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Abstract 8 

Assisted migration is the translocation of species beyond their historical range to more suitable 9 

locations given future climate change. This conservation approach poses risks of establishment 10 

failure because of uncertainty in decision making, climate, and interactions with the recipient 11 

ecological community. To quantify the risks and benefits of assisted migration under different 12 

management decisions, we built a stochastic metacommunity model to simulate several species 13 

reproducing, dispersing, and competing on a temperature gradient as temperature increases 14 

over time. Without assisted migration, species were vulnerable to climate change if they had a 15 

low population sizes, short dispersal, and strong poleword competition. When relocating 16 

species that exemplified these traits assisted migration increases the long-term persistence of 17 

the species most when relocating a fraction of the donor population, even if the remaining 18 

population was very small or rapidly declining. Especially when it is difficult to identify a species' 19 

optimal climate, leaving behind a fraction of the population could be a robust approach, 20 

allowing managers to repeat assisted migration in case they move the species at the wrong 21 

place and wrong time. Assisted migration was most beneficial to species with low dispersal 22 

ability and least beneficial to species with narrow thermal tolerances, for which assisted 23 

migration increased extinction risk in almost all situations. Relocation did not affect the survival 24 

of non-target species, suggesting that competitive interactions alone were unlikely cause 25 

invasions from assisted migration. 26 
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Introduction 33 

Global biodiversity is expected to decline at accelerated rates with projected climate 34 

change (Urban 2015). Among the species that are most at risk of extinction are those with 35 

limited dispersal, narrow ranges, narrow climate tolerance, and low population sizes (Pearson 36 

2006; Parmesan 2006; Tewksbury et al. 2008). Moreover, competition and other community 37 

interactions could increase extinction risk, as negative interactions can limit the dispersal of 38 

species that might be otherwise adequate dispersers (Davis et al. 1998; Gilman et al. 2010; 39 

Urban et al. 2012). Many of these climate-threatened species face a high likelihood of 40 

extinction without human intervention, prompting scientists and managers to consider a 41 

variety of novel approaches to conservation (Heller & Zavaleta 2009). Among these approaches 42 

is assisted migration (AM), in which managers relocate individuals from a threatened 43 

population to a location outside their historical range expected to be more suitable under 44 

projected future climates (McLachlan et al. 2007; Schwartz et al. 2012). By allowing these 45 

species to reach favorable climates in densities that they would not be able to reach on their 46 

own, AM might improve a species’ chance of persistence in ways that traditional conservation 47 

strategies, such as direct restoration, cannot (McLachlan et al. 2007; Lawler & Olden 2011). 48 

Moving a species into a novel ecosystem incurs many risks (Mueller & Hellmann 2008; 49 

Ricciardi & Simberloff 2009; Hewitt et al. 2011). Most frequently raised is the risk that relocated 50 

species might become invasive (Hewitt et al. 2011). For example, relocating one species would 51 

artificially increase its effective dispersal, creating higher variation in metacommunity dispersal 52 

ability and impeding other species’ ability to track of climate change (Urban et al. 2012). 53 
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Another risk is the possibility that a relocated population could fail to establish (Chauvenet et 54 

al. 2013; Plein et al. 2016). Establishment failure could further contribute to the extinction of 55 

species that are already threatened by climate change by reducing the population size and 56 

genetic diversity of the species while also incurring an economic cost to the limited available 57 

resources for conservation (McDonald-Madden et al. 2008). The challenges inherent to 58 

translocation are evident in the low-to-intermediate success of previous conservation-based 59 

translocations within species’ historical ranges across a wide range of taxa (Fischer & 60 

Lindenmayer 2000; Godefroid et al. 2011; Bellis et al. 2019). The risk of establishment failure 61 

depends, in part, on uncertainties that lead managers to relocate a species into the wrong place 62 

at the wrong time, especially if there are narrow conditions under which a species can persist. 63 

One source of uncertainty that has led to translocation failures is environmental stochasticity 64 

(Wolf et al. 1996), which will likely increase with climate change (Vasseur et al. 2014). 65 

Additional uncertainty stems from the difficulty in quantifying and differentiating between the 66 

abiotic and biotic drivers of species’ ranges (Case et al. 2005), which are likely to be increasingly 67 

uncertain with climate change (Boiffin et al. 2017). Given these uncertainties, a key 68 

management challenge is developing robust approaches over a range of conditions (Regan et 69 

al. 2005; McDonald-Madden et al. 2008) for the array of decisions involved in AM. This involves 70 

deciding which species are vulnerable to climate-threatened extinction, which species will likely 71 

benefit from AM, when and where to move a species, and how many individuals to move 72 

(McDonald-Madden et al. 2011; Rout et al. 2013). 73 

Despite a lack of consensus among the scientific community and the public about the 74 

benefits and risks of AM (Hewitt et al. 2011; Javeline et al. 2015; St-Laurent et al. 2018), several 75 
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species are already being relocated (McLachlan et al. 2007; Seddon et al. 2015). Scientific 76 

guidance for AM endeavors is available from existing AM decision-making frameworks, which 77 

typically focus on optimizing a species’ persistence under climate change using single-species 78 

models (McDonald-Madden et al. 2008; Rout et al. 2013; Kling et al. 2016). Extending these to a 79 

multispecies framework is a crucial next step to account for the species interactions that give 80 

rise to the risk of invasiveness and uncertainty in the drivers of species ranges. In this paper, we 81 

quantify the benefits and risks of AM given species interactions, multiple sources of 82 

uncertainty, and an array of management decisions. We built a stochastic metacommunity 83 

model to simulate competing species undergoing climate change to estimate which species 84 

were vulnerable to extinction, which species were likely to benefit from AM, and what fraction 85 

of the population to relocate. Because managers will have limited knowledge of a species’ 86 

optimal climate (a reducible uncertainty), we simulated relocation with uncertainty in 87 

estimating of species’ thermal optima. By repeating these simulations under different levels of 88 

environmental stochasticity (an irreducible uncertainty), we identified characteristics of 89 

successful AM approaches that were robust over a wide variety of uncertainty scenarios. 90 

 91 

Methods 92 

Model overview 93 

To compare assisted migration (AM) strategies, we modeled metacommunity dynamics 94 

of multiple species competing on a one-dimensional linear temperature gradient subjected to 95 

climate change, analogous to a previous model by Urban et al. (2012) with environmental 96 
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stochasticity. For simplicity, all species in this metacommunity are annuals competing over the 97 

same resources at the same trophic level. The model cycles through the processes of 98 

reproduction, dispersal, and competition, all with demographic stochasticity, in each time step 99 

(Fig. 1). Each species 𝑖 has a unique dispersal distance (𝛾𝑖), thermal optimum (𝑧𝑖), thermal 100 

tolerance breadth (𝜎𝑖), and a reproductive strength parameter (𝑟𝑖) that scales the birth rate to 101 

create a specialist/generalist trade-off (Levins 1968). We simulate AM by selecting one target 102 

species and relocating a fraction of its total population toward the leading edge each time the 103 

population falls below a threshold population size. We compared outcomes when relocating 104 

different target species with different fractions of the population into different locations and 105 

quantified how these decisions affected species’ persistence and community diversity. 106 

Population dynamics 107 

Each species 𝑖 has a local population size of 𝑛𝑖(𝑥, 𝑡) individuals in discrete patch 𝑥 and a 108 

total metapopulation size over all space 𝑋 of 𝑁𝑖(𝑡) = ∑ 𝑛𝑖(𝑥, 𝑡)𝑥∈𝑋  at discrete time 𝑡. First, all 109 

individuals reproduce (Fig. 1a) with a reproductive output 𝑏𝑖(𝑇(𝑥, 𝑡)) that depends on local 110 

temperature 𝑇(𝑥, 𝑡). Temperature-dependence is skew-normal, given skewness constant 𝜆, 111 

where highest values around the thermal optimum 𝑧𝑖 and a sharp decrease above 𝑧𝑖 (Norberg 112 

2004). Thermal tolerance breadth 𝜎𝑖  and reproductive strength 𝑟𝑖 determine the breadth and 113 

height of the temperature-dependence. Altogether, 𝑏𝑖(𝑇(𝑥, 𝑡)) is  114 

 
𝑏𝑖(𝑇(𝑥, 𝑡)) = exp (𝑟𝑖 {exp [− (

𝑇(𝑥, 𝑡) − 𝑧𝑖

𝜎𝑖
)

2

] ⋅ [1 + 𝑒𝑟𝑓 (𝜆
𝑇(𝑥, 𝑡) − 𝑧𝑖  

𝜎𝑖
) ] − 1}) 

(1) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811497doi: bioRxiv preprint 

https://doi.org/10.1101/811497
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

(following Urban et al. 2012). To incorporate demographic stochasticity, the number of 115 

propagules produced by species 𝑖 in patch 𝑥 is a Poisson random variable with mean equal to 116 

the reproductive output, 𝑛𝑖
∗(𝑥, 𝑡)~Poisson(𝑛𝑖(𝑥, 𝑡)𝑏𝑖(𝑇(𝑥, 𝑡)) (Melbourne & Hastings 2008). 117 

 

Figure 1: During each time step of the model, all extant species cycle through (a) reproduction, (b) 
dispersal, and (d) competition before (e) the temperature changes and the next time step continues. 
The target species also experiences (c) assisted migration during certain time steps. (a.i) Per capita 
reproductive output 𝑏𝑖(𝑇(𝑥, 𝑡)) is skew-normal, dependent on temperature 𝑇(𝑥, 𝑡). This function is 
shaped by species’ thermal optimum 𝑧𝑖  and thermal tolerance breadth 𝜎𝑖. (a.ii) Reproductive strength 𝑟𝑖 
scales the total reproductive output so that species with narrow 𝜎𝑖 (specialists) have higher 
reproduction and species with broad 𝜎𝑖 (generalists) have lower reproduction. (b) The dispersal kernel is 
a long-tailed “double geometic” distribution with a mean dispersal distance 𝛾𝑖. (c.i) Relocation occurs 
once the total population of target species 𝐹 falls below a threshold 𝜂. To avoid repetition while 𝐹 
recovers, no relocations occur during a cool-down period following relocation 𝛼. (c.ii) A fraction 𝜌 of 
population 𝐹 is removed from its original distribution and moved to a new location (only 𝜇 survive) 𝛽 
patches beyond the leading edge. Remaining individuals disperse naturally. (d.i) All species compete 
over limited space, where each patch has a carrying capacity 𝐾. Here each line represents a different 
species. (d.ii) In each patch, individual survival probability 𝑝(𝑥, 𝑡) decreases as the total community size 
increases. (e) Temperature changes stochastically over time. (e.i) Mean temperature decreases linearly 
with space. Over time, between 𝑡 = 0 (lower line) and 𝑡 = 100 (upper line), the temperature increases 
by 4°C. (e.ii-iii) Temperature variation over time depends on level of environmental stochasticity. Both 
examples have the same autocorrelation (𝜅), but (ii) has a higher standard deviation (𝜓). The vertical 
dashed line designates when the model changes from the initialization phase (average temperature 
change (𝜏 = 0)) to the climate change phase (𝜏 = 0.04). Climate change only occurs after a relatively 
stable metacommunity has been assembled, after 100 time steps have passed with no extinctions.  
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Next, each propagule disperses from its origin (Fig. 1b). We adapted the Laplace 118 

dispersal kernel (Neubert & Caswell 2000; Urban et al. 2012) to a discrete-space analog 119 

(Appendix S1). We define 𝛾𝑖 as the mean absolute distance (in patches) that species 𝑖 moves 120 

from its origin and let kernel parameter 𝑞𝑖 =
𝛾𝑖+1−√𝛾𝑖

2+1

𝛾𝑖
. Thus, the probability of a propagule 121 

from patch 𝑥 moving to patch 𝑦 is  122 

𝑘𝑖(𝑥, 𝑦) = (
𝑞𝑖

2−𝑞𝑖
) (1 − 𝑞𝑖)|𝑥−𝑦|. (2) 

To incorporate demographic stochasticity, all propagules of species 𝑖 disperse from patch 𝑥 123 

throughout all space 𝑋 with the random vector 124 

𝑀𝑖(𝑛𝑖(𝑥, 𝑡), 𝑥, 𝑡)~Multinomial(𝑛𝑖
∗(𝑥, 𝑡), 𝑘𝑖(𝑥, 𝑋)), and the total metapopulation after dispersal 125 

is 𝑛𝑖
∗∗(𝑋, 𝑡) = ∑ 𝑀𝑖(𝑛𝑖(𝑥, 𝑡), 𝑥, 𝑡)𝑥∈𝑋 . 126 

Lastly, dispersed propagules compete within each patch 𝑥 given community-wide 127 

carrying capacity 𝐾 (Fig. 1d). We assumed a variation on lottery competition (Sale 1978; 128 

Chesson & Warner 1981), where each individual has an equal probability of surviving,  129 

𝑝(𝑥, 𝑦) = (1 +
∑ 𝑛𝑗

∗∗(𝑥, 𝑡)𝑆
𝑗=1

𝐾
)

−1

. 
(3) 

The total number of propagules of species 𝑖 in patch 𝑥 that survive after competition is a 130 

binomial random variable 𝑛𝑖(𝑥, 𝑡 + 1)~Binomial(𝑛𝑖
∗∗(𝑥, 𝑡), 𝑝(𝑥, 𝑡)) (Melbourne & Hastings 131 

2008). 132 

 133 
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Spatial structure 134 

Metacommunity dynamics occur across a one-dimensional, linear temperature gradient 135 

of 𝐿 patches (Fig. 1e), representing a gradual latitudinal or sharp elevational change (Urban et 136 

al. 2012). We remove propagules that disperse outside of the spatial gradient. Because these 137 

absorbing boundary conditions could bias our analyses on the edges, we disregard the first 
𝐿

8
 138 

patches on the poleward edge and the last 
3𝐿

8
 patches on the equatorward edge when 139 

measuring species and community metrics.  140 

Temperature changes each time step by mean 𝜏 with autocorrelation 𝜅 and standard 141 

deviation 𝜓 around white noise 𝜔(𝑡). The stochastic component of yearly temperature change 142 

is 𝜖(𝑡 + 1) = 𝜅𝜖(𝑡) + 𝜔(𝑡)√1 + 𝜅2, with the square root term to remove the effect of 143 

autocorrelation on the variance (Wichmann et al. 2005). Altogether, the temperature in patch 𝑥 144 

changes over time as  145 

𝑇(𝑥, 𝑡 + 1) = 𝑇(𝑥, 𝑡) + 𝜏 + 𝜓𝜖(𝑡). (4) 

Assisted migration 146 

AM focuses on a single target species (Fig. 1c), species 𝐹. We relocate species 𝐹 if the 147 

total metapopulation size 𝑁𝐹(𝑥, 𝑡) is below a threshold at the beginning of a time step. To avoid 148 

repeating AM before species 𝐹 recovers, we only relocate if we did not previously relocate 149 

within the last 𝛼 time steps. After reproduction, we select a fraction of propagules 𝜌 for AM, 150 

randomly chosen from throughout the species' range, while the remaining propagules are left 151 

behind to disperse naturally. From the propagules chosen for AM, only a proportion 𝜇 of them 152 
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survive relocation, and those are relocated uniformly around a patch 𝛽 spaces poleward of the 153 

patch that most closely matches the species' estimated thermal optimum. 154 

We considered three methods of estimating the thermal optimum of species 𝐹. The 155 

perfect knowledge estimate is the exact value of the true thermal optimum 𝑧𝐹. The realized 156 

niche estimate is the temperature in the median patch of the target species’ distribution at 𝑡 =157 

0. The fundamental niche estimate measures species’ limits without competition by simulating 158 

100 time steps with 𝜏 = 0 °C/year and only species 𝐹. This estimate is the temperature in the 159 

median patch of the resulting distribution. 160 

Parameterization and implementation 161 

Simulations occurred on a temperature gradient with 𝐿 = 512 patches, where initial 162 

temperatures linearly varied over space from 9.78 °C to 30.22 °C. We considered two types of 163 

environments, defined by their stochasticity. Low-stochasticity environments had an annual 164 

temporal standard deviation of 𝜓 = 0.1639 °C, equal to the standard deviation of mean 165 

combined global land-surface air and sea-surface water temperature anomalies from 1880 to 166 

1979 (GISTEMP Team 2019; Lenssen et al. 2019), and high-stochasticity environments had four 167 

times that amount. Both had an annual temporal autocorrelation of 𝜅 = 0.767, also from 168 

temperature anomalies from 1880 to 1979. We used skewness constant 𝜆 = −2.7 (Urban et al. 169 

2012) and carrying capacity 𝐾 = 30 individuals. 170 

 171 

 172 
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Table 1: Definitions of the symbols used in the model. 

Parameter Symbol Values Units 

Total species 𝑆 32 species 
Dispersal distance of species 𝑖 𝛾𝑖  Lognormal; mean=2.5, st. dev.=2.5 patches 
Thermal optimum of species 𝑖 𝑧𝑖  Uniform; 9.78 to 30.22 °C 

Thermal tolerance breadth of species 𝑖 𝜎𝑖  Lognormal; mean=5, st. dev.=5 °C 
Reproductive strength of species 𝑖 𝑟𝑖  Derived from 𝜎𝑖  - 

Skewness constant 𝜆 -2.7 - 

Fraction of population relocated 𝜌 0, 0.05, 0.1, …, 1 - 
Assisted migration survival probability 𝜇 0.8 - 

Low population threshold 𝜂 42 individuals 
Cooldown time between relocations 𝛼 5 years 

Relocation adjustment (relative to optimum) 𝛽 10 patches 

Total patches 𝐿 512 patches 
Patch carrying capacity 𝐾 30 Individuals 

Mean annual temperature change  𝜏 0.04 °C/year 
Annual temporal autocorrelation 𝜅 0.767 - 

Annual temporal standard deviation 𝜓 low=0.1639, high=0.6556 °C 

Initial total population size of species 𝑖 𝑁𝑖(0) - individuals 
Difference in thermal optimum with species 𝑖 𝑧diff,𝑖  - °C 

Inverse Simpson’s index of region 𝑊 𝐷𝑊  - - 
Measured temperature change 𝑐𝑇 - °C 

Measured SD in temperature 𝑠𝑇 - °C 
Deviation in thermal optimum estimate 𝑧est,dev - °C 

 

 

Before simulating climate change, we performed an initialization phase to assemble a 173 

metacommunity with multidecadal coexistence under background environmental stochasticity. 174 

First, we generated a pool of 𝑆 = 32 randomized species, each with unique dispersal distances 175 

𝛾𝑖, thermal optima 𝑧𝑖, and thermal tolerance breadths 𝜎𝑖, all randomly generated from default 176 

values in Urban et al. (2012) (Table 1). We numerically derived the reproductive strength 𝑟𝑖 177 

from 𝜎𝑖, such that each species had the same overall reproductive potential 𝐵 = 5 when 178 

integrating over temperature. This emulates a jack-of-all-trades-master-of-none trade-off 179 

(Levins 1968), so that species ranged from generalists (wide 𝜎𝑖, low 𝑟𝑖) to specialists (narrow 𝜎𝑖, 180 

high 𝑟𝑖). We placed 25 individuals from each species into five adjacent patches that most closely 181 

matched each species’ thermal optimum and iterated through the model with mean 182 
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temperature change 𝜏 = 0 °C/year until 100 time steps passed without any extinctions. The 183 

remaining communities set initial conditions for subsequent climate change simulations. 184 

Next, we modeled metacommunity dynamics under climate change without AM to 185 

determine which characteristics related to species, communities, and environments could 186 

predict species’ vulnerability when unmanaged. After generating 216 initialized communities 187 

under both low and high stochasticity, we iterated through 100 time steps with mean annual 188 

temperature change 𝜏 = 0.04 °C/year to reflect projected temperature changes under RCP8.5 189 

(Urban et al. 2012, IPCC 2014). From these no-AM simulations, we chose the low-population 190 

threshold for AM 𝜂 = 42, high enough that relocation could occur before extinction but low 191 

enough that there were few false positives (Appendix S1). 192 

Finally, we modeled metacommunity dynamics under climate change with AM to test 193 

the success of a suite of potential relocation decisions. We initialized 10000 metacommunities 194 

under both low and high stochasticity and chose several target species (species 𝐹) that could be 195 

considered vulnerable to climate change, including: the species with the shortest dispersal, the 196 

species with the narrowest thermal tolerance breadth (specialists), the species with the closest 197 

(or lowest difference in thermal optimum with its) poleward neighbor, and the species with the 198 

lowest initial population size. For comparison, we also chose a randomly selected species. All 199 

target species were initially extant within an interior region of the temperature gradient, 𝑊 ∈200 

[65,320], ensuring that their thermal optimum would likely exist after climate change and that 201 

there was competitive pressure on both the trailing and leading edges. The species with closest 202 

thermal optimum below the target species was the poleward neighbor (species 𝑃) and the 203 

closest species on the other side was the equatorward neighbor (species 𝐸). We simulated each 204 
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combination of target species type, fraction relocated 𝜌 from 0 to 1, and thermal optimum 205 

estimate while keeping consistent values for AM survival probability µ = 0.8, cooldown time 206 

𝛼 = 5, and relocation adjustment 𝛽 = 10. 207 

To determine which ecological characteristics could best predict species’ vulnerability to 208 

climate change, we ran random forest classifications (randomForest 4.6-14 package, R 209 

Version 3.5.1) on all simulations without AM (separately for low and high stochasticity). The 210 

dependent variable was the fate of a single random species (extinction/persistence) after 211 

climate change, and the independent variables were target species’ thermal optimum (𝑧𝐹); 212 

difference in thermal optimum between target species and neighbors (𝑧diff,𝑃, 𝑧diff,𝐸); target and 213 

neighbor species’ dispersal (𝛾𝐹, 𝛾𝑃, 𝛾𝐸); target and neighbor species’ thermal tolerance 214 

breadths (𝜎𝐹 , 𝜎𝑃, 𝜎𝐸); target and neighbor species’ initial population sizes (𝑁𝐹(0), 𝑁𝑃(0), 215 

𝑁𝐸(0)); inverse Simpson’s diversity index of the initial community (𝐷𝑊); measured temperature 216 

change (𝑐𝑇); and measured standard deviation in temperature (𝑠𝑇). Because persistence was 217 

more common than extinction, we down-sampled for equal sample sizes. The unscaled 218 

permutation variable importance of each independent variable estimated how well these 219 

characteristics predicted vulnerability and partial dependence quantified the marginal effect of 220 

the characteristics on vulnerability. 221 

To determine what types of species and communities are conducive to AM success 222 

(increased persistence likelihood with AM), we ran another set of random forest classifications. 223 

The dependent variable was the fate of the target species (extinction/persistence) and the 224 

independent variables were the same as above in addition to the deviation between the 225 

estimated and true thermal optimum (𝑧est,dev). To focus on cases where target species 226 
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specifically benefited from AM, we only included simulations in which the target species went 227 

extinct without AM. To simplify analysis, we only considered simulations with fraction-moved 228 

𝜌 = 0.5, shortest dispersers, and realized niche estimates. 229 

 230 

Results 231 

Without AM 232 

Without assisted migration (AM), 91.3% of species persisted under climate change in 233 

low-stochasticity environments compared with 84.7% persistence under high stochasticity (Fig. 234 

2a-b). In both cases, persistence depended most strongly on a small number of characteristics 235 

based on random forest classifications (out-of bag error: 8.09% low stochasticity, 11.27% high 236 

stochasticity) (Fig. 2c-d, Appendix S2). Persistence was lowest when a species had low initial 237 

population sizes 𝑁𝐹(0), short dispersal distances 𝛾𝐹, and a close poleward neighbors 𝑧diff,𝑃. 238 

Under low stochasticity, persistence depended on the thermal tolerance of the poleward 239 

neighbor 𝜎𝑃, such that specialists (species with narrow thermal tolerance breadth) with 240 

specialists on their leading edge were less likely to persist than specialists with generalists on 241 

their leading edge (Appendix S2). Comparatively, dispersal and the measured standard 242 

deviation in temperature (𝑠𝑇) were more important for persistence under high stochasticity. 243 

Altogether, competition largely determined persistence under low stochasticity, whereas 244 

dispersal largely determined persistence under high stochasticity. 245 
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Figure 2: Species’ persistence and the characteristics that predicted persistence varied with 
environmental stochasticity. (a,b) Each point shows the fate of a single species (triangle: extinction; 
circle: persistence) following climate change from a subset of unique simulations plotted over dispersal 
distance (horizontal axis) and thermal tolerance breadth (vertical axis). On the top and right of these 
plots are the marginal distributions of these parameters, separated by species’ fate. Each axis is on a 
logarithmic scale. (c,d) Relative unscaled permutation importance of independent variables on species’ 
persistence. Each characteristic is shaded depending on whether it is a characteristic of the species, its 
neighbors, the full community, or the environment. The horizontal axis shows the rank of the variable 
importance compared to other variables (1 being the most important), arranged in the same order for 
both plots. See Table 1 for definitions of symbols. 
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With AM 246 

Under all scenarios, target species had a higher chance of persisting when relocating an 247 

intermediate fraction of the total population during AM (Fig. 3). Moreover, target species 248 

persistence was typically lower we relocating 100% of the total population than under no 249 

relocation (except when the target species was the shortest disperser). More often than not, 250 

AM involved multiple relocations (Fig. 4a-b) and higher AM success when relocating 251 

intermediate fractions required more individual relocation events (Fig. 4c-d). Assisted migration 252 

had little effect on the persistence of non-target species and final community diversity 253 

(Appendix S2), so the remaining results focus on persistence instead of invasion risk. 254 

Of the possible target species, the shortest dispersers experienced the greatest benefit 255 

from AM (Fig. 3a-b). For most treatments, AM also increased persistence of target species with 256 

the lowest population sizes, species with the closest poleward neighbors, and randomly picked 257 

species. However, AM usually decreased persistence of species with the narrowest thermal 258 

tolerances (specialists). 259 

Assisted migration had a similar effect on persistence regardless of how we estimated 260 

the species’ thermal optimum (Fig. 3c-d). Under high stochasticity, AM was most successful 261 

with perfect knowledge of species’ thermal optima, but under low stochasticity, AM was most 262 

successful with realized niche estimates. This difference suggests stronger competition in low-263 

stochasticity environments such that competition set species limit more than species’ inherent 264 

thermal tolerances. 265 
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Figure 3: During climate change simulations, the persistence likelihood of a target species chosen for 
assisted migration (vertical axis) depended on the fraction of that population that was relocated 
(horizontal axis), and the level of environmental stochasticity (a,c: low, b,d: high). The dotted lines 
correspond to persistence with no management action and are shaded to match each comparison. (a,b) 
The effect of assisted migration on persistence with different types of target species chosen for 
relocation. The thermal optimum estimate used in each of these was the realized niche estimates (based 
on the species initial distribution). (c,d) The effect of assisted migration on persistence with different 
types of thermal optimum estimates. The target species in each of these simulations was the species 
with the shortest dispersal. 
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Figure 4: The number of independent relocation events that occurred during assisted migration 
simulations for low stochasticity (a,c) and high stochasticity (b,d) environments. (a,b) Among species 
that were relocated at least one time, the mean number of independent relocation events (vertical axis) 
that occurred under a range of values for the fraction of the population that was relocated each time 
(horizontal axis). The simulations shown here use the initial distribution (realized niche) estimate of the 
species’ thermal optimum. (c,d) We categorized assisted migration simulations by fate of the species 
(persistence/extinction) and the number of independent relocation events that occurred over the 
course of the simulation. Here we show the proportion simulations that fall into these categories 
(shaded differently) depended on the fraction of the population moved during assisted migration 
(horizontal axis). The thick black line in each sub-figure separates simulations where the target species 
survives (below the line) and where it goes extinct (above the line). Simulations shown here use the 
shortest disperser as the target species and the initial distribution (realized niche) estimate of the 
species’ thermal optimum. 
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For both levels of stochasticity, three of the top four most important variables for 266 

predicting AM success of the shortest disperser were the target species’ initial population size 267 

𝑁𝐹(0), the target species’ thermal tolerance breadth 𝜎𝐹 , and the difference in thermal 268 

optimum between the target species and its poleward neighbor 𝑧diff,𝑃, based on random forest 269 

classifications (out-of bag error: 25.27% low stochasticity, 30.56% high stochasticity) (Fig. 5a-b). 270 

Assisted migration was most successful when the values of these characteristics were higher 271 

(Fig. 5c-e), suggesting that AM is most likely to benefit generalists with higher population sizes 272 

and less poleward competition. Under low stochasticity, AM was less successful if the poleward 273 

neighbor was a specialist with narrow thermal tolerance breadth 𝜎𝑃 (Fig. 5f), implying that 274 

poleward competition limited AM success under low stochasticity but not under high 275 

stochasticity. Assisted migration was also more successful when thermal optimum estimates 276 

were warmer than the true value (positive deviation of 𝑧est,dev) (Fig. 5g), and this effect was 277 

stronger under high stochasticity. Colder estimates placed target species further along the 278 

climate gradient, often beyond temperatures under which they can survive, so extreme year-to-279 

year temperature change under high stochasticity would be more likely to drive the relocated 280 

population extinct if they are placed into the wrong location. 281 
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Figure 5: Importance of ecological characteristics from random forest classifications in determining 
whether assisted migration was successful for the target species (relocating 50% of the shortest 
dispersing species population with a realized niche estimate thermal optimum). (a,b) Relative unscaled 
permutation importance of independent variables of whether or not assisted migration improved 
species’ persistence under low stochasticity (a) and high stochasticity (b). The horizontal axis shows the 
rank of the variable importance compared to other variables (1 being the most important), arranged in 
the same order for both plots. Each characteristic is shaded depending on whether it is a characteristic 
of the target species, its neighbors, the full community, the environment, or uncertainty around the 
thermal optimum estimate. (c-h) Partial dependence of the values of 6 independent variables 
(corresponding to the top 6 important variables for low stochasticity labeled in panel (a) and (b)) on 
whether or not assisted migration will increase the shortest disperser’s persistence. The vertical axis is 
the log-odds of whether assisted migration increases persistence of a species (higher being more likely 
to persist). Solid lines represent the low stochasticity environment and dashed lines represent the high 
stochasticity environment. See Table 1 for definitions of symbols. 

 282 
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Discussion 283 

Our model suggests that assisted migration (AM) can be effective at increasing species’ 284 

persistence under climate change if the species is limited by short dispersal, small population 285 

sizes, and competition. However, like many related conservation translocations (Fischer & 286 

Lindenmayer 2000; Godefroid et al. 2011), we found that AM often fails when the relocated 287 

population does not establish, especially for narrow thermal tolerance species. Relocating an 288 

intermediate fraction of the population was consistently an optimal strategy (Fig. 3) because it 289 

allowed repeated AM events, compensating for potential establishment failures (Fig. 4). 290 

Choosing species for AM 291 

Species are vulnerable to climate change for a variety of reasons, ranging from 292 

dispersal-limitation (Pearson 2006), to narrow thermal tolerance (Tewksbury et al. 2008), to 293 

competitive interactions (Gilman et al. 2010; Urban et al. 2012). Our model suggests that the 294 

effectiveness of AM as a management strategy depends on the driver of vulnerability. In 295 

particular, AM might not be appropriate for specialist, narrow-tolerance species. Because 296 

specialist species usually persisted under climate change without AM (Fig. 2), narrow thermal 297 

tolerance was not a limiting factor for persistence in this model. This arises because of our 298 

assumption of a jack-of-all-trades-master-of-none (JATMN) trade-off (Levins 1968), where 299 

specialists had a high reproductive performance over a smaller range of temperatures. Because 300 

of this trade-off, specialists were stronger competitors under lottery competition (Chesson & 301 

Warner 1981), and this competitive advantage could outweigh any costs from narrow thermal 302 

tolerance. We also found that specialist species were less likely to benefit from AM (Fig. 3). 303 
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With only a narrow range of temperatures under which specialists can replace themselves, any 304 

error in identifying a species’ optimal climate would disproportionately affect specialists. 305 

Removing the JATMN tradeoff would reduce specialists’ competitiveness which could make 306 

them more vulnerable to climate change, but it would also weaken specialists’ competitive 307 

ability, further limiting the effectiveness of AM. 308 

Assisted migration was most successful for species that were dispersal limited because, 309 

in these cases, AM directly mitigated the driver of their vulnerability to climate change 310 

(McLachlan et al. 2007; Schwartz et al. 2012). Not only was short dispersal a strong predictor of 311 

extinction (Fig. 2), but the shortest dispersers also had the strongest proportional increase in 312 

persistence with AM (Fig. 3). Moreover, the shortest dispersers were the only target species 313 

that had increased persistence with every variation of AM that we modeled. We also found that 314 

species with low initial population sizes and species with close poleward competitors were also 315 

likely to be vulnerable to climate change and to benefit from AM (Fig. 3). These species had 316 

lower dispersal than the average species (Appendix S2), but they were likely to be strong AM 317 

candidates because of their other vulnerabilities (Gilman et al. 2010; Urban et al. 2012; 318 

Thompson & Gonzalez 2017). For example, species with low population sizes might be capable 319 

of dispersing far but not produce enough offspring to realize the full extent of their dispersal 320 

potential. For the case of species with close poleward neighbors, our analysis reveals that 321 

species interactions could identify target species for AM that might otherwise be overlooked. 322 

Overall, our results suggest that AM might be considered for conserving a variety of species 323 

beyond those that are directly dispersal limited. 324 
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Even under optimal conditions, AM did not prevent the extinction of nearly 20% of 325 

short-dispersing species (Fig. 3). For specialists, AM failed because suitable environments were 326 

sparse and narrow, but for other species, AM failed because they had a combination of 327 

characteristics that limited establishment success (such as a species with both short dispersal 328 

and narrow thermal tolerance) (Fig. 5). In these cases, managers might consider combining 329 

alternative management strategies, like increasing connectivity, removing barriers, or creating 330 

new reserves (Heller & Zavaleta 2009; Loss et al. 2011; Lawler & Olden 2011). For example, 331 

preparing the recipient ecosystem by controlling the populations of resident species (Godefroid 332 

et al. 2011) could limit competitive pressure, reduce the risk of establishment failure, and 333 

temporarily increase the realized niche of the relocated species. However, this approach would 334 

come with additional risks to resident species. 335 

Fractional relocation 336 

We found that AM was most successful when we relocated an intermediate fraction of 337 

the total population (typically around 50%; Fig. 3), as this increases robustness to uncertainty 338 

that could cause AM actions to fail. By leaving a fraction of the population to persist in the 339 

original location, this approach retains a source population for future conservation actions in 340 

case relocation occurs at the wrong time or into the wrong place. Fractional relocation also 341 

buffers against the risk of falsely identifying a target species for AM, in which case leaving some 342 

individuals behind could allow the species to recover those individuals that might be lost during 343 

AM. This contrasts with past AM models that assume the optimal strategy is to move the 344 

entirety of the total population, as the left-behind population would eventually go extinct 345 

without management (McDonald-Madden et al. 2011). Though relocating more individuals 346 
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should increase the chances that a species establishes (Godefroid et al. 2011; Blackburn et al. 347 

2015), this has diminishing returns when considering negative density dependence (Fischer & 348 

Lindenmayer 2000). Instead, relocating a fraction of a species would create two smaller 349 

populations, each with higher growth rates and less negative density dependence than a single 350 

unmanaged population. Though we account for the extinction risk of small populations through 351 

demographic and environmental stochasticity (Lande 1998), we do not include Allee effects or 352 

explicit genetic components that could cause inbreeding depression, which can further increase 353 

extinction risk of small populations (Gilpin & Soulé 1986). 354 

Fractional relocation could also be robust to other risks that we did not directly model, 355 

such as the risk of invasion beyond competition (because we did not find invasion risk from 356 

competition alone; see below). Though fractional relocation relies largely on repeated 357 

translocations, which repeatedly expose the recipient ecosystem to potential invasion events 358 

(Kolar & Lodge 2001; Lockwood et al. 2005), intentionally relocating fewer individuals into a 359 

well-monitored ecosystem could also make it easier to detect and prevent invasions before 360 

they occur. Similarly, smaller releases could be easier to control if funding, planning, or societal 361 

opinions change and reversal is necessary (Haight et al. 2000). 362 

Community ecology of AM 363 

Our model builds on past research that suggests competition can prevent some species 364 

from tracking climate change (Urban et al. 2012). Though species were vulnerable to extinction 365 

if poleward species were strong competitors (Fig. 2), AM was also less successful when we 366 

relocated species into an area occupied by stronger competitors (Fig. 5). The effect of 367 
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competition was higher in competition-driven, low-stochasticity communities where AM 368 

success depended on characteristics of the poleward species than in dispersal-driven, high-369 

stochasticity communities where success depended more on the ability to accurately place a 370 

species into its optimal climate (Fig. 5). This difference suggests that historical climate variability 371 

and community assembly can inform management decisions about AM. For example, limiting 372 

competitive interactions (Godefroid et al. 2011) might be more effective for species from 373 

environments with low historical variability, whereas relocating species into climate refugia 374 

(Morelli et al. 2016) might be more effective for species from environments with higher 375 

historical variability. 376 

Despite concerns about the potential of AM to cause invasive species (Mueller & 377 

Hellmann 2008; Ricciardi & Simberloff 2009), we did not find evidence of invasions with our 378 

model (Appendix S2). However, we made several simplifications that could have limited the 379 

capacity for invasion to occur. First, the simple spatial structure of our model assumed a single 380 

contiguous community that assembled without distinct barriers, making the AM in our model 381 

analogous to intra-continental relocations that are less likely to cause invasions (Mueller & 382 

Hellmann 2008; Thomas 2011; Bellemare et al. 2017). Additionally, for the sake of simplicity, 383 

our model considered only intra-guild lottery competition without the wider web of species 384 

interactions that would naturally occur. Biological invasions usually involve more complex 385 

ecological dynamics, many of which are taxon-specific and difficult to generalize (Kolar & Lodge 386 

2001; Lockwood et al. 2005; Simberloff et al. 2013). Enemy-release effects would occur if 387 

relocated species escape antagonistic interactions that limits growth within their original range 388 

(Prenter et al. 2004). Also, relocated species might carry pathogens or parasites that spread to 389 
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other species in recipient community (Simler et al. 2018). A richer set of interactions could also 390 

complicate AM success, as relocating a species without a mutualist might limit establishment 391 

(Lunt et al. 2013; Plein et al. 2016). Also, novel interactions in the recipient ecosystem could 392 

counteract any physiological benefits the species would receive by reaching an optimal climate. 393 

Overall, while our simple competitive framework provides a first step toward exploring the 394 

uncertainties and community context of AM, a more complete set of interactions will be 395 

necessary to understand the full range of outcomes that could follow a relocation event, from 396 

establishment failure, to invasion, to the wide-scale restructuring of ecological communities 397 

that is already taking place with climate change (Alexander et al. 2015; Thompson & Gonzalez 398 

2017). 399 
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Appendix S1: Supplementary methods 538 

Double geometric distribution 539 

In continuous space models of species dispersal, ecologists often use a Laplace or 540 

double exponential distribution kernels (Kot et al. 1996; Neubert & Caswell 2000; Urban et al. 541 

2012). This is largely because a Laplace distribution is leptokurtic, or has “fat-tails” compared to 542 

a standard Guassian kernel. These fat tails give some individuals a higher chance of dispersing 543 

extremely far from their origin, which may explain how some slow-dispersing species could 544 

track rapidly changing climates in the past (Clark et al. 1998). Because these rare long dispersal 545 

events could play an important role in how dispersal-limited species could track climate change 546 

in our model, we used a discrete-space leptokurtic dispersal kernel. 547 

Just as the Laplace distribution is a “double exponential” distribution, we considered 548 

dispersal kernel that would be a “double geometric” distribution. In other words, this kernel 549 

resembles a geometric distribution moving away from 0 in both the positive and negative 550 

directions. This kernel is defined by one parameter 𝑞𝑖, the probability of a propagule remaining 551 

in any particular patch (besides the origin). Each propagule either stays at its origin with 552 

probability 
𝑞𝑖

2−𝑞𝑖
 or moves one space in the pole-ward or equator-ward direction, each with 553 

equal probability
1−𝑞𝑖

2−𝑞𝑖
. Then each propagule either stays at that current patch with probability 𝑞𝑖 554 

or continues to move one space in the same direction with probability 1 − 𝑞𝑖. This process 555 

continues until the propagule stays. The probability that a propagule disperses from patch 𝑥 to 556 

path 𝑦 is then, 557 
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 𝑘𝑖(𝑥, 𝑦) = (
𝑞𝑖

2 − 𝑞𝑖
) (1 − 𝑞𝑖)

|𝑥−𝑦|. (1) 

Using this probability mass function, we can determine the mean dispersal distance of a 558 

propagule, 𝛾𝑖, as the mean absolute value of a random variable 𝑦 ∼ 𝑘𝑖(𝑥, 𝑦). That is 559 

𝐸[𝑌] = ∑ |𝑥 − 𝑦|

∞

𝑦=−∞

𝑘𝑖(𝑥, 𝑦) 
 

 = ∑ |𝑥 − 𝑦|

∞

𝑦=−∞

(
𝑞𝑖

2 − 𝑞𝑖
) (1 − 𝑞𝑖)

|𝑥−𝑦| 
 

 = (
1

2 − 𝑞𝑖
) [ ∑ |𝑥 − 𝑦|

𝑥−1

𝑦=−∞

𝑞𝑖(1 − 𝑞𝑖)
|𝑥−𝑦| + 0 + ∑ |𝑥 − 𝑦|

∞

𝑦=𝑥+1

𝑞𝑖(1 − 𝑞𝑖)
|𝑥−𝑦|] 

 

 = 2 (
1

2 − 𝑞𝑖
) ∑ 𝑦

∞

𝑦=0

𝑞𝑖(1 − 𝑞𝑖)𝑦 
 

 =
2(1 − 𝑞𝑖)

𝑞𝑖(2 − 𝑞𝑖)
. 

(2) 

  
 

Low population threshold 560 

As we implemented a reactive approach to assisted migration, we had to determine a 561 

threshold population below which the population would be relocated. Deciding on appropriate 562 

thresholds required us to weigh certain management priorities. If these thresholds were too 563 

low, there would likely be only a narrow time window in which managers could react to 564 

population decline and relocate the population before extinction. Alternatively, if thresholds 565 

are too high, managers might relocate species that are temporarily in decline but not at risk of 566 
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extinction, risking management funds and effort while potentially creating some extinction risk 567 

during an inappropriate relocation. 568 

To find a threshold that balanced these priorities, we analyzed time series of population 569 

sizes in the 216 high stochasticity simulations in which no management actions were taken. We 570 

considered a range of potential population size thresholds from 1 to 100. For each species, if 571 

the population fell below the threshold, we determined whether or not the population went 572 

extinct following the first instance it fell below the threshold. Those that fell below this 573 

threshold but did not go extinct were false positives. Those that fell below the threshold and 574 

went extinct in less than 5 time steps were true positives, but impractical to relocate before 575 

extinction. Those that fell below the threshold and went extinct in more than 5 but less than 10 576 

time steps were true positives that were practical for relocation. The maximum percentage of 577 

practical true positives occurred with a threshold of population size of 𝜂 = 42 (Figure S1.1), 578 

which we used as the low population threshold throughout our AM simulations. 579 
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  590 

Figure S1.1: When simulated under climate change without assisted migration, species fell into three 591 
categories (shaded) depending on their fate following the first time they fell below a low population 592 
threshold. We compared threshold values to determine when we could detect a species was likely to go 593 
extinct, but with enough time to take management action to prevent that extinction. “False positive” 594 
species continued to persist until the end of the simulation. “Impractical true positive” species went 595 
extinct within 5 time steps. “Practical true positive” species went extinct in more than 5 time steps but 596 
less than 10 time steps. The threshold value that optimizes the percentage of practical true positives 597 
(42) is marked by the vertical line.  598 
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Appendix S2: Supplementary tables and figures 599 

Table S2.1: Mean value of characteristic values for different types of target species relative to 600 

mean values from randomly chosen species in both low and high stochasticity environments. 601 

Target Shortest 𝛾𝐹 Narrowest 𝜎𝐹  Lowest 𝑁𝐹(0) Closest 𝑧diff,𝑃 

Stochasticity Low High Low High Low High Low High 

 𝑧𝐹 1.00 1.01 1.00 1.00 1.00 1.01 1.00 0.99 
 𝛾𝐹 0.22 0.27 1.06 1.48 0.85 0.83 0.90 0.97 
 𝜎𝐹  0.98 1.10 0.28 0.47 1.49 1.24 0.92 0.99 

 𝑁𝐹(0) 0.85 0.84 0.88 0.99 0.29 0.39 0.73 0.77 
 𝑧diff,𝑃 0.98 1.01 0.86 0.99 0.70 0.73 0.17 0.28 

 𝑧diff,𝐸 0.97 1.01 0.85 0.99 0.74 0.77 1.19 1.19 

  602 
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603 
Figure S2.1: Importance of species, community, and environmental characteristics in determining 604 

whether the target species will persist with climate change without assisted migration. (a,b) Relative 605 

unscaled permutation importance of independent variables of whether a species persisted through 606 

climate change with no management under low stochasticity (a) and high stochasticity (b). The 607 

horizontal axis shows the rank of the variable importance compared to other variables (1 being the most 608 

important), arranged in the same order for both plots. Each characteristic is shaded depending on 609 

whether it is a characteristic of the target species, its neighbors, the full community, the environment, 610 

or uncertainty around the thermal optimum estimate. (c-h) Partial dependence of the values of 6 611 

independent variables (corresponding to the top 6 important variables for low stochasticity labeled in 612 

panel (a) and (b)) on whether or not assisted migration will increase the shortest disperser’s persistence. 613 

The vertical axis is the log-odds of whether a species persisted (higher being more likely to persist). Solid 614 

lines represent the low stochasticity environment and dashed lines represent the high stochasticity 615 

environment. See Table 1 for definitions of symbols.  616 
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 617 

Figure S2.2: Comparison of the thermal tolerances of target that went extinct during simulations 618 

without assisted migration and with the species on their pole-ward side (a) under low stochasticity and 619 

(b) under high stochasticity. Target species are grouped into 10% quantiles of their thermal tolerances 620 

with the bottom and top quantiles removed to limit the scale of the figure. Among these species that 621 

went extinct, those with higher thermal tolerances had pole-ward neighbors with higher thermal 622 

tolerance, with a stronger relationship in lower stochasticity environments. 623 
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624 
Figure S2.3: During climate change simulations, the persistence likelihood of non-target species that 625 

were not chosen for assisted migration (vertical axis) did not depend on the fraction of that population 626 

that was relocated (horizontal axis). The dotted lines correspond to persistence with no management 627 

action and are shaded to match each comparison. (a,b) The effect of assisted migration on non-target 628 

species’ persistence with different types of target species chosen for relocation. The thermal optimum 629 

estimate used in each of these was the realized niche estimates (based on the species initial 630 

distribution). (c,d) The effect of assisted migration on non-target species’ persistence with different 631 

types of thermal optimum estimates. The target species in each of these simulations was the species 632 

with the shortest dispersal.  633 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811497doi: bioRxiv preprint 

https://doi.org/10.1101/811497
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

 634 

Figure S2.4: During climate change simulations, the relative change in gamma inverse Simpson’s 635 

diversity index (vertical axis) depended on the fraction of the target population that was relocated 636 

(horizontal axis). The dotted lines correspond to gamma diversity with no management action and are 637 

shaded to match each comparison. (a,b) The effect of assisted migration on gamma diversity with 638 

different types of target species chosen for relocation. The thermal optimum estimate used in each of 639 

these was the realized niche estimates (based on the species initial distribution). (c,d) The effect of 640 

assisted migration on gamma diversity with different types of thermal optimum estimates. The target 641 

species in each of these simulations was the species with the shortest dispersal.  642 
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Appendix S3: R code 643 

Sample R code can be accessed at: https://figshare.com/s/3325b51ed75d159e035e 644 
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