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 2 

ABSTRACT 18 

Background 19 

Read binning is a key step in proper and accurate analysis of metagenomics data. Typically, this is 20 

performed by comparing metagenomics reads to known microbial sequences. However, microbial 21 

communities usually contain mixtures of hundreds to thousands of unknown bacteria. This restricts 22 

the accuracy and completeness of alignment-based approaches. The possibility of reference-free 23 

deconvolution of environmental sequencing data could benefit the field of metagenomics, 24 

contributing to the estimation of metagenome complexity, improving the metagenome assembly, and 25 

enabling the investigation of new bacterial species that are not visible using standard laboratory or 26 

alignment-based bioinformatics techniques.  27 

Results 28 

Here, we apply an alignment-free method that leverages on k-mer frequencies to classify reads within 29 

a single long read metagenomic dataset. In addition to a series of simulated metagenomic datasets, 30 

we generated sequencing data from a bioreactor microbiome using the PacBio RSII single-molecule 31 

real-time sequencing platform. We show that distances obtained after the comparison of k-mer 32 

profiles can reveal relationships between reads within a single metagenome, leading to a clustering 33 

per species. 34 

Conclusions  35 

In this study, we demonstrated the possibility to detect substructures within a single metagenome 36 

operating only with the information derived from the sequencing reads. The obtained results are 37 

highly important as they establish a principle that might potentially expand the toolkit for the detection 38 

and investigation of previously unknow microorganisms.  39 

 40 
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INTRODUCTION 44 

The analysis of metagenomics data is becoming a routine for many different research fields, since it 45 

serves scientific purposes as well as improves our life quality. Particularly, with the use of 46 

metagenomics a large step was made towards the understanding of the human microbiome and 47 

uncovering its real composition and diversity [1-6]. The understanding of the human microbiome in 48 

health and disease contributed to the development of diagnostics and treatment strategies based on 49 

metagenomic knowledge [7-14]. The study of microbial ecosystems allows us to predict the possible 50 

processes, changes and sustainability of particular environments [15, 16]. Genes isolated from 51 

uncultivable inhabitants of soil metagenomes are being successfully utilized, for example, in the 52 

biofuel industry for production and tolerance to byproducts [17-19]. Various newly discovered 53 

biosynthetic capacities of microbial communities benefit the production of industrial, food, and health 54 

products, as well as contribute into the field of bioremediation [20-23].  55 

Despite all the progress made in resolving genetic data derived from environmental samples, it is still 56 

a challenging task. Reads binning is one of the most critical steps in the analysis of metagenomics 57 

data. To estimate the composition of a particular microbiome, it is important to ensure that sequencing 58 

reads derived from the same organism are grouped together. Currently, alignment of DNA extracted 59 

from an environmental sample to a set of known sequences remains the main strategy for 60 

metagenomics binning [24, 25]. There is a full range of techniques allowing the comparison of 61 

metagenomic reads to a reference database. It can be performed using different metagenomic data 62 

types (16S or WGS) and various matching approaches (classic alignment or use of k-mers or 63 

taxonomical signatures). Most of the time, the binning is performed for all reads in the database, but 64 

in some cases only a particular subset of sequencing data is selected for binning. Lastly, there is a 65 

wide spectrum of databases that can be used to perform the binning. The database might contain all 66 

possible annotated nucleotide/protein sequences, marker genes for distinct phylogenetic clades, 67 

sequencing signatures specific to particular taxa, etc. The obvious downside of all listed strategies is 68 
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the incapability to perform an accurate binning for the reads of organisms that are not present in the 69 

reference database.  70 

Metagenomic binning was improved by alignment-free approaches, which can be split into two 71 

subgroups: reference-dependent and reference-independent methods. The tools from the first 72 

subgroup utilize existing databases to train a supervised classifier for the reads binning. Various 73 

techniques can be performed to achieve this goal: linear regression, Interpolated Markov Models, 74 

Gaussian Mixture Models, Hidden Markov Models [26-32]. Even though these approaches are 75 

reference dependent, they can be used to classify reads that are derived from previously unknown 76 

species. However, the accuracy of reference-dependent methods will be always limited by the content 77 

of reference databases. The content of the current reference databases utilized for training differs from 78 

the true distribution of microbial species on our planet [33-39]. For some metagenomic datasets the 79 

amount of unknown sequences might be quite high [40, 41], thus using supervised classification tools 80 

based on known genetic sequences is questionable in such cases. 81 

Reference-independent approaches for metagenomics binning try to solve the problem of missing 82 

taxonomic content: they are designed to classify reads into genetically homogeneous groups without 83 

utilizing any information from known genomes. Instead, they use only the features of the sequencing 84 

data (usually k-mer distributions, DNA segments of length k) for classification. One of those tools, 85 

LicklyBin, performs a Markov Chain Monte Carlo approach based on the assumption that the k-mer 86 

frequency distribution is homogeneous within a bacterial genome [42]. This tool performs well for 87 

very simple metagenomes with significant phylogenetic diversity within the metagenome, but it 88 

cannot handle genomes with more complicated structure such as those resulting from horizontal gene 89 

transfer [43]. Another one, AbundanceBin [44], works under the assumption that the abundances of 90 

species in metagenome reads are following a Poisson distribution, and thus struggles analyzing 91 

datasets where some species have similar abundance ratios. MetaCluster [45] and BiMeta [46] address 92 

this problem of non-Poisson species distribution. However, for these tools it is necessary to provide 93 
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an estimation of the final number of clusters, which cannot be done for many metagenomes without 94 

any prior knowledge. Also, both MetaCluster and BiMeta are using a Euclidian metric to compute the 95 

dissimilarity between k-mer profiles, which was shown to be influenced by stochastic noise in 96 

analyzed sequences [47]. Another recent tool, MetaProb, implements a more advanced similarity 97 

measure technique and can automatically estimate the number of read clusters [48]. This tool classifies 98 

metagenomic datasets in two steps: first, reads are grouped based on the extent of their overlap. After 99 

that, a set of representing reads is chosen for each group. Based on the comparison of the k-mer 100 

distributions for those sets, groups are merged together into final clusters. Even though MetaProb 101 

outperformed other tools during the analysis of simulated data, it was shown to perform not very well 102 

on the real metagenomics data. 103 

In this article we present a new technique for alignment- and reference-free classification of 104 

metagenomics data. Our approach is based on a pairwise comparison of k-mer profiles calculated for 105 

each sequencing read in a long-read metagenomics dataset, using the previously described kPAL 106 

toolkit [49]. It also performs unsupervised clustering to facilitate the identification of genetically 107 

homogeneous groups of reads present in a sample. The main assumption of our method is that after 108 

assigning the pairwise distances for all reads in the dataset, those belonging to the same organism will 109 

form dense groups, and thus the metagenome binning could be resolved using density-based 110 

clustering. We developed an algorithm which automatically detects the regions with high density and 111 

hierarchically splits the dataset until there is one dense region per cluster. The approach is designed 112 

to work with long reads (more than 1000 bp) since we calculate k-mer profiles for each read separately 113 

and shorter reads would yield non-informative profiles. We performed our analysis on long PacBio 114 

reads that were either simulated or generated from a real metagenomic sample. We have shown that 115 

despite the fact that PacBio data is known to have a high error rate, the approach successfully 116 

performed read classification for simulated and real metagenomic data.  117 
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MATERIALS AND METHODS 118 

1. Software 119 

All analyses were done using publicly available tools (parameters used are listed below for each 120 

specific case) along with custom Python scripts. 121 

2. PacBio data simulation 122 

Complete genomes of five common skin bacteria were used to generate artificial PacBio 123 

metagenomes (Table 1). The reads were simulated from reference sequences using the PBSIM toolkit 124 

[50] with CLR as the output data type and a final sequencing depth of 20. For the calibration of the 125 

read length distribution, a set of previously sequenced C. difficille reads [51] was used as a model.  126 

3. Bioreactor metagenome PacBio sequencing 127 

Bioreactor metagenome coupling anaerobic ammonium oxidation (Annamox) to Nitrite/Nitrate 128 

dependent Anaerobic Methane Oxidation (N-DAMO) processes [52] was used to generate WGS 129 

PacBio sequencing data. 130 

Metagenome contained the N-DAMO bacteria Methylomirabilis oxyfera (complete genome with 131 

GeneBank Acsession FP565575.1 was used as a reference), two Annamox bacteria (Kuenenia 132 

stuttgartiensis, assembly contigs from the Bio Project PR- JEB22746 were used as a reference and a 133 

member of Broccardia genus, assembly contigs of Broccardia sinica from Bio Project PRJDB103 134 

were used as reference) and an archaea species Methanoperedens nitroreducens (assembly contigs 135 

from the Bio Project PRJNA242803 were used as a reference). 136 

Bacterial cell pellets were disrupted with a Dounce homogenizer. DNA was isolated using a Genomic 137 

Tip 500/G kit (Qiagen) and needle sheared with a 26G blunt end needle (SAI Infusion). Pulsed-field 138 

Gel electrophoresis was performed to assess the size distribution of the sheared DNA. A SMRTbell 139 

library was constructed using 5µg of DNA following the 20kb template preparation protocol (Pacific 140 

Biosciences). The SMRTbell library was size selected using the BluePippin system (SAGE Science) 141 
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with a 10kb lower cut-off setting. The final library was sequenced with the P6-C4 chemistry with a 142 

movie time of 360 minutes. 143 

4. Reads origin checking 144 

Reads were corrected using the PacBio Hierarchical Genome Assembly Process algorithm before 145 

being mapped to the genomes of the references of expected metagenome inhabitants using the BLASR 146 

aligner [53] with default settings. The alignments were used to determine the origin of the reads. 147 

Reads that were not mapped during the previous step were subjected to the BLASTn [54] search 148 

against the NCBI database. The identity cut-off was set to 90, the (E)value was chosen to be 0.001. 149 

5. Bioreactor metagenome PacBio reads assembly   150 

The assembly of corrected PacBio reads was performed using the FALCON [55] assembler. The 151 

resulting contigs were mapped to the candidate reference genomes using LAST [56] with default 152 

settings. To determine the similarity cutoff for the mapping procedure, the curve representing the 153 

number of contigs versus the similarity to the reference genome was analyzed. The first inflection 154 

point at (in case of mapping contigs to the M.oxyfera genome 12%), dividing the fast-declining part 155 

of the curve from the slow-declining part, was chosen as a threshold (See Section S1 of Additional 156 

file 1 for more details).  157 

6. Binning procedure 158 

For each read, the frequencies of all possible five-mers are calculated using the count command of 159 

the kPAL toolkit. The resulting profiles are balanced (a procedure that compensates for differences 160 

that occur because of reading either the forward or reverse complement strand) and compared in a 161 

pairwise manner by using the balance and matrix commands of kPAL accordingly, yielding a pairwise 162 

distance matrix. Normalization for differences in read length is dealt with by the scaling option during 163 

the pairwise comparison.  164 

The resulting distance matrix, hereafter called the original distance matrix, was subjected to a multi-165 

step clustering procedure. A schematic representation of this procedure can be found in Fig. 1. Due 166 
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to practical limitations (runtime), this analysis was restricted to a set of 10 000 randomly selected 167 

reads. 168 

 169 

 170 

Fig. 1. Schematic representation of the clustering procedure. 171 

 172 

This multi-step clustering procedure works recursively: it starts with the analysis of a set of reads and 173 

either reports the entire set as one cluster, or it splits the set into two subsets, which are each analyzed 174 

using the same procedure. The decision whether to split the set of reads into two subsets is made using 175 

the following approach. First, the pairwise distances for all reads in the set are extracted from the 176 

original distance matrix in order to construct the working distance matrix. After that, the 177 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811760doi: bioRxiv preprint 

https://doi.org/10.1101/811760
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

dimensionality of the analyzed set is decreased to three using the t-SNE algorithm [57] in order to 178 

reduce noise caused by outliers in the distance matrix. The reads, now represented by a point in three-179 

dimensional space, are subjected to density-based clustering using the DBSCAN algorithm [58] with 180 

the default distance function. We choose the MinPts parameter of DBSCAN (the minimal amounts of 181 

points in the neighborhood to extend the cluster) to be either 1% of the size of the dataset for sets 182 

larger than 2000 reads, or 20 for sets smaller than 2000 reads. The number of clusters found by 183 

DBSCAN depends on the neighborhood diameter ε. When ε is too small, no clusters are reported 184 

since all points are isolated. On the other hand, when ε is too large all points are grouped into one 185 

cluster. Our algorithm therefore performs a parameter sweep for ε, from the value providing zero 186 

clusters to the value with which 99% of the reads are grouped in one cluster for the chosen MinPts.  187 

 188 

 189 

Fig. 2. Density-based clustering analysis example. The data is clustered with DBSCAN with ε ranging from 0 to the value 190 

when 90% of the points are assigned to one cluster. When at least half of the data set is assigned to a dense cluster, the 191 

number of clusters is used to determine whether subdivision of the data set is required. Only if more than one cluster is 192 

identified at this point, the procedure is repeated recursively with two partitions of the data. The partitions are determined 193 

by using the largest ε that clusters the data into two clusters. In this example two datasets are shown:  one that was further 194 

split into two partitions (A) and one that was reported as one dense cluster (B). 195 

 196 

The results of this parameter sweep are used to check the dependency of the number of dense clusters 197 

on a particular ε (only clusters larger than 100 points are considered) and how many points of the 198 
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analyzed set are included in the obtained clusters (Fig. 2).  If for some ε there are two or more clusters 199 

that together cover more than half of the total amount, the analyzed set is divided into two new sets 200 

(Fig. 2A). The analyzed set is reported as one cluster if the aforementioned condition is not satisfied 201 

(Fig. 2B), or when the size of the analyzed set was smaller than 1000 points.   202 

The division is done using the following strategy.  DBSCAN is performed using the optimal ε, 203 

yielding two dense clusters that serve as center points for two partitions. Each of the remaining 204 

unclassified points is assigned to the cluster containing the closest classified neighbor.  205 

7. Classification for larger sets 206 

Read classification for sets larger than 10 000 was performed in two steps. First, 10 000 reads (larger 207 

than 10kb) were randomly chosen and classified using the algorithm described in previous section. 208 

After that, the pairwise distances between every unclassified read and every classified read were 209 

calculated using their 5-mer profiles. These distances were used to assign the unclassified read to the 210 

cluster containing the closest classified read. 211 

8. Data availability 212 

Sequencing reads of bioreactor metagenome were submitted to NCBI under the BioProject number 213 

PRJNA487927. Artificial PacBio metagenomic reads with the addition of 0%, 5%, 10%, and 15% of 214 

real “noise” reads were submitted to NCBI under the BioProject number PRJNA533970. 215 

Supplementary materials were deposited on Figshare and available for downloading using the 216 

following link: https://doi.org/10.6084/m9.figshare.c.4218857.v1. 217 

Example of the classification procedure can be found using the following link:  218 

https://git.lumc.nl/l.khachatryan/pacbio-meta/blob/master/analysis/real_data/tsne_subset2/analysis_example.ipynb 219 

  220 
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RESULTS 221 

1. Reads classification in artificial PacBio metagenomes 222 

To construct artificial metagenomes, we used simulated PacBio reads based on the genomes of five 223 

common skin flora bacteria together with so-called "noise" reads. These are reads from a PacBio 224 

sequencing data of an environmental metagenome [59] that were not assigned to the major inhabitant 225 

K. stuttgartiensis or other known organisms. They were added to represent low abundant species that 226 

are present in any typical metagenomic dataset. 227 

We constructed four artificial PacBio datasets in this way, each containing 10 000 randomly selected 228 

reads (length > 9kb) containing 0%, 5%, 10% and 15% noise reads, respectively. For the simplicity 229 

the number of simulated reads was adjusted to provide an equal abundance for each bacterium in the 230 

final metagenome (see Table 1). 231 

We subjected each dataset to the classification procedure described in Section 6 of MATERIALS 232 

AND METHODS. The reads in the resulting clusters were then classified according to their origin 233 

(See Section S2 of Additional file 1 for more data). 234 

 235 

Table 1. Content of artificial metagenomics PacBio datasets. 236 

Reads origin RefSeq AC 
Genome 

length, Mb 

Number of reads per dataset 

0% noise 
5% 

noise 

10% 

noise 

15% 

noise 

S. mitis NC_013853.1 2.1 1 246 1 183 1 121 1 059 

P. acnes NC_017550.1 2.5 1 443 1 371 1 298 1 226 

S. epidermidis NC_004461.1 2.6 1 448 1 376 1 304 1 231 

A. calcoaceticus NC_016603.1 3.9 2 236 2 125 2 013 1 901 

P.aeruginosa NC_002516.2 6.3 3 627 3 446 3 264 3 083 

 237 
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In Fig. 3, it can be seen that for each experiment we obtained five large clusters (> 1 000 reads) 238 

consisting mainly of reads belonging to the same species.  239 

 240 

 241 

Fig. 3. Classification recall for artificial PacBio metagenomes. Subsets that were subjected to the partitioning are shown 242 

as black circles, final clusters are represented as pie charts with the color indicating the reads origin. The area of the pie 243 

chart corresponds to the relative cluster size. The cluster number is shown next to each pie chart. The results are shown 244 

for datasets with 0% (A), 5% (B), 10% (C) and 15% (D) of noise reads. 245 
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For all three datasets containing noise reads we see the tendency of noise reads to be clustered with 246 

some fraction of P. acnes and P. aeruginosa reads.  247 

However, as can be seen from Fig. 3 and Table 2, increasing the noise content leads to better isolation 248 

of these reads. Indeed, for dataset B (5% of the noise reads), the majority of noise reads were assigned 249 

to the cluster that is primarily occupied by reads belonging to P. acnes and P. aeruginosa. Increasing 250 

the noise content (dataset C and D in Fig. 4, 10% and 15% noise reads accordingly) led to the 251 

appearance of two clusters which contain mostly noise reads (Table 2, A). 252 

 253 

Table 2. Composition of clusters containing the majority of noise reads after the classification procedure for three artificial 254 

PacBio datasets.   255 

Dataset  5% noise 10% noise 15% noise 

Reads origin Cluster 2 Cluster 2 Cluster 8 Cluster 6 Cluster 7 

A 

noise 21.4 90.3 47.8 85.6 97.3 

P. acnes 63.7 0.5 33.8 5.6 0 

P. aeruginosa 10.4 1.3 19.1 8.9 0 

B 

noise 91.8 55.9 39.9 45.0 50.8 

P. acnes 99.6 0.2 22.3 3.6 0 

P. aeruginosa 6.4 0.2 5.3 2.3 0 

A - cluster composition; B - the percentage of reads with particular origin (noise, P. acnes or P. aeruginosa) included to 256 

the cluster within all reads of the same origin in the dataset. Clusters are grouped per dataset. Only organisms whose reads 257 

would occupy more than 90% of cluster content are shown.                                                                                                                         258 

 259 
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We also see that with the increase of noise content, the fractions of P. acnes and P. aeruginosa reads 260 

included in the same clusters as the noise reads are dropping (Table 2, B). In conclusion, the more 261 

noise reads were added to the dataset, the more they were grouped together in one or two clusters 262 

(Table 2, A). 263 

4.2 PacBio sequencing of bio reactor metagenome 264 

After sequencing and correction, we obtained 31,757 reads longer than 1kb for the bio reactor 265 

metagenome. The read length distribution for this dataset can be found in Fig. 4.  266 

 267 

 268 

Fig. 4. Bio reactor metagenome reads length distribution. 269 

 270 

Reads were mapped to the genomes of the expected metagenome inhabitants or genomes of closely 271 

related species. Since the groups of reads that we could map to the genomes of K. stuttgartiensis and 272 

B. sinica had a significant overlap (27%), we decided to combine reads mapped to the reference 273 

genomes of these two organisms in one group. We detected almost no (0.01%) reads that would map 274 

to the M. nitroreducens genome in the sequencing data, suggesting that this organism was either not 275 

present in the metagenome sample, or that its DNA could not be isolated reliably during the sample 276 
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preparation. Thus, we divided our reads into three groups: uniquely mapped on M. oxyfera (4,903 277 

reads), uniquely mapped on K. stuttgartiensis/B. sinica (2973 reads), and all remaining reads with 278 

unknown origin (~75%, 23881 reads). The reads with unknown origin were checked with the 279 

BLASTn software against NCBI microbial database, to find significant similarity to any known 280 

organism. However, only 334 reads (less then 2% of total number of checked reads) got hits; there 281 

were no organisms among the obtained hits reported more than 53 times.  282 

4.3 Bio reactor metagenome PacBio read classification 283 

For the reads originating from M. oxyfera and K. stuttgartiensis/B. sinica, we checked whether the 284 

data was clustered by origin. Since roughly 75% of this sequencing data is of unknown origin, we 285 

assessed whether the clustering results for reads with unknown origin is robust. To do this, we created 286 

five subsets using the bio reactor metagenome sequencing data. Each subset contains 10,000 randomly 287 

selected reads with length > 10kb. After subjecting each subset to the classification procedure, we 288 

checked whether reads, shared by two subsets, are being clustered similarly. We compared all clusters 289 

from different subsets in a pairwise manner and marked two clusters 'similar' when they shared at 290 

least 25% of their content. On average, every pair of subsets shared 34% of their content. Thus, in 291 

case of perfect matching of clustering results, the pair of clusters from two different subsets should 292 

on average share 34% of their content. The 25% cutoff value was chosen to compensate for possible 293 

flaws introduced by clustering mis-assignments.  In Fig. 5 this analysis is shown as a graph: each pie 294 

chart represents a cluster obtained for one of the subsets (with a subset number marked next to the pie 295 

chart).  296 

 297 
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 298 

Fig. 5 Comparison of classification results obtained for five Bio reactor sub-datasets. The pie charts represent reported 299 

clusters for all sub-datasets colored by the origin of reads in cluster. The pie chart area indicates the relative size of the 300 

cluster. The number next to the node denotes the sub-dataset, for which the cluster was obtained. Two clusters are 301 

connected with a node if they belong to two different sub-datasets and share at least 25% of their content. The groups of 302 

size five (the set of five fully connected pie-charts) represent groups of stable clusters. 303 

 304 
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Clusters are connected if they were marked as similar and thus shared more then 25% of their content. 305 

We looked for sub-graphs, of size five for which all five nodes would be mutually connected. That 306 

would mean that all five clusters are coming from the different subsets and share a significant (at least 307 

25% out of 34% possible) number of reads. These groups of clusters (here and after called the stable 308 

groups) represent reads that are clustered the same way regardless of the subset of reads selected. 309 

Clusters belonging to the stable groups are called the stable clusters. The proportion of reads in the 310 

stable clusters was comparable among datasets and equaled on average 64%.  As displayed in Fig. 5, 311 

we found seven groups of stable clusters. Four groups of stable clusters have clusters with more than 312 

1 000 reads, and two of those four are represented by clusters enriched with M. oxyfera or 313 

K. stuttgartiensis/B. sinica reads. In Table 3 we display the content and the number of reported 314 

clusters after the classification procedure for each of the five subsets. 315 

 316 

Table 3. Subsets information and clustering results. 317 

Subset 1 2 3 4 5 

number of M.oxyfera reads 1 499 1 563 1 528 1 544 1 529 

number of K.stuttgartiensis/B.sinica reads 949 918 981 935 906 

Clusters after the classification procedure 14 11 13 13 12 

Big (>1000 reads) clusters 5 5 5 5 5 

% of reads in stable clusters 65.96 64.12 61.98 64.46 64.16 

 318 

 319 

Once we estimated the robustness of the classification procedure, we selected the subset that yielded 320 

the lowest number of clusters (subset 2, 11 clusters) for downstream analysis. The content of all 321 

clusters that were not reported as stable were merged into one cluster. Thus, the original 10 000 reads 322 
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were spread among 8 clusters. These clusters were used as a classifier for the remaining 21 757 reads 323 

in the dataset (Table 4). 324 

 325 

Table 4. Results of bio reactor metagenome reads classification 326 

Cluster Stable Reads before extension Reads after extension 

1 Yes 403 1 038 

2 Yes 168 528 

3 Yes 1 133 3 204 

4 Yes 1 540 5 151 

5 Yes 1 004 3 337 

6 Yes 181 506 

7 Yes 1 983 6 459 

8 No 3 588 11 534 

 327 

4.5. Assembly of the bio reactor metagenome before and after reads binning 328 

We assembled reads belonging to different clusters separately, and compared the resulting contigs 329 

with the results of the assembly of the entire dataset. The total number of contigs after assembly of 330 

the partitioned dataset was comparable to the amount of contigs obtained from the assembly of the 331 

entire dataset (Table 5).  The same can be said about the total length of contigs and contigs length 332 

distributions (see supplementary materials). These results, showing that the database partitioning did 333 

not lead to the change of the contigs number or their lengths, can be seen as indirect evidence proving 334 

that our k-mer based binning of metagenome reads results in species-based clustering. 335 

We compared the assembled contigs obtained for the entire and partitioned datasets to the reference 336 

genomes of M. oxyfera, K. stuttgartiensis and B. sinica. Even though we could successfully map 337 

around 9% of the reads to the reference genomes of K. stuttgartiensis and B. sinica, we did not get 338 
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contigs that could be mapped to these genomes. However, the contigs assembled from the entire and 339 

partitioned datasets did map to M. oxyfera genome. Only 91 out of 196 contigs obtained from the 340 

entire dataset assembly could be mapped back to the M. oxyfera genome covering 54% of its length. 341 

For the assembly of the partitioned dataset, 85 contigs were mapped to the genome of M. oxyfera in 342 

total, covering 52.65% of its length. The vast majority of those contigs (79, covering 51% of the 343 

M. oxyfera genome length) derived from the assembly of reads belonging to one cluster. Thus, our 344 

dataset partitioning binned the majority of contigs according to their origin. 345 

 346 

Table 5. Results of entire and partitioned bio reactor sequencing data assembly and comparison of obtained contigs to 347 

the M.oxyfera genome. 348 

Dataset 

assembled 

Entire 

dataset 

Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Cluster 

6 

Cluster 7 Cluster 

8 

Assembly 

length, bp 

3 251 357 5 438 10 747 380,905 377 792 601 065 0 1 602 878 41 310 

Contigs 196 1 1 28 30 47 0 79 4 

Contigs 

mapped on 

M.oxyfera 

genome 

91 0 0 9 1 2 0 71 2 

Length of 

mapped 

contigs, bp 

1 842 182 0 0 132 863 11 945 21 105 0 1 497 132 17 013 

% of 

M.oxyfera 

genome 

covered 

54 0 0 1.2 0.1 0.15 0 51 0.2 

349 
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DISCUSSIONS 350 

We described a new approach for efficient, alignment-free binning of metagenomic sequencing reads 351 

based on k-mer frequencies. Our method successfully classifies reads per organism of origin, for both 352 

simulated and real metagenomics data. 353 

As shown in the results section, the approach was used to classify reads obtained by PacBio 354 

sequencing of a real bio reactor metagenome. The absolute majority of the reads with known origin 355 

(M. oxyfera or K. stuttgartiensis/B. sinica) were clustered together per origin after pairwise 356 

comparison of their k-mer profiles and subsequent density-based cluster detection. This result was 357 

robust, as we observed during the analysis of five subsets of the original PacBio sequencing data with 358 

overlapping content. The same experiment demonstrated that each subset provides a similar number 359 

of clusters. Reads with unknown origin tended to cluster similarly among different subsets, again 360 

confirming the clustering consistency. Although the majority of reads in the analyzed metagenome 361 

was of unknown origin, the results can be used to estimate the microbial community complexity for 362 

its most abundant inhabitants. 363 

The binning of the bio-reactor metagenomics dataset had almost no influence on the results of the 364 

metagenome assembly. The number of contigs and their lengths obtained for the entire and partitioned 365 

datasets were comparable. This indicates that the k-mer based reads binning leads to the organism-366 

based partitioning of metagenomic data. Furthermore, contigs, belonging to the same organism, were 367 

automatically grouped together when assembling the dataset subjected to the classification procedure. 368 

Thus, our k-mer based binning technique can be used to interpret metagenomic assembly results.  369 

Performing the binning procedure on an artificially generated PacBio datasets lead to a reads 370 

classification per organism, even after adding reads with unknown origin (noise reads). Moreover, 371 

increasing the proportion of noise reads leads to a better separation between them and the reads with 372 

known origin. This observation supports the central hypothesis of this research, namely that k-mer 373 
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distances can be used to cluster reads of the same origin together once those reads provide sufficient 374 

coverage of the organisms’ genome. 375 

The main disadvantages of the current implementation of our method is the limited number of reads 376 

(10 000) that can be analyzed. As mentioned before, reads, derived from the same organism, will 377 

cluster together, but this is possible only under the condition that the organisms’ genome is 378 

sufficiently covered. Thus, the described technique is unsuitable for the analysis of metagenomes with 379 

a large number of inhabitants or when the inhabitants have large genomes, as 10 000 reads will not 380 

be enough to provide sufficient coverage. The depth of the classification that can be performed by the 381 

suggested method is still to be discovered. 382 

We believe that adapting our metagenomics reads binning technique for larger sets of data and further 383 

investigation of its metagenome resolving capacity would allow to expand the current limits of 384 

microbiology in the future.  385 
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CONCLUSIONS 386 

In this study we demonstrated the possibility to detect substructures within a single metagenome 387 

operating only with the information derived from the sequencing reads. Results obtained for both 388 

artificial and real metagenomic data indicated the reads clustering per their known origin. We have 389 

shown the robustness of the obtained results by adding different proportions of “noise” reads to the 390 

artificially generated metagenomic data and by comparing the results of binning procedure performed 391 

on the different subsets of the same real metagenomic dataset. The obtained results are highly 392 

important as they establish a principle that might potentially greatly expand the toolkit for the 393 

detection and investigation of previously unknow microorganisms.  394 
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LIST OF ABBREVIATIONS  395 

PacBio - Pacific Biosciences 396 

NGS - next-generation sequencing;  397 

N-DAMO - Nitrite/Nitrate dependent Anaerobic Methane Oxidation 398 

Annamox - anaerobic ammonium oxidation 399 

WGS - whole-genome shotgun sequencing. 400 
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