATC CAT TGC-3’ 
RUNX1 Rev: 5’-CTG GCA CGT CCA GGT GAA A-3’ 
 
TAL1 For: 5’-CGC CTG GCC ATG AAG TAT ATC-3’ 
TAL1 Rev: 5’-AGG GTC CTT GCC AGT CTT-3’ 
 
FOXO3 For: 5’-CAG CCT GTC ACC TTC AGT AAG-3’ 
FOXO3 Rev: 5’-TTT CAG TCA GCC CAT CAT TCA-3’ 
 
GATA1 For: 5’-AGA CTT TGA AGA CAG AGC GGC TGA-3’ 
GATA1 Rev: 5’-TTC CAC GAA GCT TGG GAG AGG AAT-3’ 
 
KLF1 For: 5’-GCG TTC CCA AAG ATC CAC CCA AAT-3’ 
KLF1 Rev: GGG TTT GCA CGA CAG TTT GGA CAT-3’ 
 
PU.1/SPI1 For: 5’-AGA AGA AGA TCC GCC TGT ACC A-3’ 
PU.1/SPI1 Rev: 5’-CCA CCA GAT GCT GTC CTT CAT-3’ 
 
GFI1b For: 5’-CGA CTC ACC CCC ATT CTA CAA-3’ 
GFI1b Rev: 5’-CGG TAG CTG TGG CCA TAG GT-3’ 
 
FLI1 For: 5’-CCA CCA ACG AGA GGA GAG TCA-3’ 
FLI1 Rev: 5’-CCA GCC ATT GCC TCA CAT G-3’ 
 
KLF3 For: 5’-CGA ACC ACA GAG GAC AGA TTA TT-3’ 
KLF3 Rev: 5’-GAC CGA AGG GTG ATT CTC TTG-3’ 
 

 

Isolation of hematopoietic stem/progenitor cells from human umbilical cord blood  

Umbilical cord blood was obtained from Canadian Blood Services “Cord Blood for 

Research program” (CBR-2014-001). CD34+ hematopoietic stem/progenitor cells 

were isolated as previously described (Palii et al., 2011a) with the following 

modifications. CD34+ cells were pre-enriched from fresh cord blood by negative 
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selection using the RosetteSep Human Cord Blood CD34 Pre-Enrichment Cocktail 

(STEMCELL Technologies cat#15631), followed by Ficoll density gradient and 

CD34 positive selection using the EasySep Human CD34 Positive Selection Kit 

(STEMCELL Technologies cat#18096) according to the manufacturer’s 

instructions. Purified cells were analyzed by FACS for CD34 expression using the 

PE Mouse Anti-Human CD34 antibody (BD Pharmingen, cat# 555822) and either 

cryopreserved in 10% DMSO or cultured directly as described below. All 

procedures were approved by the Ottawa Health Science Network Research 

Ethics Board (2007804-01H) 

 

Human erythropoiesis ex vivo culture and cell harvest 

Two biological replicates of the time-series were performed. CD34+ cells (63x106 

cells for replicate 1 and 45x106 cells for replicate 2) were differentiated towards the 

erythroid lineage using a 4-step protocol (Giarratana et al., 2005; Palii et al., 

2011a). The first step (day 0 to day 11) consists of growing CD34+ cells in serum-

free IMDM medium supplemented with 1% penicillin/streptomycin, 4x10-3 M L-

glutamine, 40 ug/ml inositol, 10 ug/ml folic acid, 1.6x10-4 M monothioglycerol, 90 

ng/ml ferrous nitrate, 900 ng/ml ferrous sulfate, 20% albumin-insulin-transferrin 

(BIT), also containing the following cytokines: 10-6 M hydrocortisone (HC), 100 

ng/ml stem cell factor (SCF), 5 ng/ml interleukin 3 (IL-3) and 3 IU/ml erythropoietin 

(EPO) for 8 days followed by 3 days in supplemented IMDM medium containing 

only SCF and EPO. For the second step (day 12 to day 14), cells were co-cultured 
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on a layer of stromal MS-5 cells in the supplemented IMDM medium containing 

only EPO. For the third step (day 15 to day 18), cells were co-cultured on a layer 

of MS-5 cells in the supplemented IMDM medium with no cytokines. For the fourth 

step (day 19 to day 24), cells were co-cultured on a layer of MS-5 cells in the 

supplemented IMDM medium in the presence of 10% fetal bovine serum. Every 

second day, cells were counted and monitored for viability (trypan blue exclusion 

of dead cells), cell surface expression of CD34 (CD34-PE, BD Pharmingen, cat# 

555822), CD36 (CD36-PE, BD Pharmingen, cat# 555455), CD71 (CD71-FITC, 

Beckman Coulter, cat# IM0483U), GPA (CD235a-PE, BD Pharmingen, cat# 

555570) and LDS751 (Molecular Probes, cat# L7585) by FACS and hemoglobin 

production (benzidine staining). Cells were harvested at the indicated intervals 

during the course of differentiation and cryopreserved in their respective culture 

media supplemented with 10% DMSO.  

 

Giemsa staining 

Cells were harvested, cytospun and fixed in methanol for 5 min prior to staining 

with 1/20 diluted Giemsa solution (SIGMA cat# GS500) for 15 min, followed by 3 

washes of 5 min each in deionized water, according to the manufacturer’s 

instructions. 

 

RNA extraction and high throughput sequencing 
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For each biological replicate, total RNA was isolated on days 0, 2, 4, 6, 7.5, 8, 8.5, 

10, 10.5, 11, 11.5, 12, 14 and 16 of erythroid differentiation using the RNeasy mini 

extraction kit (Qiagen, cat# 74104), including a DNase I digestion step. After RNA 

extraction, quality control was performed with RNA 6000 Nano kit (Agilent cat# 

5067-1511). Libraries were prepared using a TruSeq mRNA enrich stranded RNA 

library kit (Illumina) with two biological replicates per library and paired-end 

sequencing was performed on an Illumina HiSeq 2000. 

RNA seq data have been deposited in the GEO database. 

 

RNAseq analysis 

For each biological replicate, fastq files were aligned to the human reference 

genome hg38 with RefSeq annotations using Hisat2 (Kim et al., 2015). The 

resulting .sam files were transformed into .bam files with SAMtools (Li et al., 2009). 

The reads were counted using the featureCounts (Liao et al., 2014) function from 

the R package Rsubread, specifying the same .gtf file used to build the Hisat2 

index and default parameters. Differentially expressed genes were identified with 

the R package DESeq2 (Love et al., 2014). Genes with adjusted p-value below 

0.05 were considered statistically significant. For visualization the data was 

normalized to FPKMs. Principal Component Analysis was done with the R function 

prcomp using the log(1+FPKM) transformed data.  

 

Nuclear protein extraction and relative quantification using iTRAQ  
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Fifteen million cryopreserved cells at days 0, 2, 4, 6, 8, 10, 12 and 14 of erythroid 

differentiation were thawed and resuspended in serum-free IMDM medium 

supplemented with 1% penicillin/streptomycin, 4x10-3 M L-glutamine, 40 ug/ml 

inositol, 10 ug/ml folic acid, 1.6x10-4 M monothioglycerol, 90 ng/ml ferrous nitrate, 

900 ng/ml ferrous sulfate, 20% albumin-insulin-transferrin (BIT). After thawing, the 

cells were washed twice with ice-cold PBS, resuspended in ice-cold Swelling 

Buffer (10mM HEPES pH7.9, 1.5mM MgCl2, 10mM KCl, 0.1% (v/v) NP-40, 

protease inhibitor cocktail) and incubated on ice for 30 min. During incubation, cells 

were vortexed every 5 min to allow cell lysis. Nuclei were then pelleted by 

centrifugation at 1,500 rpm (40C) for 5 min, washed twice with ice-cold PBS and 

resuspended in RIPA Buffer (50mM HEPES pH7.9, 1mM MgCl2, 150mM NaCl, 

0.5% (w/v) Na deoxycholate, 1% (v/v) NP40, 0.1% SDS) containing 50 ng/µl 

Benzonase (Millipore, cat# 70746) and protease inhibitor cocktail at room 

temperature (RT). Samples were vortexed for 5 min at RT and incubated for 20 

min at 370C on a Thermomixer (14,000 rpm) followed by 5 min vortexing at RT. 

Nuclear extracts were recovered by centrifugation at 14,000 rpm for 15 min, snap 

frozen in liquid nitrogen and stored at -80°C. Nuclear protein extracts were 

prepared from cells on days 0, 2, 4, 6, 8, 10, 12, and 14 of erythroid differentiation. 

Extracted protein concentrations were measured using the bicinchoninic acid 

assay (BCA; Thermo Scientific). Equal protein amounts were reduced with 5mM 

dithiothreitol, alkylated with 10mM iodoacetamide, and precipitated with chilled 

100% acetone to remove detergent. Precipitated proteins were resuspended in 
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iTRAQ Dissolution Buffer (AB Sciex) and digested into solution with Lys-C for 3 h 

(1:200 w:w, 37C; Thermo Scientific) followed by Trypsin overnight (1:50 w:w; 37C; 

Thermo Scientific). Volatile liquids were removed by evaporation, and peptides 

were resuspended in iTRAQ Dissolution Buffer and labeled with 8-plex iTRAQ 

reagents (AB Sciex) for 2 h at room temperature with constant agitation. The 

labeling reaction was quenched with 1M Tris, pH 8.0, and samples were combined 

and volatile liquid was evaporated. Labeled peptides were resuspended in 1% 

acetonitrile, acidified with formic acid, and purified using C18 reversed-phase 

chromatography (1cc 100mg cartridges; Waters). Purified peptides were 

separated into 24 fractions using isoelectric focusing off-gel electrophoresis 

(Agilent), and ampholytes removed by tC18 reversed-phase chromatography 

(100mg 96-well plate; Waters) followed by mixed cation exchange 

chromatography (30um uElution 96-well plate; Waters). Purified peptides were 

separated by online nanoscale HPLC (EASY-nLC1000; Thermo Scientific) with a 

C18 reversed-phase Picochip nanospray column pre-packed 10.5cm with 

ReproSil-Pur C18-AQ 3um 120A (New Objective) over an increasing 90 min 

gradient of 5-35% Buffer B (100% acetonitrile, 0.1% formic acid) at a flow rate of 

300nl/min. Eluted peptides were analyzed with a Q Exactive HF Hybrid 

Quadrupole-Orbitrap mass spectrometer (Thermo Scientific) operated in data 

dependent mode, with the Top15 most intense peptides per MS1 survey scan 

selected for MS2 fragmentation by higher energy collisional dissociation (HCD). 

MS1 scans were performed in the Orbitrap at a resolution of 60,000 at m/z 400, 
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with an automatic gain control (AGC) target of 3e6 ions and a maximum injection 

time of 20ms. MS2 scans were analyzed in the Orbitrap at a resolution of 15,000, 

with an AGC target of 1e5 and a maximum injection time of 45ms. Due to the 

iTRAQ label, a fixed first mass of 100 m/z was used for MS2 scans, along with a 

normalized collision energy of 30 and an isolation window of 1.2 m/z. Peptide 

match was not used, and dynamic exclusion was set to 30 s (+/- 15 ppm). Raw 

output data files were searched against the Uniprot human protein database (12-

2015 release) using X!Tandem and Comet (Craig and Beavis, 2004; Eng et al., 

2013) to identify peptide sequences. A reverse sequence database was appended 

to assist in determining error. Resulting data were combined using iProphet, and 

probabilities for correct identification were determined by Peptide prophet, 

iProphet, and Protein prophet (Keller et al., 2002; Nesvizhskii et al., 2003; 

Shteynberg et al., 2011). iTRAQ quantification was performed using Libra (Pedrioli 

et al., 2006). 

iTRAQ data has been deposited in ProteomeXchange via MassIVE. 

 

iTRAQ data analysis 

iTRAQ data was clustered using k-means clustering with the R function kmeans, 

with centers=8 and default parameters. Gene Ontology (GO) analysis of the 

different clusters was done using Metascape (Zhou et al., 2019) with the option 

Express Analysis. 
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Construction of an Erythroid protein database 

Day 8 nuclear protein extracts (86 µg) were reduced with 5mM dithiothreitol, 

alkylated with 25mM iodoacetamide, and digested with Lys-C for 3 h (1:200 w:w, 

37C; Thermo Scientific) followed by Trypsin overnight (1:25 w:w, 37C; Thermo 

Scientific). Peptides were acidified with formic acid, purified using C18 reversed-

phase chromatography (1cc 100mg cartridges; Waters), and separated into 24 

fractions using isoelectric focusing off-gel electrophoresis (Agilent). Ampholytes 

were removed by tC18 reversed-phase chromatography (100mg 96-well plate; 

Waters) followed by mixed cation exchange chromatography (30um uElution 96-

well plate; Waters). Purified peptides were separated by online nanoscale HPLC 

(EASY-nLC II; Proxeon) with a C18 reversed-phase column packed 25cm (Magic 

C18 AQ 5um 100A) over an increasing 60 min gradient of 5-35% Buffer B (100% 

acetonitrile, 0.1% formic acid) at a flow rate of 300nl/min. Eluted peptides were 

analyzed with an Orbitrap Elite mass spectrometer (Thermo Scientific) operated in 

data dependent mode, with the Top20 most intense peptides per MS1 survey scan 

selected for MS2 fragmentation by rapid collision-induced dissociation (rCID) 

(Michalski et al., 2012). MS1 survey scans were performed in the Orbitrap at a 

resolution of 240,000 at m/z 400 with charge state rejection enabled, while rCID 

MS2 was performed in the dual linear ion trap with a minimum signal of 1000. 

Dynamic exclusion was set to 15 s (+/- 10 ppm). Raw output data files were 

searched against the Uniprot human database (03-2015 release) using X!Tandem 

and Comet (Craig and Beavis, 2004; Eng et al., 2013) to identify peptide 
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sequences. A reverse sequence database was appended to assist in determining 

error. Resulting data were combined using iProphet, and probabilities for correct 

identification were determined by Peptide prophet, iProphet, and Protein prophet 

(Keller et al., 2002; Nesvizhskii et al., 2003; Shteynberg et al., 2011). Xpress was 

used to determine the summed peak area for each peptide (Han et al., 2001). 

 

Construction of the Erythroid SRM TF Atlas 

We created a list of 168 TFs with known and/or expected roles in transcriptional 

regulation during erythropoiesis. Proteotypic, fully tryptic peptides with the highest 

summed MS1 peak areas were selected from the erythroid protein database for all 

proteins of interest. In addition, selected peptides were a minimum of 7 amino 

acids in length and lacked features that may be incompatible with SRM analysis, 

namely ragged ends or missed cleavages. Where possible, Cys-containing 

peptides, peptides containing potentially modified residues (e.g., Met, Ser, Thr, 

Tyr, N-terminal Gln, Asn-Gly, Gln-Gly) and sequences that could affect trypsin 

digestion efficiency or peptide stability were also avoided. For proteins not found 

in our database, or to supplement our identified peptides, the SRM Atlas 

(Kusebauch et al., 2016) was used with a preference for peptides validated on an 

Agilent triple quadrupole mass spectrometer. Transition selection and collision 

energy values were also imported from the SRM Atlas. SIL peptides (Lys-[13C6, 

15N2] or Arg-[13C6, 15N4]) were synthesized for all proteins (716 peptides; 

PEPotec Grade 1; Thermo Scientific). These SIL peptides were used as standards 
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for confident peptide identification during SRM and to optimize SRM assays. 

Assays were refined to include those transitions which displayed the highest 

interference-free signal intensities in solvent and when added to erythroid cell 

extracts. This process resulted in 3-4 transitions per peptide (and 1-4 peptides per 

protein). The linear range of quantification within the erythroid cell extracts was 

determined for the SIL peptides used for quantification. The concentration of SIL 

peptides used in the final time course measurements was matched to that detected 

in day 8-12 erythroid nuclear extracts. The final erythroid SRM TF Atlas consists 

of 150 proteins, 411 heavy and light peptide pairs and 1377 heavy and light 

transition pairs. 

 

Nuclear protein extraction and sample preparation for SRM analyses 

Fifteen million cryopreserved cells at days 0, 2, 4, 6, 7.5, 8, 8.5, 10, 10.5, 11, 11.5, 

12, and 14 of erythroid differentiation were thawed and washed using IMDM 

supplemented medium. Cells were then washed in ice-cold PBS buffer, 

resuspended in ice-cold Swelling Buffer (10 mM HEPES pH7.9; 1.5 mM MgCl2; 10 

mM KCl; 0.1% (v/v) NP40; protease inhibitor cocktail) and incubated on ice for 30 

min. During incubation, cells were vortexed every 5 min to allow cell lysis. Nuclei 

were then pelleted by centrifugation for 5 min at 1,500 rpm (40C) and resuspended 

in 1 vol. of 370C pre-heated Extraction Buffer 1 (50 mM HEPES pH7.9; 1 mM 

MgCl2; 150 mM NaCl; 0.5% Na deoxycholate; 50 ng/µl Benzonase Millipore, cat# 

70746; protease inhibitor cocktail) prior to incubation at 370C on a Thermomixer 
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(14,000 rpm) for 15 min. Proteins were extracted first by 6 passages through a 27 

½ gauge needle prior to addition of 1 vol. of 370C pre-heated Extraction Buffer 2 

(50 mM HEPES pH7.9; 150 mM NaCl; 9.5% Na deoxycholate; 1 mM EDTA; 

protease inhibitor cocktail). The mixture was heated at 700C for 5 min and proteins 

were extracted further by 6 passages through a 27 ½ gauge needle prior to 

incubation at 400C on a Thermomixer (14,000 rpm) for 15 min. Nuclear extracts 

were recovered by centrifugation at 13,000 rpm for 15 min and snap frozen. 

Extracted protein concentrations were measured using the BCA assay (Thermo 

Scientific). Equal protein amounts were denatured by boiling at 100oC for 4 min, 

cooled and reduced with 5mM dithiothreitol, alkylated with 25mM iodoacetamide, 

and digested with Lys-C for 3 h (1:200 w:w, 37C; Thermo Scientific). Samples were 

diluted to reduce sodium deoxycholate concentration to below 1%, and digested 

with Trypsin overnight (1:25 w:w, 37C; Thermo Scientific). Concentration-matched 

isotopically heavy peptide standards were added to erythroid peptide samples after 

overnight digest. To remove sodium deoxycholate and prepare peptides for 

purification, samples were acidified with an equal volume of cold 1% trifluoroacetic 

acid. Acidified supernatants were subsequently purified by mixed cation exchange 

chromatography (30um uElution 96-well plate; Waters).  

 

SRM analysis 

SRM was performed on an Agilent 6490 triple quadrupole mass spectrometer, 

equipped with a chip cube interface. Peptides were separated by online HPLC 
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(1260 Infinity; Agilent) with a reversed-phase microfluidics HPLC chip (160nL trap; 

Agilent) over an increasing 60min gradient of 3-25% acetonitrile. Optimized 

transitions were acquired in dynamic MRM mode, with a 5 min retention time 

window, using MS1 wide and MS2 unit resolutions. Collision cell accelerator 

voltage was set to 5V, and cycle times were set to yield a minimum dwell time of 

12ms. Raw data was processed using Skyline (MacLean et al., 2010) and peaks 

were manually verified. Light-to-heavy ratios were calculated from peak area 

values. Only measurements determined to be within the linear range of 

quantification for the mass spectrometer were used for subsequent analyses. 

SRM data has been deposited into The Peptide Atlas SRM Experiment Library 

(PASSEL). 

 

Absolute quantification of transcription factors by SRM 

Absolute quantification was achieved in two ways: The first approach (71 proteins) 

is based on stable isotope dilution (SID) in which peptide abundance is determined 

by comparison of selected transition peak areas for each peptide to those of its 

corresponding SIL peptide. The second approach (34 proteins) is a label free 

method in which SID is used to determine the concentration of a set of 17 “anchor” 

proteins, and standard curves based on transition peak areas from the two highest 

intensity peptides per anchor protein and their concentrations are then used to 

estimate the concentrations of the target proteins (Ludwig et al., 2012). 
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For SID, isotopically light internal standard (IS) peptides (Gerber et al., 2003) were 

used to quantify our SIL standard peptides. This approach enabled a significant 

time, cost and resource savings versus using isotopically heavy IS peptides for 

assay development and direct quantification in the biological matrix. Peptides that 

showed the highest interference-free intensity were selected for commercial 

synthesis (AQUA; Thermo Scientific). IS peptides were >97% pure and were 

quantified by amino acid analysis. For SRM quantification, the peak areas for the 

two most intense, interference-free transitions were summed together. Additional 

transitions were used to confirm correct peak identification. Dose-response curves 

were generated for each IS peptide at abundances ranging from 10 amol to 500 

fmol. Quantification of the SIL peptides was achieved by measuring transition 

intensities from serial dilutions of the peptides and then plotting the corrected peak 

areas onto the corresponding IS dose-response curve. The light-to-heavy ratios 

calculated for the erythroid differentiation time course were used to convert these 

SIL standard abundance measurements into endogenous protein abundances. 

Peptide-based protein abundances were averaged in cases where more than 1 

peptide/protein was quantified. 

For label free absolute quantification, the following criteria were used to select 

“anchor” proteins for the standard curves: (i) IS dose-response regression line was 

linear between 0.1-500 fmol with an R2>0.98; or (ii) IS dose-response regression 

line was linear between 1-500 fmol with an R2>0.98 and a slope>0.8; or (iii) IS 

dose-response regression line was linear between 1-500 fmol with an R2>0.95 
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and the peptide was included based on (i) or (ii) in another replicate. Peak areas 

were calculated by summing the two most intense interference-free transitions per 

peptide, and averaging these values for the two highest intensity peptides per 

protein. Linear regression was used to fit a standard curve to the above values, 

and to estimate the unknown concentrations of endogenous proteins using their 

measured transition peak area values.  

SRM measurements obtained as described above produced biological duplicate 

values in units of fmol/µg of protein for each protein at each time point. The two 

replicates were combined by the following steps, to produce a single abundance 

value for each gene at each time point. First, if both replicates had a valid 

measurement, the two were averaged. If only one replicate had a valid 

measurement, it alone was taken as the representative value. If neither replicate 

had a valid measurement, the value was marked as missing. Second, missing 

values were filled in by linear interpolation where possible. For each missing value 

(say on day y), we sought the latest non-missing value prior (say on day x) and the 

earliest non-missing value later (say on day z). If such days could be found, then 

the abundance at day x was filled in with (z-y)/(z-x) times the abundance at day x, 

plus (y-x)/(z-x) times the abundance at day z. This interpolation rule was not 

applied to genes ETO2, MLL1 and SPT16, as visual inspection suggested there 

were too many missing values and/or not clear enough of a trend in abundance for 

interpolation to be meaningful. This left only one gene, BACH1, with a missing 

value at our final time point, which we filled in as zero consistent with BACH1’s 
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general trend towards decreasing expression. See Table S4. Some analyses, such 

as the GRN modeling, used these numbers. For other analyses, we wanted to 

express protein abundance in units of protein copy number per nucleus. To obtain 

these numbers, we multiplied by 4420.25799, which comes from the following 

considerations: (1) There are 6.022140857e+8 molecules per fmol. (2) Across all 

samples, we extracted an average of 7.3426 µg protein per million nuclei. 

 

Protein and RNA correlation analyses 

Correlation heatmap values were computed with the cor R function using Pearson 

correlation, computing the correlation over all genes on FPKM normalized data. 

The heatmaps were plotted using a custom Matlab script. 

 

iTRAQ versus SRM correlation 

Correlation analysis across time points by computing the Pearson correlation of 

iTRAQ relative protein abundance and SRM absolute protein abundance (copy 

number) for each gene. The histogram of the correlation was done with the R 

function hist with breaks=20. 

 

Protein versus mRNA correlation analyses 

Correlation analysis across genes was performed by computing the Spearman 

correlation of the mRNA abundance (FPKM) and protein abundance (copy 

number) of all genes at each time point. Correlation analysis over time was 
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performed by computing the Pearson correlation of the mRNA abundance (FPKM) 

over time with the respective protein abundance (copy number) for each gene over 

time. 

Further mRNA and protein correlation analyses can be performed on our Human 

Erythropoiesis TFs website:  

https://trena.systemsbiology.net/app/srm_rna_combined_v2 

 

Gene Regulatory Network modeling 

For a core set of factors (ELF1, ERG, FLI1, GATA1, GATA2, GFI1B, KLF1, NFE2, 

RUNX1, TAL1, SPI1), possible regulatory links were obtained from the literature 

(Dore and Crispino, 2011; Gottgens, 2015; Sive and Gottgens, 2014). For three 

genes (E2F2, HXB4, KLF3), literature evidence was insufficient to suggest 

regulatory links. For each of these three genes, we computed correlations between 

the RNA expression of the gene and the protein expression of all other genes in 

the network. The three other genes with highest correlation were posited to be 

possible activators, and the gene with most negative correlation was posited to be 

a possible repressor. This network of possible activators and repressors was 

further refined by fitting ordinary differential equation models to the quantitative 

expression data. 

Given a gene X, let x denote our modeled (or predicted) RNA expression of gene 

X, in units of FPKM. Let Ai(t) denote the observed protein expression of the ith 
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activator of gene X, and Rj(t) the observed protein expression of the jth repressor 

of gene X, both in units of fmol/µg. We model the RNA transcription of X as 

!"
!#

=   
∑ %&
'()*
&+, -&

./∑ %()01
(2
1+, 31

 -  𝜆x                                                  

where ki and 𝜆are constants to be determined, 𝑛- is the number of activators 

considered for X and 𝑛3 is the number of repressors considered for X. Given an 

initial condition, x(0), values for the Ai and Ri as a function of time, and values for 

the regulatory and decay parameters, the above ordinary differential equation 

(ODE) can be solved numerically over any finite time interval, producing predicted 

values x(t, k, 𝜆). We used a Runge-Kutta 7(8) method to calculate such trajectories. 

The values for for Ai and Rj as a function of time are obtained by interpolation from 

the observed SRM (protein) values, using a cubic spline smoothing from the GSL 

libraries (Galassi). 

Given also observed RNA expression values for gene X, O(ti) at observation times 

t1, t2, …, tm, agreement between predicted and observed expression values can be 

quantified using the objective function 

 

  𝐺(𝑥) = ∑ ;𝑂(𝑡>) − 𝑥(𝑡>, 𝑘, 𝜆)B
CD

>E.   

 

To find regulatory and decay parameters, we sought to minimize the objective 

function, subject to the constraints that all parameters need to be positive and 

decay rate has to be larger than 16.6 day-1.  
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The minimum of the objective function was computed using a Simplex method from 

the GSL libraries. To explore the parameter space we choose random initial 

parameters between 0 and 500 for the k’s, and between 16.6 day-1 and 500 day-1 

for the 𝜆 with stop conditions either error below 1e-04 or a maximum of 2000 

iterations. With a total of 128 random initial conditions. Out of the 128 iterations, 

the parameter set that gives the smallest values in the objective function were 

selected. 

 

Gene Regulatory Network display 

For activators, the transparency score of the link representing Ai activating X at 

time t is 

  F&-&(#)
DG"&,HF&-&(#)

                                           

Links with transparency score below 0.1 at a certain time are not displayed. Links 

with transparency scores between 0.1 and 1 are increasingly opaque, and links 

with scores greater or equal to 1 are fully opaque. For repressors, the transparency 

score of the link representing Ri repressing X is log2(1+KiRi). The thickness of a 

link from a regulator (activator Ai or repressor Ri) to gene X is proportional to 

log(1+Ki).  

The network can be further explored in BioTapestry format (Paquette et al., 2016) 

at the following link: 

http://grns.biotapestry.org/HumanErythropoiesisGRN/ 
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Intersection of GRN putative links with published ChIP-seq data: 

Published ChIP-seq data for ERG (GSM1097879), FLI1 (GSM1097880), GATA1 

(GSM1278240, GSM1816081, GSM970258, GSM1816080, GSM970257), 

GATA2 (GSM1097883, GSM1816093, GSM722396), GFI1B (GSM1278242), 

KLF1 (GSM2575041-GSM2575049), RUNX1 (GSM1816092, GSM1097884, 

GSM1816091) and TAL1 (GSM1278241, GSM1816084, GSM1097881, 

GSM1427077, GSM1816082, GSM1816083) corresponding to CD34+ HSPC or 

ProEB stages (Beck et al., 2013; Huang et al., 2016; Norton et al., 2017; Pinello et 

al., 2014; Trompouki et al., 2011; Xu et al., 2012; Xu et al., 2015) were downloaded 

from NCBI GEO and analyzed as follow. Raw fastq data was trimmed for low 

quality bases using trimmomatic (version 0.38) (Bolger et al., 2014), and mapped 

to the human genome (hg38) using bowtie-2 (Langmead and Salzberg, 2012). 

Aligned reads were filtered for multiple mapping using a mapping quality filter 

(Q20) and the filtered alignments were sorted (using samtools version 1.9 (Li et 

al., 2009)) and used for calling peaks. Peaks were called using MACS2 (version 

2.1.2) (Zhang et al., 2008), with a peak enrichment cut-off filter of P = 0.05. The 

peaks were filtered against ENCODE blacklist (Amemiya et al., 2019) for human 

genome using bedtools v2.27.1. For each sample, an appropriate Input sample 

from the same stage of development was used as a control. Genome coverage 

files were created using deepTools2 suite (bamCoverage) (Ramirez et al., 2016). 

The identified ChIP-seq peaks were overlapped with GeneHancer (v4.4) 

(Fishilevich et al., 2017) elements (promoters and enhancers) using bedtools. This 
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filtered list was then intersected with putative links from the GRN model at day0 

(HSPCs) or day 10 (ProEB) to identify possible direct interactions between TFs 

and target genes (TGs). Based on this data, we classified TF–TG pairs as either 

“interacting” or “not interacting” and calculated the percentage of regulatory links 

that could be explained by direct TF binding. 

 

Lentivirus preparation and infection 

Lentiviral particles expressing shRNA sequences against GATA2 (5’- 

CCAGACGAGGTGGACGTCTTCTTCAATCA-3’), GATA1 (5’- 

GATCCCCGAAGCGCCTGATTGTCAGTTTCAAGAGAACTGACAATCAGGCGC

TTCTTTTTGGAAA-3’), TAL1 (5’- CTTACTCTAGGAGGCGGAC-3’), and KLF1 (5’- 

CCGGACACACAGGATGACTTCCTCAAGTG -3’) were prepared as previously 

described (Palii et al., 2011a). Specifically, 293T cells were transfected with the 

pMD2.G envelope vector (Addgene #12259), the psPAX2 packaging vector 

(Addgene, #12260) and one of the following shRNA expression lentiviral vectors: 

GATA2 shRNA Lentivector Target a (Abm #i008537a), pLVUTHshGATA1-tTR-

KRAB (Addgene #11650), pBLOCK-it6-DEST (sh Tal1) (Palii et al., 2011b) or 

KLF1 shRNA Lentivector Target a (Abm #i011644a), using calcium phosphate 

precipitation. Lentiviral particles were harvested, concentrated by 

ultracentrifugation (50,000 g for 2h) and used to infect cells at the day 8 time-point 

with a MOI of 20. Lentiviral infection was repeated 24h later in the same conditions. 

Cells were harvested 24h after the last infection and used for RNA extraction. 
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ATACseq, HINT-ATAC and estimation of the number of enhancers. 

ATAC-seq was performed as previously described (Buenrostro et al., 2013; Hay 

et al., 2016) for cells at days 8, 10 and 12. Briefly, 75000 cells per technical 

replicate per sample per timepoint were lysed in cold lysis buffer, nuclear pellets 

were obtained after 10 min centrifugation at 4°C at 500G and resuspended in 50ul 

of tagmentation mix (FC-121-1030, Illumina), then incubated for 30 min at 37°C. 

DNA was purified using the Qiagen MinElute columns (28004, Qiagen). 

Tagmented DNA was indexed with custom primers using NEB Next High-Fidelity 

2x PCR Master Mix (M0541S, NEB). And purified with Qiagen PCR Cleanup Kit 

(28104, Qiagen). Samples were multiplexed sequenced on a next generation 

sequencing platform using the NextSeq® 500/550 High Output Kit v2 (75 cycles; 

FC-404-2005, Illumina) using paired-end reads. For data analysis, the fastq data 

was mapped onto the human genome (hg38) using bowtie1.0 (Langmead et al., 

2009) with the following parameters: --chunkmb 256 –phred-quals 33 –m 2 –best 

–strata –maxins 400. The mapped bam files were used to call narrow peaks using 

MACS2 with the version 2.1.2 docker image of macs  

  https://hub.docker.com/r/fooliu/macs2 

In preparation for running HINT-ATAC, all peaks which mapped to non-canonical 

chromosomes (chr1-22, X, Y, M) were eliminated (“cleaned”) and a bam index was 

built for each bam file using samtools version 1.8. HINT was then run from the 

regulatory genomics toolkit, version 0.12.3 (http://www.regulatory-
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genomics.org/hint/introduction/) on the indexed bam file, and the cleaned peaks 

file 

rgt-hint footprinting --atac-seq --organism=hg38 $(BAM) $(PEAKS) 

Putative enhancer and promoter regions from GeneHancer 4.1.1. were identified 

for all tissues, and the Bioconductor GenomicRanges package was used to 

calculate the intersection of macs2 narrowpeaks and hint-called ATAC-seq 

footprints with the sets of enhancers. 

ATAC seq data have been deposited in the GEO database. 

 

Cycloheximide treatment and nuclear protein extraction 

Erythroid cells at day 8 were treated with 1μg/mL of cycloheximide or DMSO 

vehicle control for 3h. Cells were washed twice with ice-cold PBS, resuspended in 

ice-cold Swelling Buffer (10mM HEPES pH7.9, 1.5mM MgCl2, 10mM KCl, 0.1% 

(v/v) NP-40, protease inhibitor cocktail) and incubated on ice for 30 min. During 

incubation, cells were vortexed every 5 min to allow cell lysis. Nuclei were then 

pelleted by centrifugation at 1,500 rpm (40C) for 5 min, washed twice with ice-cold 

PBS and resuspended in RIPA Buffer (50mM HEPES pH7.9, 1mM MgCl2, 150mM 

NaCl, 0.5% (w/v) Na deoxycholate, 1% (v/v) NP40, 0.1% SDS) containing 50 ng/µl 

Benzonase (Millipore, cat# 70746) and protease inhibitor cocktail at room 

temperature (RT). Samples were vortexed for 5 min at RT and incubated for 20 

min at 370C on a Thermomixer (14,000 rpm) followed by 5 min vortexing at RT. 
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Nuclear extracts were recovered by centrifugation at 14,000 rpm for 15 min, snap 

frozen in liquid nitrogen and stored at -80°C before Western blot analysis. 
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