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Abstract: 30 

Ecological opportunities present during colonization of novel environments can drive divergent 31 

selection on traits, resulting in specialization of morphs to enhance efficient use of resources. 32 

Thus, in an ecologically polymorphic species, differences in resource specialization should be 33 

found among morphs, and homogeneity in resource use expected within a morph. Using one of 34 

four morphs in Great Bear Lake, we investigate whether specialization of trophic resources 35 

among individuals occurs within this single morph, which could indicate a potential for 36 

continued divergence. Four distinct dietary patterns of resource use within the lake trout morph 37 

were detected from fatty acid composition. Feeding habits of different groups within the morph 38 

were not associated with detectable morphological or genetic differentiation, suggesting that 39 

behavioral plasticity may have caused the trophic variation within this morph. A low level of 40 

genetic differentiation was detected between exceptionally large-sized individuals and other 41 

individuals. Investigating a geologically young system that displays high levels of intraspecific 42 

diversity and focusing on dietary patterns of resource use variation of individuals suggested that 43 

individual specialization can occur within a morph. 44 

 45 

Keywords: Among-individual resource specialization, polymorphism, fatty acids, genetic, 46 
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Introduction: 53 

Intraspecific diversity within fish species that have colonized post-glacial lakes may 54 

represent early stages of ecological speciation (Snorrason and Skúlason 2004). Given a novel 55 

environment and new ecological opportunity, a monomorphic population may begin to diverge 56 

on a variety of evolutionary trajectories. Intraspecific diversity can begin with adaptive variation 57 

along selection gradients in the absence of reproductive isolation, and potentially progress to 58 

adaptive differentiation and reproductive isolation (Hendry 2009; Seehausen and Wagner 2014; 59 

Snorrason and Skúlason 2004; Svanbäck et al. 2009a). Many fishes that have colonized post-60 

glacial freshwater systems may be considered generalists (i.e., flexible in use of habitat and food 61 

resources) (Snorrason and Skúlason 2004). If recently colonized systems become stable and 62 

predictable, foraging and habitat specialization may lead to eco-morphological diversification, 63 

which has potential to promote reproductive isolation, further divergence, and ultimately 64 

speciation (Skúlason et al. 1999; Snorrason and Skúlason 2004; Van Kleunen and Fischer 2005). 65 

Phenotypic plasticity, the capacity for one genotype to produce different phenotypes in response 66 

to environmental cues, could be a character (the capacity) subject to selection, facilitating 67 

evolution (De Jong 2005). Despite uncertainties of how phenotypic plasticity promotes 68 

diversification and its role in speciation, plasticity appears to serve as an important element in 69 

early phases of diversification (Handelsman et al. 2013; Nonaka et al. 2015; Snorrason and 70 

Skúlason 2004).  71 

Phenotypic plasticity in temporally and spatially varying environments has been 72 

demonstrated repeatedly within and among populations, but whether niche expansion of a 73 

population is achieved by a general increase in niche widths for all individuals overall or by an 74 

increase of among-individual variation (i.e., expression of multiple individual specializations 75 
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within a population), is a question that has been raised repeatedly (Bolnick et al. 2003; 76 

Roughgarden 1972; Svanbäck and Persson 2004; Svanbäck and Schluter 2012). Several apparent 77 

generalist populations have been reported to be composed of a combination of specialized 78 

individuals using several narrow niches that in combination yield an overall wide population 79 

niche (Araújo et al. 2008; Svanbäck and Persson 2004; Svanbäck and Schluter 2012; Woo et al. 80 

2008). Characterization of niche use among individuals is necessary to understand the role that 81 

individual variation can play at the beginning of adaptive divergence and in potentially 82 

promoting polymorphism and speciation (Klemetsen 2010; Svanbäck and Persson 2004; 83 

Svanbäck and Bolnick 2005; Svanbäck et al. 2015). 84 

The mechanisms underlying variation in the magnitude and effect of individual 85 

specialization in different freshwater systems, species, and trophic positions are poorly 86 

understood (Cloyed and Eason 2016; De León et al. 2012; Svanbäck et al. 2015). Depauperate 87 

ecosystems, with low interspecific competition provide ecological opportunities favoring niche 88 

expansion (Bolnick et al. 2010b; Costa et al. 2008; Parent et al. 2014). Flexibility within 89 

colonizing species with high levels of genetic variation and phenotypic plasticity, in which 90 

individuals have the potential to exploit a wide range of resources, provides potential for the 91 

evolution of individual resource specialization and population divergence. The trophic position 92 

of a species may also affect the degree of individual variation and diversification within a 93 

population as evidence suggests that among-individual variation in diet may be greatest at 94 

intermediate trophic positions (Collar et al. 2009; Svanbäck et al. 2015).   95 

Great Bear Lake (Northwest Territories, Canada) straddling the Arctic Circle provides an 96 

excellent opportunity to investigate the role of among-individual variation in diversification. 97 

Lake trout, Salvelinus namaycush, with this lake show a high degree of intraspecific diversity 98 
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within a geologically young system (8,000–10,000 yr BP) (Johnson 1975; Pielou 2008). 99 

Specifically, extensive sympatric divergence occurs for this species within the shallow-water (≤ 100 

30 m) zone of Great Bear Lake (Chavarie et al. 2013; Chavarie et al. 2015; Chavarie et al. 101 

2016b; Harris et al. 2015). Morph 1 is characterized by a small head and intermediate-sized fins. 102 

Morph 2 has the largest head and jaws but smallest fins of the morphs. Morph 3 has the longest 103 

fins and a robust body shape (i.e., deep body depth). Morph 4 has a thick curved lower jaw and 104 

the smallest caudal peduncle depth of the morphs (Fig. A1) (Chavarie et al. 2013; Chavarie et al. 105 

2015). Three of these four shallow-water lake trout morphs are described as trophic generalists 106 

with differing degrees of omnivory along a weak benthic-pelagic gradient (Chavarie et al. 2016a; 107 

Chavarie et al. 2016b). Despite habitat and dietary overlap, significant differences in 108 

morphological, genetic, and life-history variation have been reported (Chavarie et al. 2013; 109 

Chavarie et al. 2016 ; Harris et al. 2015), suggesting that rather than two or more discrete 110 

phenotypes specialized for different resources and habitats, these morphs function as trophic 111 

generalists (Chavarie et al. 2016b; Svanbäck et al. 2009b).  112 

Furthermore, fatty acid and stomach content analyses of the four lake trout morphs 113 

suggested homogenous resource use among morphs, but this observation could be caused by the 114 

combination of specializations by individuals along a resource continuum (Chavarie et al. 115 

2016a). In other words, whereas morph resource use may appear similar, individuals within a 116 

morph may differ in their resource use. One morph (Morph 2; generalist with a tendency to 117 

consume more fish than other morphs, referred to here as the piscivorous morph; Fig. 1) showed 118 

at least two different feeding strategies, benthic cannibalism and interspecific piscivory in the 119 

pelagic zone. Overall, the piscivorous morph had a streamlined body shape, large gape, and high 120 

growth rates throughout life, characteristics indicative of piscivory (Chavarie et al. 2013; 121 
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Chavarie et al. 2015; Chavarie et al. 2016 ). Finally, the piscivorous morph displayed a modest 122 

level of genetic differentiation from the three other morphs (Harris et al. 2015).  123 

To characterize individual variation within a morph in relation to observed differentiation 124 

of feeding strategies, the current study focused solely on the piscivorous lake trout morph. 125 

Samples from previous collections (Chavarie et al. 2016a; Harris et al. 2015), plus some 126 

additional fish, were analyzed for fatty acid composition. Fatty acids analysis assumes that 127 

dietary lipids are broken down into their constituent fatty acids and incorporated relatively 128 

unchanged into the consumer tissues (Howell et al. 2003; Iverson 2009; Iverson et al. 2004), 129 

allowing spatial and temporal diet comparison between organisms (Duerksen et al. 2014; 130 

Eloranta et al. 2011; Hoffmann 2017; Iverson 2009; Scharnweber et al. 2016). Due to their lack 131 

of ability to modify fatty acids, overall modification of dietary fatty acids in fish is probably 132 

related to dietary deposition, resulting in a robust tool to represent lake trout diet (Happel et al. 133 

2017a; Happel et al. 2016; Happel et al. 2017b; Iverson 2009). Thus, fatty acids were used as 134 

trophic bio-indicators to better understand dietary patterns of piscivorous lake trout and 135 

investigate whether individual specialization may be contributing to trophic breadth and 136 

variation observed among individuals in this morph. Specifically, our aims were to 1) compare 137 

resource use among piscivorous lake trout individuals (Morph 2) by characterizing their fatty 138 

acids profiles, 2) determine whether resource-use differences were influenced by life-history 139 

traits (e.g., size and age), 3) characterize the extent of morphological variation individuals 140 

present among groups expressing different feeding strategies, and 4) determine if genetic 141 

differences existed among groups. In addition, we examined a sub-set of large lake trout from 142 

our collections (> 900 mm in fork length) referred to locally as “Giants” (Fig. 1), to determine if 143 

they showed any ecological and genetic differences. These exceptionally large individuals 144 
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comprise < 1%  of the lake trout population in Great Bear Lake, and are among the largest lake 145 

trout in the world (Chavarie et al. 2016 ). Except for their large body-size, these individuals 146 

exhibit no major morphological or spatial and temporal distribution differences relative to other 147 

co-occurring piscivorous lake trout. By focusing on trophic variation within a specific morph, we 148 

aimed to advance our understanding of ecological and evolutionary processes operating within a 149 

geologically young ecosystem that provides resource potential sufficient for promoting 150 

intraspecific divergence (Bhat et al. 2014; Coyne and Orr 2004; Hudson et al. 2016).  151 

Methods 152 

Study area and field sampling 153 

Great Bear Lake is an oligotrophic Arctic freshwater system, 250 km south of the Arctic 154 

Ocean, in Northwest Territories, Canada (N66° 06’ W120° 35’) (Johnson 1975). As the world’s 155 

ninth largest and 19th deepest lake, the lake has a complex, multi-armed surface area of 31,790 156 

km2 and a maximum depth of 446 m (mean depth = 90 m). Great Bear Lake was formed  by 157 

scouring from the Laurentide ice-sheet during the Pleistocene and was originally part of glacial 158 

Lake McConnell 8,000–10,000 yr BP (Johnson 1975; Pielou 2008). The lake has characteristics 159 

typical of an arctic lake: ultra-oligotrophic, short ice-free season, and a simple food web 160 

supporting only 15 fish species (Alfonso 2004; Johnson 1975; MacDonald et al. 2004). Great 161 

Bear Lake lacks a commercial fishery but plays an important role in the local economy, 162 

supporting a fly-in sport fishery for tourists and a subsistence fishery for the small Sahtu 163 

community of Déline. Great Bear Lake has considerable intraspecific diversity within lake trout, 164 

lake whitefish (Coregonus clupeaformis), and cisco (C. artedi) (Chavarie et al. 2013; Howland et 165 

al. 2013).  166 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811851doi: bioRxiv preprint 

https://doi.org/10.1101/811851


8 
 

Piscivorous lake trout were caught at depths ≤ 30 m using paired bottom sets (ca. 24 h) of  167 

140-mm and multi-mesh (38–140 mm) stretched-mesh gill nets during end of July and August 168 

over multiple years (2002–2011) among all five arms of the lake (Chavarie et al. 2013; Chavarie 169 

et al. 2015; Chavarie et al. 2016a). During 2012-2014, multi-mesh gill nets (38 to 140 mm), with 170 

a typical soak time of 24 hours, were distributed across random depth-stratified sites (0–150 m) 171 

among Keith, McVicar, and McTavish arms (Table A1). We focused on adult trout due to the 172 

difficulty of classifying juveniles into morphs (Chavarie et al. 2013; Zimmerman et al. 2006; 173 

Zimmerman et al. 2007) and to avoid the confounding effects of ontogenetic shifts in 174 

morphology and diet. Of 79 fish analyzed herein, 35 piscivourous lake trout (Morph 2) were 175 

previously analyzed for fatty acids by Chavarie et al. (2016a) and 44 fish were new to the current 176 

diet analysis. Fish were randomly selected from the collections analyzed morphologically by 177 

Chavarie et al. (2015) to include a range of sizes and ages within the piscivorous morph. For the 178 

Giant individuals, lake trout with fork length > 900 mm were targeted. A left lateral full-body 179 

digital image was taken for each lake trout caught according to the procedures in Muir et al. 180 

(2012). Measurements, tissues, and structures were sampled for determination of biological 181 

characteristics related to life-history, including otoliths, fork length, somatic weight, sex, and 182 

stage of maturity (i.e., immature, current year spawner, or resting) (Chavarie et al. 2013; 183 

Chavarie et al. 2016 ). A dorsal muscle sample was removed and frozen at −20ºC for fatty acids 184 

analysis (Budge et al. 2006; Kavanagh et al. 2010; Loseto et al. 2009) and tissue from pectoral 185 

fins was collected and preserved in ethanol for genetic analyses.  186 

Fatty Acids 187 

Analysis of 41 dietary fatty acids was carried out using procedures described by Chavarie 188 

et al. (2016a) (Table 1) . Muscle samples were freeze-dried, and subsequently homogenized with 189 
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a mortar and pestle. Lipids were extracted overnight from 1 g of the homogenate in a 2:1 190 

chloroform-methanol solution containing 0.01% BHT (v/v/w) at −20ºC (Folch et al. 1957). After 191 

extraction, samples were filtered through Whatman Grade 1 Qualitative filter paper and the filter 192 

paper/sample was rinsed twice with 2 ml of the 2:1 chloroform:methanol. Sample extract was 193 

collected in a test tube and 7 ml of 0.88 N NaCl solution was added to encourage fatty acids to 194 

move into the organic (chloroform) layer. The aqueous layer was discarded after which the 195 

chloroform was dried with sodium sulfate prior to total lipid measurement. The extracted lipid 196 

was used to prepare fatty acid methyl esters (FAME) by transesterification with Hilditch reagent 197 

(0.5 N H2SO4 in methanol) (Morrison and Smith 1964). Samples were heated for 1 h at 100 °C. 198 

Gas chromatographic (GC) analysis was performed on an Agilent Technologies 7890N GC 199 

equipped with a 30 m J&W DB-23 column (0.25 mm I.D; 0.15 μm film thickness). The GC was 200 

coupled to a Flame Ionization Detector operating at 350 oC. Hydrogen was used as carrier gas 201 

flowing at 1.25 ml/min for 14 minutes, and increased to 2.5 ml/min for 5 min. The split/splitless 202 

injector was heated to 260 oC and run in splitless mode. The oven program was as follows: 60 oC 203 

for 0.66 min, increasing by 22.82 oC/min to 165 oC with a 1.97 min hold; increasing by 4.56 204 

oC/min to 174 oC and by 7.61 oC/min to 200 oC with a six min hold. Peak areas were quantified 205 

using Agilent Technologies ChemStation software. Fatty acids standards were obtained from 206 

Supelco (37 component FAME mix) and Nuchek (54 component mix GLC-463).  207 

All fatty acids values were converted to a mass percentage of the total array, and were 208 

named according the IUPAC nomenclature as X:Y n-z, where X is the number of carbon atoms 209 

in the fatty acids, Y is the number of methylene-interrupted double bonds in the chain, and n-z 210 

denotes the position of the last double bond relative to the methyl terminus (Ronconi et al. 2010). 211 

Fatty acids suggested by Iverson et al. (2004) as important dietary fatty acids, which transfer 212 
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from prey to predator, were used in our analyses. Fatty acids profiles (% of fatty acids) were 213 

transformed using arcsin square-root function. Fatty acids groups were identified using a 214 

multivariate analysis R Package (Team 2017), FactoMineR, using a hierarchical clustering 215 

analysis based on principal components (Husson et al. 2012). To reduce the number of variables 216 

used, A SIMPER (similarity percentage routine) was used to assess which fatty acids primarily 217 

were responsible for observed differences among groups (King and Jackson 1999). A principal 218 

component analysis (PCA) was performed on the fatty acids profiles with PC-ORD version 6 219 

(McCune and Mefford 2011) among piscivorous groups to provide inferences about patterns of 220 

resource use as defined by Chavarie et al. (2016a). Permutational Multivariate Analysis of 221 

Variance (PERMANOVA), a non-parametric analog of Multivariate analysis of variance 222 

(MANOVA), was used to test for differences in fatty acid composition among the groups 223 

identified by the hierarchal cluster analysis process. PERMANOVA was performed in Primer 7 224 

(Primer E, Plymouth, UK) using 9999 permutations. Pairwise post-hoc comparison followed to 225 

test differences among groups. Finally, the fatty acid groups were tested for differences in depth 226 

of capture using one way analysis of similarities (ANOSIM) with 9999 permutations using 227 

PAST 3 (Hammer et al. 2001). 228 

Life-history 229 

To determine if fatty acid groups differed in size-at-age, length vs. age was modeled 230 

using the Von Bertalanffy length-age model fit to length at age-of-capture of individual fish 231 

(Quinn and Deriso 1999): 232 

( )ε)( 01 ttK
t eLL −−

∞ −=  233 

The length-age model describes length Lt at age-of-capture t as a function of theoretical 234 

maximum length (L∞ = mm), instantaneous rate at which Lt approaches L∞ (K = 1/year), 235 
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theoretical age-at-zero length (t0 = years), and multiplicative error (ε). Model parameters, L∞, K, 236 

and t0, and associated standard errors were estimated using nonlinear regression. Residual sums-237 

of-squares were compared between a full model (separate models for each group) to a reduced 238 

model (a single model for all groups) in a likelihood-ratio test (Hosmer Jr et al. 2000). If the 239 

likelihood-ratio test was significant (P < 0.05), we concluded that growth differed among groups 240 

identified by fatty acids (79 lake trout). If the likelihood-ratio test was not significant (P > 0.05), 241 

we concluded that growth did not differ among groups. The same test was repeated for each pair 242 

of groups, with and without the Giant form (fork length ≥900 mm) included in each group, to 243 

isolate the influence of this sub-set in our size-at-age comparison due to the prevalence of Giants 244 

in Group 3. 245 

Genetic analyses 246 

To determine if genetic differences existed among individuals expressing different 247 

feeding strategies, 79 lake trout classified by fatty acid composition into four groups were 248 

genotyped to determine genetic variation and structure within and among groups. To allow a 249 

sample size sufficient for making a genetic comparison of the Giant to the other dietary groups, 250 

22 additional individuals determined non-randomly by their size (≥ 900 mm ; Giant sub-set) 251 

from the 2002-2015 collections were added to the Giant processed for fatty acids, for a total of 252 

39 Giants for genetic analysis. Lake trout DNA was extracted from pectoral fin tissue preserved 253 

in ethanol using DNEasy extraction kits (Qiagen Inc., Valencia, CA) following manufacturer 254 

protocols. Piscivorous groups were assayed using a suite of 23 putatively neutral microsatellite 255 

markers amplified in four multiplexes previously described in Harris et al. (2015). Amplified 256 

microsatellite fragments were analyzed using an automated sequencer (ABI 3130xl Genetic 257 

Analyzer; Applied Biosystems, Foster City, CA). The LIZ 600 size standard was incorporated 258 
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for allele base-size determination. All genotypes were scored using GeneMapper software ver. 259 

4.0 (Applied Biosystems) and then manually inspected to ensure accuracy. 260 

The program MICROCHECKER ver. 2.2.0.3 (Van Oosterhout et al. 2004) was used to 261 

identify genotyping errors, specifically null alleles and large allele dropout. Observed and 262 

expected heterozygosity (HE and HO) were calculated using GENEPOP ver. 4.2 (Rousset 2008). 263 

The program HP-RARE ver. 1.1 (Kalinowski 2005) was used to determine the number of alleles, 264 

allelic richness, and private allelic richness for each group, sampling 22 genes in each sample. 265 

Tests of departure from Hardy-Weinberg equilibrium and genotypic linkage disequilibrium 266 

within each sample (i.e., for each fatty acid grouping and the Giant sub-set) were conducted in 267 

GENEPOP using default values for both. Results from all tests were compared with an adjusted 268 

alpha (α = 0.05) following the False Discovery Rate procedure (Narum 2006). 269 

We used the POWSIM V. 4.1 analysis to assess the statistical power of our microsatellite 270 

data set given the observed allelic frequencies within our samples in detecting significant genetic 271 

differentiation between sampling groups (Ryman and Palm 2006). For POWSIM analyses, we 272 

assumed that Lake Trout within our study diverged from a common baseline population with the 273 

same allelic frequencies as observed in our contemporary samples. Simulations were performed 274 

with an effective population size of 5000 to yield values of FST of 0.01, 0.005 and 0.001. The 275 

significance of tests in POWSIM were evaluated using Fisher’s exact test and the χ2 test and the 276 

statistical power was determined as the proportion of simulations for which these tests showed a 277 

significant deviation from zero. All simulations were performed with 1000 iterations. 278 

Genetic structuring was tested among lake trout groups using several different methods. 279 

First, genotypic differentiation among lake trout groups was calculated using log-likelihood (G) 280 

based exact tests (Goudet et al. 1996) implemented in GENEPOP. Global FST (θ) (Weir and 281 
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Cockerham 1984) was calculated in FSTAT ver. 2.9.3 (Goudet 1995) and pairwise comparisons 282 

of FST between groups were calculated in ARLEQUIN ver. 3.5 (Excoffier et al. 2005) using 283 

10,000 permutations. We then employed the Bayesian clustering program STRUCTURE V. 284 

2.3.2 (Pritchard et al. 2000) to resolve the putative number of populations (i.e., genetic clusters 285 

(K)) within our samples. Owing to the remarkably low levels of genetic differentiation among 286 

lake trout in the Great Bear Lake (Harris et al. 2013; Harris et al. 2015), we employed the 287 

LOCPRIOR algorithm (Hubisz et al. 2009). The LOCPRIOR algorithm considered the 288 

location/sampling information as a prior in the model, which may perform better than the 289 

traditional STRUCTURE model when the genetic structure is weak (Hubisz et al. 2009). We also 290 

incorporated an admixture model with correlated allelic frequencies and the model was run with 291 

a burn-in period of 500,000 iterations and 500,000 Markov chain Monte Carlo iterations. We 292 

varied the potential number of populations (K) from 1 to 10 and we ran 20 iterations for each 293 

value of K. The STUCTURE output was first processed in the program STRUCTURE 294 

HARVESTER (Earl 2012), followed by the combination of results of independent runs of the 295 

program and compilation of results based on lnP(D) and the post hoc ΔK statistic of Evanno et 296 

al. (2005), to infer the most likely number of clusters. The best alignment of replicate runs was 297 

assessed with CLUMPP V. 1.1 (Jakobsson and Rosenberg 2007) and DISTRUCT V. 1.1 298 

(Rosenberg 2004) was then used to visualize the results. For STRUCTURE analyses, we 299 

reported both lnP(D) and the post hoc ΔK statistic. 300 

Finally, Discriminant Analysis of Principal Components (DAPC) (Jombart et al. 2010) 301 

was implemented in the Adegenet package (Jombart 2008) in R (Team 2015). The number of 302 

clusters was identified using the find.clusters function (a sequential K-means clustering 303 

algorithm) and subsequent Bayesian Information Criterion (BIC), as suggested by Jombart et al. 304 
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(2010). Stratified cross-validation (carried out with the function xvalDapc) was used to 305 

determine the optimal number of principal components to retain in the analysis. 306 

Morphology 307 

 Morphological variation was quantified for the 79 lake trout to compare fatty acid 308 

groupings (different feeding strategies) to morphological variation within the piscivorous morph. 309 

Twenty-three landmarks, 20 semi-landmarks based on Chavarie et al. (2015), and fourteen linear 310 

measurements based on Muir et al. (2014), were used to characterize body and head shape from 311 

photographed fish. The combination of traditional and geometric morphometrics was used 312 

because of the empirical relationships of phenotype with foraging (e.g., jaw size) and swimming 313 

(e.g., fin lengths and caudal peduncle depth) (Kahilainen et al. 2004; Kristjánsson et al. 2002; 314 

Webb 1984). Landmarks and semi-landmarks were digitized in x and y coordinates using 315 

TPSDig2 software (http://life.bio.sunysb.edu/morph). Subsequently, digitized landmarks and 316 

semi-landmarks were processed in a series of Integrated Morphometrics Programs (IMP) version 317 

8 (http://www2.canisius.edu/;sheets/morphsoft), using partial warp scores, which are thin-plate 318 

spline coefficients. Morphological methods and programs are described in Zelditch et al. (2012)  319 

and specific procedures were described in further detail in Chavarie et al. (2013). All 320 

morphological measurements were size-free, using centroid sizes or residuals from regressions 321 

on standard length (Zelditch et al. 2012). 322 

Canonical Variate Analyses (CVA) were conducted on all morphological data, including 323 

body shape, head shape, and linear measurements, to determine relationships among groups 324 

identified by fatty acid composition. Body and head shape were analysed using CVAGen8 from 325 

the IMP software (Zelditch et al. 2012) and for linear measurements, CVA was analyzed with 326 

SYSTAT (Systat Software Inc., Chicago, IL, USA). Single Factor Permutation MANOVA with 327 
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10 000 permutations tested for differences among groups and determined the percentage of 328 

variation explained for a grouping if a CVA was significant. For linear measurements, a 329 

Bonferroni-corrected post-hoc test followed MANOVA to identify measurements that differed 330 

among group. Principal component analyses (PCA) were performed on body- and head-shape 331 

data using PCAGen8 (IMP software) among groups to visualize morphological variation within 332 

the dataset. PC-ORD version 6 software (McCune and Mefford 2011) was used to perform a 333 

PCA on the linear measurements.  334 

Results 335 

Fatty acids 336 

On the basis of fatty acid composition, piscivorous lake trout were divided along a resource use 337 

axis into four groups (Fig. 2 and A2; Table 1). Overall, 14 individuals were assigned in Group 1, 338 

16 individuals in Group 2, 21 individuals in Group 3, and 28 individuals in Group 4. Average 339 

dissimilarity was 14.61 from the SIMPER analysis, whereas the most discriminating 26 fatty 340 

acids, explaining together ~89% of the separation among groups, were: 22:6n-3 (12.5 %), 18:1n-341 

9 (10.8 %), 16:1n-7 (6.8 %), 20:5n-3 (5.0 %), 20:4n-6 (3.9 %), 18:2n-6 (3.8 %), 22:4n-3 (3.7 %), 342 

16:0 (3.5%), 20:4n-3 (3.3%), 18:1n7 (3.3%), 20:2n-6 (3.1%), 14:0 (2.8%),  20:1n-9 (2.7%), 343 

22:5n-6 (2.7%), 20:3n-3 (2.3%), 22:2n-6 (2.1%), 18:0 (2.0%), 18:3n-3 (1.9%), 18:4n-3 (1.8%), 344 

22:4n-6 (1.7%), 20:1n-7 (1.5%), 22:5n-3 (1.4%), 21:5n-3 (1.3%), 22:1n-11 (1.2%), 20:0 (1.2%), 345 

16:4n-3 (1.2%), and 16:2n-4 (1.1%) (Table 1). The first two axes of the fatty acids PCA 346 

explained 65.2 % of the variation in diet and the four groups were supported by PERMANOVA 347 

(F3,76 = 39.4, P < 0.01) and pairwise comparisons between all pairs (all P < 0.01). Finally, depth 348 

of capture did not differ among groups identified by fatty acids profiles (p ≥ 0.05). For all 349 

groups, the majority of lake trout were caught between 0-20 m (Fig. A3). 350 
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Life-history 351 

Overall, life history parameters did not differ among lake trout groups identified by fatty 352 

acid composition. Length-age models did not differ among fatty acid groups, based on overall 353 

likelihood-ratio tests (Fig. 3; F9, 63 = 1.58; P = 0.141). With the Giant sub-set included, growth 354 

differed between Group 3 and Group 4 (F3, 41 = 3.958; P = 0.014), but not between Groups 1 and 355 

2 (F3, 22 = 0.408; P = 0.749), Groups 1 and 3 (F3, 27 = 0.410; P = 0.747), Groups 1 and 4 (F3, 34 = 356 

0.930; P = 0.437), Groups 2 and 3 (F3, 29 = 1.820; P = 0.166), or Groups 2 and 4 (F3, 36 = 1.058; 357 

P = 0.379). Without Giants included (prevalence of Giants was higher in Group 3 than Group 1, 358 

Group 2, and Group 4), none of the paired groups (morphs) differed for length-at-age: Groups 1 359 

vs. 2 (F3, 16 = 0.353; P = 0.787); Groups 1 vs. 3 (F3, 13 = 0.958; P = 0.441); Groups 1 vs. 4 (F3, 30 360 

= 1.458; P = 0.246); Groups 2 vs. 3 (F3, 17 = 1.254; P = 0.321); Groups 2 vs. 4 (F3, 34 = 1.431; P = 361 

0.251); and Groups 3 vs. 4 (F3, 31 = 2.062; P = 0.126).   362 

Genetic differentiation 363 

Little genetic differentiation was evident among piscivorous lake trout groups, except for 364 

the Giant sub-set, which differed slightly from other groups defined by fatty acids. The program 365 

MICROCHECKER identified two loci (OtsG253b and Sco102) that contained null alleles. These 366 

loci, along with non-variable loci Sco218 and SSOSL456, were removed, leaving 19 informative 367 

loci for subsequent analyses. Descriptive statistics of genetic variation were similar among 368 

groups. The number of alleles per locus ranged from four (Smm21) to 41 (SnaMSU10) and 369 

averaged 28.75 across all loci. Observed heterozygosity averaged across all loci ranged from 370 

0.78 (Giant) to 0.83 (Group 1) while expected heterozygosity ranged from 0.84 (all groups with 371 

the exception of Group 1) to 0.85 (Group 1; Table 2). Allelic richness ranged from 9.57 (Group 2 372 

and 4) to 9.87 (Group 1), while expected private allelic richness ranged from 0.87 (Group 3) to 373 
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1.08 (Group 2; Table 2). Departures from Hardy-Weinberg equilibrium were found in 15 of 95 374 

tests (at α = 0.05), but only five (all of which involved different loci) were significant after 375 

adjustment for False Discovery Rate (adjusted α = 0.01). Of those five, all were heterozygote 376 

deficits and three of five departures involved the Giant sub-set. Significant linkage 377 

disequilibrium was evident in 14 of 885 tests (α = 0.05), but only nine were significant after 378 

adjusting for False Discovery Rate (adjusted α = 0.0068). No locus-pair linkage disequilibrium 379 

combinations were consistently significant, but seven of nine departures were in the Giant sub-380 

set. 381 

Using our microsatellite data set, the POWSIM analysis indicated a 100% power of 382 

detecting a FST value as low of 0.01 and 0.005. However, power was reduced to 77% when 383 

assessing genetic differentiation at a FST of 0.001. Overall our microsatellite data set (including 384 

the number of loci, alleles per locus, and sample sizes) had sufficient power to detect relatively 385 

low levels of genetic differentiation. 386 

Global genetic differentiation was extremely low (θ = 0.001, 95% c.i. = −0.002−0.005) 387 

among groups of piscivorous lake trout assessed. Pairwise FST ranged from -0.004 to 0.016 388 

(Table 3) whereas comparisons that included Giants always differed the most from the other fatty 389 

acid groups, and were also the only significant pairwise comparisons (P < 0.05, Table 3). The FST 390 

value for the Giant vs. Group 1 and 4 were similar to genetic differentiation previously observed 391 

among four lake trout morphs in Great Bear Lake (Table 3), with the exception of Morph 1 vs 392 

Morph 2 [32]. Bayesian clustering implemented in STRUCTURE provided evidence for two 393 

genetic clusters when evaluating both lnP(D) or ΔK (Table A2). The admixture plot based on 394 

K=2 showed no clear genetic structure among groups defined by fatty acid analysis, however, 395 

some differentiation of the Giant sub-set from the fatty acid groups was observed (Fig. 4). 396 
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Finally, the Bayesian information criterion in the DAPC analysis (BIC = 185.42, Table 397 

A3, Fig. A5 A) suggested that two clusters best explained genetic structure in our study (30 PCs 398 

retained as suggested by the cross-validation procedure; Fig. A5 B). A compoplot (barplot 399 

showing the probabilities of assignment of individuals to the different clusters) for K=2 revealed 400 

no clear genetic structure between two groups identified by the DAPC analysis with the 401 

exception of the Giant group which appeared to have more individuals assigned to cluster two 402 

(Fig 4). Density plots of the discriminant function, however, do show that the two clusters 403 

identified through the DAPC analysis are mostly non-overlapping (Fig. A5 C).  404 

Morphology 405 

 Morphological variation was low among four dietary groups within the piscivorous 406 

morph. The first canonical axis for body shape CVA was significant (P>0.05), but head shape 407 

CVA revealed no significant canonical axes (P>0.05) in groupings (Fig. 5 a, b, c). MANOVAs 408 

for body and head shape were not significant (P>0.05). Linear measurements CVA revealed one 409 

significant canonical axis (P>0.05). MANOVA permutation tests confirmed differences in linear 410 

measurements among groups for linear measurements (P = 0.047). Most distinctions were related 411 

to linear measurements of heads, whereas upper and lower jaws, head depth, and snout-eye 412 

lengths differed between Group 3 and Group 4 (P ≤ 0.05), and head length differed between 413 

Group 1 and 4 (P = 0.03; Fig. 6). Caudal peduncle length and anal fin length differed marginally 414 

between Group 2 vs 3 (P = 0.068) and Group 1 vs 3 (P = 0.075), respectively. The first two PCA 415 

axes explained 44.3% and 12.3 % of variation for body shape, 35.1% and 30.7 % of variation for 416 

head shape, and 39.6 % and 20.9 % for linear measurements (Fig. 5 d, e, f).  417 

 418 

Discussion 419 
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A common assumption in polymorphic species is that partitioning and variability of resource 420 

use will occur predominantly among morphs rather than within morphs. Homogeneity of 421 

resource use is anticipated to occur within morphs and represent selection for specialization 422 

(Amundsen et al. 2008; Knudsen et al. 2010; Svanbäck and Persson 2004). However, this study 423 

provided evidence that instead of homogeneity, variation occurred within a trophic morph due to 424 

individual specialization, possibly a precursor to further population diversification via fine scale 425 

ecological selection (Richardson et al. 2014; Vonlanthen et al. 2009). Based on dietary fatty 426 

acids, we identified four patterns of resource use within the piscivorous morph. Size-at-age did 427 

not explain observed variation in resource use within the piscivorous individuals, even though 428 

size-based trophic structure has been frequently observed in fishes (Layman et al. 2005; 429 

Mittelbach et al. 2014; Scharf et al. 2000; Svanbäck and Eklöv 2002; Wainwright et al. 1991). 430 

Feeding habits were also not linked with differences in morphology (except for minor variations 431 

linked to the caudal peduncle) nor were they related to differentiation based on neutral genetic 432 

markers, thereby suggesting that behavioral plasticity may cause the variation in resource use. 433 

Giant individuals as a sub-set displayed some genetic differentiation relative to other piscivorous 434 

lake trout in our analyses. The co-existence of multiple generalist morphs in Great Bear Lake, 435 

demonstrated by Chavarie et al. (2016b), combined with individual specialization shown herein 436 

within one of the generalist morphs identified previously, expands our understanding of niche 437 

expansion, plasticity, individual specialization, and intraspecific diversity in evolutionarily 438 

young populations.  439 

Using fatty acids as dietary biomarkers, four distinct patterns of resource use were identified 440 

within the piscivorous lake trout of Great Bear Lake (Fig. 2). Groups 3 and 4 had the most 441 

overlap and these groups were characterized by C20 and C22 monounsaturates, biomarkers of a 442 
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food web based on pelagic or deep-water copepods (Ahlgren et al. 2009; Happel et al. 2017b; 443 

Hoffmann 2017; Loseto et al. 2009; Stowasser et al. 2006). Specifically, 20:1n-9 is associated 444 

with calanoid copepods known to be particularly important in northern pelagic food webs 445 

(Ahlgren et al. 2009; Budge et al. 2006; Kattner et al. 1998; Loseto et al. 2009). High levels of 446 

14:0, 18:3n-3 and 18:4n-3 fatty acids within groups 3 and 4 are also associated with pelagic 447 

environments (Scharnweber et al. 2016; Tucker et al. 2008), although high levels of 18:2n-6 and 448 

18:3n-3 have also been associated with terrestrial markers (Budge et al. 2001; Budge and Parrish 449 

1998; Hoffmann 2017). Groups 1 and 2 were characterized by higher concentrations of 16:4n-3, 450 

20:4n-6 and 22:6n-3 found in diatom and dinoflagellate-based food webs, respectively. The fatty 451 

acid 20:4n-6 reflects a benthic feeding strategy (from benthic invertebrates to fish) (Stowasser et 452 

al. 2006; Tucker et al. 2008), whereas 22:6n-3 in pennate diatoms (Iverson 2009) and filter 453 

feeders links planktonic dinoflagellates to benthic filter-feeding bivalves in a food web (Alfaro et 454 

al. 2006; Virtue et al. 2000). Relatively high concentrations of 16:0, 18:0 and 22:6n-3 and low 455 

concentrations of 16:1n-7 supported the interpretation of carnivorous (or cannibalistic) dietary 456 

patterns (Dalsgaard et al. 2003; Iverson 2009; Iverson et al. 2004; Piché et al. 2010). Individuals 457 

positioned between ends of principal components suggests a clinal pattern of resource use or 458 

habitat coupling (Vonlanthen et al. 2009), where borders among groups are neither abrupt nor 459 

obvious as they are part of a continuum (Hendry et al. 2009b). Overall, observed trophic patterns 460 

could reflect prey associated with different microhabitat patches; however, the key assumption of 461 

disparity of prey associated with habitat heterogeneity (Bolnick et al. 2010a; Chavarie et al. 462 

2016b; Collar et al. 2009; Skulason and Smith 1995; Svanbäck and Bolnick 2005) may not be 463 

applicable to Great Bear Lake (Chavarie et al. 2016b).  464 
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Sympatric divergence, in which barriers to gene flow are driven by selection between 465 

ecological niches, has been implicated in the evolution of ecological and morphological variation 466 

in fishes (Chavarie et al. 2016c; Harris et al. 2015; Hendry et al. 2007; Præbel et al. 2013; 467 

Schluter 1996). Despite the limited ability of neutral microsatellite markers to detect patterns of 468 

functional divergence (Berg et al. 2016; Lamichhaney et al. 2016; Roesti et al. 2015), the 469 

significant genetic differentiation based on comparisons with Giant sub-set suggests some 470 

deviation from panmixis within the piscivorous morph. Such a genetic pattern displayed by the 471 

Giant sub-set, despite a lack of ecological discreteness, perhaps resulted from size-assortative 472 

mating and/or differences in timing and location of spawning (Nagel and Schluter 1998; Rueger 473 

et al. 2016; Servedio et al. 2011). Great Bear Lake is not the only lake in North America with an 474 

apparent divergence in lake trout body size; in Lake Mistassini, “Giant” individuals also differed 475 

genetically from other lake trout groups (Marin et al. 2016). The similarity based on lake trout 476 

body size between both lakes suggests analogous variables favoring partial reproductive 477 

isolation. Although alternative causes of genetic differentiation may be possible, due to the short 478 

time since the onset of divergence post-zygotic isolation seems unlikely in this system (e.g., 479 

prezygotic isolation generally evolves more rapidly Coyne and Orr 2004) and we therefore favor 480 

size and location assortative mating as an explanation for the low level genetic divergence 481 

observed. Nonetheless, putative partial reproductive isolation within a morph further adds to the 482 

complexity of diversification and speciation processes potentially occurring within lake trout in 483 

Great Bear Lake (Hendry 2009; Nosil et al. 2009).  484 

A central question arising from our analysis is what are the mechanisms behind these 485 

patterns of variation? As individual specialization can result in dietary sub-groups and perhaps 486 

differences in habitat use among sections of a population, such inter-individual variation within 487 
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ecological sub-groups could have substantial influence on processes of diversification (Araújo et 488 

al. 2008; Cloyed and Eason 2016). Among-individual resource specialization within a morph in a 489 

species-poor ecosystem like Great Bear Lake could reflect the diversifying force of intraspecific 490 

competition, lack of constraining effects of interspecific competition, the abundance and 491 

distribution of space and food resources (e.g., temporal and spatial variation of resources), or 492 

some combination of these processes (Bolnick et al. 2007; Cloyed and Eason 2016; 493 

Winkelmann). Multiple patterns of resource specialization within a single lake trout morph in 494 

Great Bear Lake contrasts with the expected pattern of trophic divergence among morphs and 495 

homogenization in habitat use or diet within a morph, a key assumption guiding development of 496 

functional ecological theory (Svanbäck and Persson 2004; Violle et al. 2012). Expression of 497 

intraspecific divergence through habitat and foraging specialization is thought to drive selection 498 

on traits that enable more efficient use of resources (Schluter 2000; Skulason and Smith 1995; 499 

Snorrason and Skúlason 2004). 500 

In Great Bear Lake, multiple trophic generalists (which include piscivores studied herein) 501 

coexist with one specialist lake trout morph. This contrasts with the more commonly reported 502 

observation, the co-occurrence of multiple specialist morphs (Chavarie et al. 2016b; Elmer 2016; 503 

Kassen 2002). Apparent generalist population, however, can be composed of several subsets of 504 

specialized individuals that result in broad use of resources by the population (Bolnick and Paull 505 

2009; Bolnick et al. 2007; Bolnick et al. 2002; Bolnick et al. 2003; Chavarie et al. 2016a). This 506 

broad distribution of trophic variation within a population appears to be the case within the Great 507 

Bear Lake piscivorous morph. Among-individual specialization, reported in this study, may 508 

result from variable use of spatially separated resources and/or resources in different seasons and 509 

years (temporal variation), both of which could be expected in the depauperate environment of a 510 
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large northern lake (Fig. A4; Chavarie et al. 2016b; Costa et al. 2008; Cusa et al. 2019; Quevedo 511 

et al. 2009). Ecologically, among-individual resource specialization is another form of diversity 512 

that is contained within a morph (Araújo et al. 2008; Bolnick et al. 2003; Pires et al. 2011), 513 

which may increase stability and persistence of a morph within a system where energy resources 514 

are scarce and ephemeral, such as in Great Bear Lake (Cloyed and Eason 2016; Davies et al. 515 

2016; Okuyama 2008; Pfennig and Pfennig 2012; Smith et al. 2011). Whether among-individual 516 

resource use within this morph is stable or is an initial divergent step that with enough time will 517 

fully differentiate evolutionary units is a question that cannot be answered with our data. 518 

Realized niche expansions are often linked to individuals of different morphologies and 519 

body sizes, with evidence of efficiency trade-offs among different resources (Cloyed and Eason 520 

2016; Parent et al. 2014; Roughgarden 1972; Svanbäck and Persson 2004). When a resource 521 

gradient exists, niche expansion can be achieved via genetic differentiation, phenotypic 522 

plasticity, or a combination of these processes (Parent et al. 2014). The apparent segregation of 523 

resource use based on fatty acid analyses, despite a lack of major morphological, body size, and 524 

neutral genetic differentiation among the four dietary groups within the piscivorous morph, 525 

suggests that behavioral plasticity in resource exploitation is causing the observed patterns of 526 

dietary differentiation. Plasticity may promote evolution of diversification by expanding the 527 

range of phenotypes on which selection can act (Nonaka et al. 2015; Pfennig et al. 2010; West-528 

Eberhard 2003). Theoretical models suggest that exploiting a wide range of resources is either 529 

costly or limited by constraints, but plasticity is favored when 1) spatial and temporal variation 530 

of resources are important (i.e., highly present in Great Bear Lake; Fig. A4), 2) dispersal is high, 531 

3) environmental cues are reliable, 4) genetic variation for plasticity is high and 5) cost/limits of 532 

plasticity are low (Ackermann et al. 2004; Hendry 2016).  533 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811851doi: bioRxiv preprint 

https://doi.org/10.1101/811851


24 
 

The expression of plasticity in response to particular ecological conditions (e.g., habitat 534 

structure, prey diversity) can be evolutionarily beneficial (i.e., result in increases in fitness). 535 

While most studies of diet variation focus on morphological differences among morphs in a 536 

population, diet variation can also arise from behavioral, biochemical, cognitive, and social-rank 537 

differences that cause functional ecology to be expressed at a finer scale rather than at the morph 538 

level (McGill et al. 2006; Svanbäck and Bolnick 2005; Violle et al. 2012; Zhao et al. 2014). 539 

Indeed, behavioral plasticity likely has a temporal evolutionary advantage relative to 540 

morphological plasticity due to relatively reduced reliance on ecologically beneficial structural 541 

and morphological adaptation (Smith et al. 2011; Svanbäck et al. 2009b). The only detectable 542 

morphological differences among the piscivorous groups in Great Bear Lake were associated 543 

with jaw lengths, snout-eye distance, and head length and depth, which are strongly related to 544 

foraging opportunities (Adams and Huntingford 2002; Sušnik et al. 2006; Wainwright and Price 545 

2016). Some morphological characters likely express different degrees of plastic responses 546 

(adaptive or not), and thus may be expressed differently depending on the magnitude and time of 547 

exposure to heterogeneous environments (Hendry 2016; Sharpe et al. 2008). For example, 548 

environmental components (e.g., habitat structure) appear to have stronger and faster effects on 549 

linear characters (e.g., jaw length) than on body shape (Chavarie et al. 2015; Sharpe et al. 2008). 550 

Trophic level might also limit the scope for morphological variation in lake trout because 551 

piscivory can limit diversification of feeding morphology in fishes (Collar et al. 2009; Svanbäck 552 

et al. 2015).  553 

Conclusion 554 

Understanding ecological mechanisms of diversification is a challenging aspect of evolutionary 555 

ecology (Ackermann et al. 2004). Diversification occurs along a continuum of differentiation and 556 
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in early stages, morphological and dietary differences may not always result from genetic 557 

divergence (Hendry 2016; Nosil et al. 2009).  Considering that processes of speciation continue 558 

to be debated, disagreement on when intraspecific divergence starts and what processes are 559 

involved is not surprising (De Queiroz 2005, 2007; Venton 2017). The debate around 560 

diversification sequence, (which diverges first, behaviour, morphology, or ecology?) highlights 561 

the mosaic nature of speciation (Hendry et al. 2009a). In this study, we asked whether 562 

diversification could be occurring within a morph by examining the fine-scale trophic variation, 563 

at a presumed early stage of sympatric evolutionary divergence of lake trout in Great Bear Lake 564 

(i.e., postglacial, representing ~350 generations) (Harris et al. 2015). Rapid evolution in nature 565 

on an “ecological time scale”, within relatively few generations, has demonstrated that rapid 566 

differentiation can be a strong driver of population dynamics (Ashley et al. 2003; Fussmann et al. 567 

2007; Hendry 2016; Turcotte et al. 2011). Due to presumed homogeneity, few studies have 568 

investigated dietary patterns and groupings within a morph. However, in this study, we found 569 

evidence that among-individual resource specialization occurred within a piscivorous lake trout 570 

morph, with four different patterns of resource use identified by fatty acids composition of 571 

muscle tissue. These groups did not differ in depth of capture or life history parameters, showed 572 

a lack of morphological differentiation (i.e., except for caudal peduncle), and only the Giant sub-573 

set was weakly genetically distinctive from others. The lack of non-neutral markers in the 574 

analyses may have prevented us from detecting multiple genetic populations. However, the 575 

trophic patterns shown within this morph suggested that ecological drivers (i.e., habitat use, prey 576 

diversity) could have important effects on plasticity expression and perhaps on initial or early 577 

stages of divergence. By focusing on a postglacial ecosystem, the confounding effects of time, 578 

which can influence (and obscure observation of) mechanisms of divergence (Seehausen and 579 
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Wagner 2014), were reduced in this study. But whether we have identified a stable 580 

polymorphism or the first step in diversification on a trajectory of divergence and speciation, 581 

remains unknown (Seehausen et al. 2008). Nonetheless, the observed trophic specialization 582 

within a morph, compared to the previously reported generality among morphs (Chavarie et al. 583 

2016b), suggests that individual specialization can occur within a trophic morph. Future research 584 

should focus on the role of among-individual differences within evolutionary units such as 585 

morphotypes.   586 

List of abbreviations: 587 

BP = before present 588 

m = meter 589 

mm = millimeter 590 

h = hour 591 

ca. = around 592 

i.e., = stands for 593 

e.g., = for example 594 

NaCl = Sodium Chloride 595 

FAME = fatty acid methyl esters 596 

H2SO4 = Sulfuric acid 597 

GC = Gas chromatographic 598 

oC = degree Celsius 599 

oC/min = degree Celsius/minutes 600 

UPGMA = Unweighted Pair Group Method with Arithmetic Mean 601 

PCA = principal component analysis 602 
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PERMANOVA = Permutational Multivariate Analysis of Variance 603 

MANOVA = Multivariate analysis of variance  604 

SIMPER= similarity percentage routine 605 

ANOSIM = analysis of similarities 606 

N =Number of individuals genotyped 607 

NA = number of alleles  608 

HE=expected heterozygosity 609 

 HO = observed heterozygosity 610 

AR= allelic richness  611 

PAR = private allelic richness  612 

Α = alpha  613 

FCA = Factorial correspondence analysis  614 

k=number of alleles 615 

DAPC = Discriminant Analysis of Principal Components  616 

IMP = Integrated Morphometrics Programs 617 

CVA = Canonical Variate Analyses  618 
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Table 1. Mean composition (±SD) of the 41 fatty acids profile (%) for the Group 1, Group 2, 1084 

Group 3, and Group 4 of piscivorous Lake Trout morph identified from Great Bear Lake.  1085 

Fatty acids Group 1 Group 2 Group 3 Group 4 
14:0 6.8 ± 1.0 7.0 ± 1.0 9.2 ± 1.0 9.9 ± 1.1 
16:0 28.1 ± 1.0 28.13 ± 1.7 24.2 ± 1.7 26.1 ± 1.2 

16:1n-7 15.9 ± 3.7 10.1 ± 2.0 19.5 ± 3.4 15.6 ± 2.1 
16:2n-6 2.0 ± 0.5 2.4 ± 0.6 2.6 ± 0.2 3.1 ± 0.2 
16:2n-4 2.6 ± 0.7 1.5 ± 0.4 2.7 ± 0.9 2.3 ± 0.4 

17:0 2.7 ± 0.5 2.8 ± 0.3 2.4 ± 0.4 2.8 ± 0.2 
16:3n-4 1.5 ± 0.7 1.4 ± 0.5 1.9 ± 0.6 1.8 ± 0.9 
16:4n-3 2.6 ± 1.2 0.8 ± 0.3 1.3 ± 0.6 1.2 ± 0.4 
16:4n-1 1.6 ± 0.7 1.5 ± 0.8 0.9 ± 0.6 1.0 ± 0.6 

18:0 14.2 ± 1.6 13.1 ± 0.8 11.6 ± 0.7 11.7 ± 0.5 
18:1n-9 20.6 ± 4.1 18.5 ± 3.4 32.3 ± 3.9 27.9 ± 3.5 
18:1n-7 11.9 ± 2.4 9.5 ± 1.0 13.9 ± 1.2 12.5 ± 0.8 
18:2n-6 8.6 ± 1.5 9.2 ± 1.6 12.4 ± 1.2 12.9 ± 1.0 
18:2n-4 2.0 ± 0.4 1.5 ± 0.2 2.1 ± 0.2 2.1 ± 0.2 
18:3n-6 2.2 ± 0.8 1.5 ± 0.4 2.5 ± 0.4 2.3 ± 0.2 
18:3n-4 2.2 ± 0.7 1.5 ± 0.3 2.4 ± 0.4 2.0 ± 0.3 
18:3n-3 6.6 ± 1.4 6.9 ± 0.9 7.9 ± 0.6 8.7 ± 0.7 
18:3n-1 1.2 ± 0.7 1.2 ± 0.3 1.1 ± 0.3 1.5 ± 0.3 
18:4n-3 3.5 ± 0.7 4.0 ± 1.2 4.9 ± 0.7 5.6 ± 0.7 
18:4n-1 1.3 ± 0.6 0.4 ± 0.5 0.9 ± 0.5 1.2 ± 0.6 

20:0 2.1 ± 0.7 2.8 ± 0.7 3.1 ± 0.6 2.8 ± 0.8 
20:1n-11 1.7 ± 1.0 0.8 ± 0.5 1.9 ± 0.8 1.4 ± 0.4 
20:1n-9 6.0 ± 1.4 4.2 ± 0.8 7.9 ± 0.9 7.1 ± 0.9 
20:1n-7 2.5 ± 0.4 2.5 ± 0.3 3.8 ± 0.4 4.1 ± 0.6 
20:2n-9 0.8 ± 0.6 1.4 ± 0.8 1.3 ± 0.4 1.2 ± 0.4 
20:2n-6 3.8 ± 0.9 4.7 ± 0.9 6.8 ± 1.3 7.5 ± 1.0 
20:3n-6 3.4 ± 0.5 3.6 ± 0.4 4.4 ± 0.5 4.0 ± 0.4 
20:4n-6 13.8 ± 1.7 14.2 ± 1.3 10.1 ± 1.1 10.0 ± 1.2 
20:3n-3 3.5 ± 0.7 4.5 ± 0.9 5.1 ± 0.6 6.6 ± 0.7 
20:4n-3 6.1 ± 1.2 8.2 ± 1.3 8.8 ± 1.1 10.8 ± 0.9 
20:5n-3 18.0 ± 2.9 15.7± 1.2 11.8 ± 2.1 12.2 ± 1.8 

22:1n-11 1.8 ± 1.7 0.9 ± 0.5 1.0 ± 1.3 0.9 ± 0.4 
22:1n-9 2.2 ± 0.5 2.4 ± 0.4 3.3 ± 0.4 3.1 ± 0.4 
22:1n-7 1.2 ± 0.6 1.0 ± 0.5 1.1 ± 0.3 1.6 ± 0.4 
22:2n-6 1.4 ± 0.5 1.7 ± 0.6 3.0 ± 0.5 4.0 ± 0.8 
21:5n-3 0.9 ± 0.6 1.8 ± 0.6 2.2 ± 0.6 1.6 ± 0.9 
22:4n-6 0.2 ± 0.5 1.0 ± 1.6 0.3 ± 0.6 1.6 ± 1.7 
22:5n-6 7.6 ±1.1 10.7 ± 1.4 7.7 ± 0.7 9.6 ± 1.4 
22:4n-3 2.3 ± 0.9 4.2 ± 1.3 5.1 ± 0.9 7.2 ± 1.7 
22:5n-3 10.4 ± 0.9 10.8 ± 0.6 10.4 ± 2.4 11.1 ± 0.7 
22:6n-3 33.9 ± 5.6 38.9 ± 4.3 23.1 ± 3.7 26.3 ± 4.7 
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 Table 2. Number of individuals genotyped (N), number of alleles (NA), expected heterozygosity 1086 

(HE), observed heterozygosity (HO), allelic richness (AR) and private allelic richness (PAR) within 1087 

fatty acid groups identified within a piscivorous morphotype of Lake Trout from Canada’s Great 1088 

Bear Lake. 1089 

 
N NA HE HO AR  PAR 

Group 1 12 10.16 0.85 0.83 9.87 1.08 

Group 2 16 11.26 0.84 0.82 9.57 0.99 

Group 3 20 12.32 0.84 0.81 9.70 0.87 

Group 4 28 14.11 0.84 0.81 9.57 0.98 

Giant 39 15.95 0.84 0.78 9.69 1.05 
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Table 3. Pairwise FST based on variation at microsatellite loci among Lake Trout morphs from 1092 

Harris et al. (2015) and piscivorous fatty acids dietary groups from Great Bear Lake. Significant 1093 

results are represented as follow: * values are significant at an initial α of 0.05 and ** values are 1094 

significant at an α of 0.02 subsequent False Discovery Rate adjustments for multiple 1095 

comparisons. 1096 

 Morph 1 Morph 2 Morph 3   Group 1 Group 2 Group 3 Group 4 

Morph 1    Group 1     

Morph 2 0.063**   Group 2 0.003    

Morph 3 0.004** 0.007**  Group 3 0.001 -0.01   

Morph 4 0.012** 0.017** 0.009** Group 4 0.005 -0.004 -0.002  

    Giant 0.016** 0.001 -0.002 0.006** 
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List of Figures: 1098 

Fig. 1. Example of a piscivorous (64 cm) and a Giant (100 cm standard length) Lake Trout, 1099 

respectively, from Great Bear Lake (NT).  1100 

Fig. 2.  Principal Component Analysis of fatty acids of 79 individual Lake Trout classified as 1101 

piscivorous morph from Great Bear Lake, based on the most discriminating 26 fatty acids from 1102 

SIMPER analysis, explaining together ~89% of the separation among groups. A) Vectors of 1103 

individual fatty acids contributing to the positioning of piscivorous individuals and the convex 1104 

hull delimitating group’s position are shown. B) Individual Lake Trout are represented as circle 1105 

= Group 1, square = Group 2, triangle = Group 3, and diamond = Group 4. To visualize their 1106 

variation within and among groups, large symbols were used to depict individuals longer than 1107 

900 mm fork length, which were identified as the Giant sub-set in this study. Groups were 1108 

defined by FactoMineR using fatty acids and they are outlined by convex hulls.  1109 

Fig. 3. Fork length (mm) at age (years) for four piscivorous groups of Lake Trout sampled from 1110 

Great Bear Lake in 2002–2015 (Group 1 = squares; Group 2 = circles; Group 3 = triangles; 1111 

diamond = Group 4). Large symbols depict Giants (FL > 900 mm) within each group. The von 1112 

Bertalanffy length-age model is depicted as a solid line without Giants and a dashed line with 1113 

Giants. 1114 

Fig. 4. Results of the Bayesian clustering analysis implemented in the program STRUCTURE 1115 

(B) and the compoplot of percent membership assignment revealed from the DAPC analysis (B) 1116 

for piscivorous Lake Trout form Great Bear Lake. Shown is the admixture coefficient/percent 1117 

membership assignment plot where each individual is represented as a vertical line partitioned 1118 

into colored segments representative of an individual’s fractional membership in any given 1119 

cluster (K). The most likely number of genetic clusters was two in both the STRUCTURE 1120 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811851doi: bioRxiv preprint 

https://doi.org/10.1101/811851


analysis (based on lnP[D] and the ∆K statistic of Evanno et al. (2005)) and DAPC analysis ( 1121 

based on the lowest BIC score and with 30 PCs retained. 1122 

Fig. 5. Canonical Variate Analyses (95% ellipses) and Principal Component Analysis of body 1123 

shape (a, d), head shape (b, e) and linear measurements (c, f), respectively, of piscivorous Lake 1124 

Trout represented as: square = Group 1, circle = Group 2, triangle = Group 3, and diamond = 1125 

Group 4. The first two PCA axes explained 44.3% and 12.3 % of variation for body shape, 1126 

35.1% and 30.7 % of variation for head shape, and 39.6 % and 20.9 % for linear measurements 1127 

(Fig. 6 d, e, f). To visualize their variation within and among groups, larger symbols were used to 1128 

depict individuals longer than 900 mm FL, which are considered the Giant sub-set in this study.  1129 

Fig. 6. Residuals of mean (± 95%CI) size-standardized upper and lower jaw lengths, head depth 1130 

and length, and snout-eye length among piscivorous Lake Trout groups. Grouping symbols are 1131 

as follow: square = Group 1, circle = Group 2, triangle = Group 3, and diamond = Group 4. 1132 
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 1137 

 1138 

 1139 

 1140 
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Fig. 1. 1145 
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Fig. 2 1164 
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Fig. 3. 1167 
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Appendix: 1192 

Table A1. Spatial and temporal information for the 79 Lake Trout classified as piscivorous 1193 
morph from Great Bear Lake and analyzed for fatty acids. Sample sizes are in brackets. 1194 

 Sample information 

Group 1 (14) Dease 2005 (1)            Smith 2011 (1) 

Dease 2010 (1) 

McTavish 2009 (6) 

McVicar 2008 (1) 

Smith 2006 (4) 

Group 2 (16) Dease 2010 (4)            Smith 2006 (1) 

Keith 2012 (2)             Smith 2011 (5) 

McTavish 2009 (1) 

McTavish 2014 (2) 

McVicar 2008 (1) 

Group 3 (21) Dease 2005 (2)      McVicar 2003 (2) 

Dease 2010 (3)      McVicar 2008 (2) 

Keith 2012 (3)        McVicar 2013 (3) 

McTavish 2004 (1)     Smith 2006 (1) 

McTavish 2014 (2)      Smith 2011 (2) 

Group 4 (28) Dease 2005 (5)      McTavish 2014 (1) 

Dease 2010 (2)       McVicar 2003 (2) 

Keith 2002 (4)        McVicar 2008 (5) 

Keith 2003 (4)             Smith 2006 (1) 

MCTavish 2004 (2)     Smith 2011 (1) 

McTavish 2009 (1) 

 1195 

 1196 

 1197 

 1198 

 1199 

Table A2. Bayesian clustering (i.e., STRUCTURE, Pritchard et al. 2000) results for piscivorous 1200 
morphotypes of lake trout from Great Bear Lake assessed using variation at 19 microsatellite 1201 
markers. Shown are the mean log�likelihood values (LnP[D]) for different hypothesized 1202 
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numbers of genetic populations (K) and the mean value of ΔK statistic of Evanno et al. (2005). 1203 
Bold values represent the most likely number of genetic groups indicated by ΔK. Dashes = not 1204 
applicable given that ΔK cannot be calculated for these values of K. For all STRUCTURE 1205 
analyses, we employed an admixture model with the LOCPRIOR algorithm, correlated allelic 1206 
frequencies, 100,000 burn-in and MCMC iterations and 10 iterations per K value were 1207 
completed. 1208 

K Reps 
Mean 

LnP(D) 
Delta 

K 

1 10 -10271.83 — 

2 10 -10266.25 9.26 

3 10 -10572.68 0.03 

4 10 -10868.33 1.39 

5 10 -10739.53 0.45 

6 10 -10806.97 0.84 

7 10 -10678.37 0.66 

8 10 -10739.90 0.13 

9 10 -10862.98 1.09 

10 10 -10553.04 — 

 1209 

 1210 

 1211 
 1212 
 1213 
 1214 
 1215 
 1216 
 1217 
 1218 
 1219 
 1220 
 1221 
 1222 
 1223 
 1224 
 1225 
Table A3. Results of the discriminant analysis of principal components (DAPC, Jombart et al. 1226 
2010) implemented in the Adegenet package (Jombart et al. 2008) to determine the most likely 1227 
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number of genetic clusters (K) within the piscivorous Lake Trout form Great Bear Lake. The 1228 
number of groups was identified using the find.clusters function (a sequential K-means 1229 
clustering algorithm) and subsequent Bayesian Information Criterion (BIC), as suggested by 1230 
Jombart et al. (2010). Stratified cross-validation carried out with the function xvalDapc was 1231 
employed to determine the optimal number of PCs to retain in the analysis. 1232 
 1233 

K BIC 

1 185.98 

2 185.42 

3 185.89 

4 186.51 

5 187.40 

6 189.10 

7 190.64 

8 191.99 

9 193.61 

10 195.67 

 1234 

 1235 

 1236 

 1237 

 1238 

 1239 

 1240 

 1241 

 1242 

 1243 

 1244 

 1245 

Table A4. Microsatellite loci used in this study and Fis values for each group per locus. 1246 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811851doi: bioRxiv preprint 

https://doi.org/10.1101/811851


50 
 

Locus Group 1 Group 2 Group 3 Group 4 Giant 

OtsG83b -0.021 0.017 0.046 0.090 -0.013 

Sco215 0.061 0.042 -0.011 -0.029 0.071 

Smm17 -0.433 -0.069 -0.038 -0.304 -0.012 

Smm21 -0.143 -0.286 -0.266 0.023 0.028 

SnaMSU1 0.012 -0.069 -0.024 -0.028 -0.074 

SnaMSU8 -0.031 0.002 0.048 0.023 0.081 

OMM1105 0.094 -0.075 -0.041 -0.098 -0.065 

Smm22 -0.014 0.055 0.082 -0.088 0.137 

SnaMSU13 -0.105 0.053 0.136 -0.073 -0.049 

SnaMSU5 0.088 0.065 -0.032 0.039 0.159 

Sco19 -0.082 0.190 0.067 -0.009 0.051 

Sco202 0.107 -0.166 0.047 0.115 -0.080 

SnaMSU10 -0.108 -0.030 0.086 0.096 0.203 

SnaMSU12 0.122 0.069 0.123 0.201 0.072 

SnaMSU6 0.008 -0.090 0.002 0.007 0.207 

Sal38 -0.056 0.121 -0.016 -0.012 0.041 

Sco200 -0.015 0.098 -0.096 0.041 0.244 

SnaMSU11 -0.060 -0.108 -0.012 0.083 -0.011 

SnaMSU3 0.059 -0.019 0.065 0.012 0.085 

Overall -0.027 -0.011 0.009 0.005 0.057 

 1247 
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 1248 

 1249 

 1250 

 1251 

 1252 

 1253 

 1254 

 1255 

Fig. A1. The four shallow-water morphotypes of Lake Trout from Great Bear Lake identified in 1256 
Chavarie et al. (2013, 2015, 2016a, 2016b): the generalist, the piscivore, the benthic-oriented, 1257 
and the pelagic specialist, Morphs1-4, respectively.  1258 

 1259 
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 1264 
Fig. A2. Hierarchical clusters of Great Bear Lake Lake Trout fatty acids profiles overlaid on the 1265 
first two principal component axes (PCA) using FactoMineR. 1266 
 1267 
 1268 
 1269 
 1270 
 1271 
 1272 
 1273 
 1274 
 1275 
 1276 
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 1278 
 1279 
 1280 
 1281 
 1282 
 1283 
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Fig. A3.  Depth of capture for four groups of piscivorous Lake Trout from Great Bear Lake 1285 
(Groups identified by fatty acids profiles of individuals). Outliers are represented by a circle. 1286 
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a)  1299 

b)  1300 
Fig. A4. Principal Component Analysis (PCA) of fatty acids of 79 Lake Trout classified as 1301 
piscivorous morph from Great Bear Lake, based on the proportions of 41 fatty acids in dorsal 1302 
muscle tissue. Spatial variations (5 arms; 1=Keith, 2=McVicar, 3=McTavish, 4=Dease, and 1303 
5=Smith) are represented in a) and temporal (12 years) variations are represented in b), based on 1304 
the fatty acids profile of each lake trout analyzed in this study.   1305 

54 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811851doi: bioRxiv preprint 

https://doi.org/10.1101/811851


55
 

 1306 

1307 
Fig. A5. Summary of the DAPC analysis. (A) Results of the cross-validation analysis used to 1308 
determine the number of PCs to retain in the DAPC analysis. Cross-validation analysis 1309 
determined the most appropriate number of PCs retained was 30. (B) Inference of the number of 1310 
clusters in the DAPC performed on piscivorous Lake Trout from Great Bear Lake. The function 1311 
find.clusters was run with a maximum number of clusters of 10 to identify the optimal number of 1312 
clusters based on the BIC values. A K value of 2 (the lowest BIC value) represents the best 1313 
summary of the data (most probable number of (K)). (C) The results of the discriminant function 1314 
that shows that the two clusters are mostly non-overlapping. 1315 
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