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Abstract

Simultaneous recordings from the cortex have revealed that neural activity is highly variable, and
that some variability is shared across neurons in a population. Further experimental work has demon-
strated that the shared component of a neuronal population’s variability is typically comparable to or
larger than its private component. Meanwhile, an abundance of theoretical work has assessed the impact
shared variability has upon a population code. For example, shared input noise is understood to have a
detrimental impact on a neural population’s coding fidelity. However, other contributions to variability,
such as common noise, can also play a role in shaping correlated variability. We present a network of
linear-nonlinear neurons in which we introduce a common noise input to model, for instance, variability
resulting from upstream action potentials that are irrelevant for the task at hand. We show that by
applying a heterogeneous set of synaptic weights to the neural inputs carrying the common noise, the
network can improve its coding ability as measured by both Fisher information and Shannon mutual
information, even in cases where this results in amplification of the common noise. With a broad and
heterogeneous distribution of synaptic weights, a population of neurons can remove the harmful effects
imposed by afferents that are uninformative about a stimulus. We demonstrate that some nonlinear
networks benefit from weight diversification up to a certain population size, above which the drawbacks
from amplified noise dominate over the benefits of diversification. We further characterize these benefits
in terms of the relative strength of shared and private variability sources. Finally, we studied the asymp-
totic behavior of the mutual information and Fisher information analytically in our various networks as
a function of population size. We find some surprising qualitative changes in the asymptotic behavior
as we make seemingly minor changes in the synaptic weight distributions.

1 Introduction

Variability is a prominent feature of many neural systems – neural responses to repeated presentations of
the same external stimulus will typically vary from trial to trial [41]. Furthermore, neural variability often
exhibits pairwise correlations, so that pairs of neurons are more (or less) likely to be co-active than they
would be by chance if their fluctuations in activity to a repeated stimulus were independent. These so-
called “noise correlations” (which we also refer to as “shared variability”) have been observed throughout
the cortex [4, 13], and their presence has important implications for neural coding [1, 52].

If the activities of individual neurons are driven by a stimulus shared by all neurons but corrupted by
noise that is independent for each neuron (so-called “private variability”), then the signal can be recovered
by simply averaging the activity across the population [1, 32]. If instead some variability is shared across
neurons (i.e., there are noise correlations), naively averaging the activity across the population will not
necessarily recover the signal, no matter how large the population [52]. An abundance of theoretical work
has explored how shared variability can be either beneficial or detrimental to the fidelity of a population
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code (relative to the null model of only private variability amongst the neurons), depending on its structure
and relationship with the tuning properties of the neural population [1, 5, 12, 14, 17, 34, 44, 51, 52].

One general conclusion of this work highlights the importance of the geometric relationship between
noise correlations and a neural population’s signal correlations [4, 22]. To illustrate this, the mean responses
of a neural population across a variety of stimuli (i.e., those responses represented by receptive fields or
tuning curves) can be examined in the neural space (Fig. 1a, black curves). The correlations amongst
the mean responses for different stimuli specify the signal correlations for a neural population [4]. Private
variability exhibits no correlational structure, and thus its relationship with the signal correlations is
determined by the mean neural activity and the individual variances (Fig. 1a, left). Shared variability,
however, may reshape neural activity to lie, for example, orthogonal to the mean response curve (Fig. 1a,
middle). In the case of Figure 1a, middle, neural coding is improved (relative to private variability),
because the variability occupies regions of the neural space that are not traversed by the mean response
curve [33]. Shared variability can also harm performance, however. Recent work has identified differential
correlations – those that are proportional to the products of the derivatives of tuning functions (Fig. 1a,
right) – as particularly harmful to the performance of a population code [34]. While differential correlations
are consequential, they may serve as a small contribution to a population’s total shared variability, leaving
“non-differential correlations” as the dominant component of shared variability. [27].

The sources of neural variability – and their respective contributions to the private and shared compo-
nents – will have a significant impact on shaping the geometry of the population’s correlational structure,
and therefore its coding ability [10]. For example, private sources of variability such as channel noise or
stochastic synaptic vesicle release could be averaged out by a downstream neuron receiving input from
the population [18]. However, sources of variability shared across neurons – such as the variability of pre-
synaptic spike trains from neurons that synapse onto multiple neurons – would introduce shared variability
and place different constraints on a neural code [24, 41]. In particular, differential correlations are typically
induced by shared input noise (i.e., noise carried by a stimulus) or suboptimal computations [7, 24].

Past work has examined the contributions of private and shared sources to variability in cortex [2, 16].
Specifically, by partitioning sub-threshold variability of a neural population into private components (synap-
tic, thermal, channel noise in the dendrites, and other local sources of variability) and shared components
(variability induced by afferent connections), it was found that the private component of the total vari-
ability was quite small, while the shared component can be much larger (Fig. 1b and c). Thus, neural
populations must contend with the large shared component of a neuron’s variability. The incoming struc-
ture of shared variability and its subsequent shaping by the computation of a neural population is an
important consideration for evaluating the strength of a neural code [54].

Moreno-Bote et al. demonstrated that shared input noise is detrimental to the fidelity of a popula-
tion code [34]. Here, we instead examine sources of shared variability which do not necessarily result in
differential correlations (i.e., they do not appear as shared input noise) and thus can be manipulated by
features of neural computation such as synaptic weighting. We refer to these noise sources as “common
noise” to distinguish them from the aforementioned special case of “shared input noise” [29, 46]. For
example, a common noise source could include an upstream neuron whose action potentials are “noisy” in
the sense that they are unimportant for the computation of the current stimulus. Common noise, because
it is manipulated by synaptic weighting, can serve as a source of nondifferential correlations (e.g., Fig. 1a,
middle), thereby having either a beneficial or harmful impact on the strength of the population code. We
aim to better elucidate the nature of this impact.

We consider a linear-nonlinear architecture [25, 36, 37] and explore how its neural representation is
impacted by both a common source of variability and private noise sources affecting individual neurons
independently. This simple architecture allowed us to analytically assess coding ability using both Fisher
information [1, 48, 49, 51], and Shannon mutual information. We evaluated the coding fidelity of both the
linear representation and the nonlinear representation after a quadratic nonlinearity as a function of the
distribution of synaptic weights that shape the shared variability within the representations [35]. We find
that the linear stage representation’s coding fidelity improves with diverse synaptic weighting, even if the
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Figure 1: Private and shared variability. (a) The geometric relationship between neural activity and shared
variability. Black curves denote mean responses to different stimuli. Variability for a specific stimulus (black
dot) may be private (left), shared (middle), or take on the structure of differential correlations (right). The
red arrow represents the tangent direction of the mean stimulus response. (b) Schematic of the types
of variability that a neural population can encounter. The variability of a neural population contains
both private components (e.g., synaptic vesicle release, channel noise, thermal noise, etc.) and shared
components (e.g., variability of pre-synaptic spike trains, shared input noise). Shared variability can be
induced by the variability of afferent connections (which is shared across a postsynaptic population) or
inherited from the stimulus itself. Furthermore, shared variability is shaped by synaptic weighting. (c)
Estimates of the private variability contributions to the total variability of neurons (N = 28) recorded
from auditory cortex of anesthetized rats. Diagonal line indicates the identity. Figure reproduced from
[16].

weighting amplifies the common noise in the neural circuit. Meanwhile, the nonlinear stage representation
also benefits from diverse synaptic weighting in a regime where common noise may be amplified, but not
too strongly. Moreover, we found that the distribution of synaptic weights that optimized the network’s
performance depended strongly on the relative amount of private and shared variability. In particular,
the neural circuit’s coding fidelity benefits from diverse synaptic weighting when shared variability is the
dominant contribution to the variability. Together, our results highlight the importance of diverse synaptic
weighting when a neural circuit must contend with sources of common noise.
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2 Methods

All code used for the analyses described in this paper is publicly available on Github.1

2.1 Network Architecture

We consider the linear-nonlinear architecture depicted in Figure 2. The inputs to the network consist
of a stimulus s along with common (Gaussian) noise ξC . The N neurons in the network take a linear
combination of the inputs and are further corrupted by i.i.d. private Gaussian noise. Thus, the output of
the linear stage for the ith neuron is

`i = vis+ wiσCξC + σP ξP,i, (1)

where ξP,i is the private noise, vi and wi are the weights, and the common and private noise terms are
scaled by positive constants σC and σP . The noisy linear combination is passed through a nonlinearity
gi(`i) whose output ri can be thought of as a firing rate.

Thus, the network-wide computation is given by

r = g(vs+ wσCξC + σP ξP ) (2)

where g(`) is an element-wise application of the network nonlinearity.

2.2 Measures of Coding Strength

In order to assess the fidelity of the population code represented by ` or r, we turn to the Fisher information
and the Shannon mutual information [15]. The former has largely been utilized in the context of sensory
decoding and correlated variability [1, 4, 27] while the latter has been well studied in the context of efficient
coding [3, 6, 9, 39].

The Fisher information sets a limit by which the readout of a population code can determine the value
of the stimulus. Formally, it sets a lower bound to the variance of an unbiased estimator for the stimulus.
In terms of the network architecture, the Fisher information of the representation r (or `) quantifies how
well s can be decoded given the representation. For Gaussian noise models with slowly varying covariances,
the Fisher information is equal to the linear Fisher information (LFI):

ILFI(s) =
∂f(s)

∂s

T

Σ−1(s)
∂f(s)

∂s
(3)

where f(s) and Σ(s) are the mean and covariance of the response (here r or `) to the stimulus s. In other
cases, the LFI serves as a lower bound for the Fisher information and thus is a useful proxy when the
Fisher information is challenging to calculate analytically. The estimator for ILFI is the locally optimal
linear estimator [27].

The Shannon mutual information quantifies the reduction in uncertainty of one random variable given
knowledge of another

I[s, f ] =

∫
dsdf p(s, f) log

(
p(s, f)

p(s)p(f)

)
. (4)

Earlier work demonstrated that the Fisher information provides a lower bound for the Shannon mutual
information in the case of Gaussian noise [11]. However, more recent work has revealed that the relationship
between the two is more nuanced, particularly in the cases where the noise model is non-Gaussian [47].
Thus, we supplement our assessment of the network’s coding ability by measuring the mutual information,
I[s, r], between the neural representation r and the stimulus s. As with the Fisher information, the
mutual information is often intractable, but fortunately can be estimated from data. Specifically, we will
employ the estimator developed by Kraskov and colleagues, which utilizes entropy estimates from k-nearest
neighbor distances [28].

1https://github.com/pssachdeva/noise_diversity
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Figure 2: Linear-nonlinear Network Architecture. The network takes as its inputs a stimulus s and common
noise ξC . A linear combination of these quantities is corrupted by individual private noises ξP,i. The output
of this linear stage is then passed through a nonlinearity gi(`) to produce a “firing rate” ri. The weights
for the linear stage of the network, vi and wi, can be thought of as synaptic weighting. Importantly, the
common noise is distinct from shared input noise because it is manipulated by the synaptic weighting.

2.3 Structured Weights

The measures of coding strength are a function of the weights that shape the interaction of the stimulus
and noise in the network. Thus, the choice of the synaptic weight distribution impacts the calculation of
these quantities. We first consider the case of “structured weights” in order to obtain analytical expressions
for measures of coding strength. Structured weights take on the form 1 · · · 1︸ ︷︷ ︸

N/k times

2 · · · 2︸ ︷︷ ︸
N/k times

· · · k · · · k︸ ︷︷ ︸
N/k times

T

. (5)

Specifically, the structured weight vectors are parameterized by an integer k which divides the N weights
into k homogeneous groups. The weights across the groups span the positive integers up to k. Importantly,
larger k will only increase the weights in the vector. Thus, in the above scheme, increased “diversity” can
only be achieved by increasing k, which will invariably result in an amplification of the signal to which the
weight vector is applied. In the case that k does not evenly divide N , each group is repeated dN/ke times,
except the last group, which is only repeated N − (N − 1) · dN/ke times (i.e., the last group is truncated
to ensure the weight vector is of size N).

Additionally, we consider cases in which k is of order N , e.g., k = N/2. Allowing k to grow with N
ensures that typical values for the weights grow with the population size. This contrasts with the case in
which k is a constant, such as k = 4, which sets a maximum weight value independent of the population
size.
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2.4 Unstructured Weights

While the structured weights allow for analytical results, they possess an unrealistic distribution of synaptic
weighting. Thus, we also consider the case of “unstructured weights,” in which the synaptic weights are
drawn from some parameterized probability distribution:

v ∼ p(v; θv); w ∼ p(w; θw). (6)

We calculate both information theoretic quantities over many random draws from these distributions, and
observe how these quantities behave as some subset of the parameters θ are varied. In particular, we focus
on the lognormal distribution, which has been found to describe the distribution of synaptic weights well
in slice electrophysiology [40, 45]. Specifically, the weights take on the form

w ∼ ∆ + Lognormal(µ, σ), (7)

where ∆ > 0. For a lognormal distribution, an increase in µ will increase the distribution’s mean, median,
and mode (Fig. 3e, inset). Thus, µ as a parameter acts similarly to k for the structured weights in that
increased weight diversity must be accompanied by an increase in their magnitude.

3 Results

We consider the network’s coding ability after both the linear stage (`) and the nonlinear stage (r). In
other words, the linear stage can be considered the output of the network assuming each of the functions
gi(`i) is the identity. Furthermore, due to the data processing inequality, the qualitative conclusions we
obtain from the linear stage should apply for any one-to-one nonlinearity.

3.1 Linear Stage

The Fisher information about the stimulus in the linear representation can be shown to be (see Appendix
5.1 for the derivation)

IF (s) =
1

σ2P

(
σ2P /σ

2
C

)
|v|2 +

(
|v|2|w|2 − (v ·w)2

)
(σ2P /σ

2
C) + |w|2 (8)

which is equivalent to the linear Fisher information in this case. The mutual information can be expressed
as (see Appendix 5.2 for the derivation)

I[s, `] =
1

2
log
[
1 + σ2SIF (s)

]
. (9)

For the case the mutual information, we have assumed the prior distribution for the stimulus is Gaussian
with zero mean and variance σ2S . For structured weights, equations (8) and (9) can be explored by varying
the choice of k for both v and w (we will refer to them as kv and kw, respectively).

It is simplest and most informative to examine these quantities by setting kv = 1 while allowing kw
to vary, as amplifying and diversifying v will only increase coding ability for predictable reasons (this is
indeed the case for our network) [17, 42]. While increasing kw will boost the overall amount of noise added
to the neural population, it also changes the direction of the noise in the higher-dimensional neural space.
Thus, while we might expect that adding more noise in the system would hinder coding, the relationship
between the directions of the noise and stimulus vectors in the neural space also plays a role.
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We first consider how the Fisher information and mutual information are impacted by the choice of
kw. In the structured regime, we have

|v|2 = N (10)

v ·w =
N

k

k∑
i=1

i =
N(k + 1)

2
(11)

|w|2 =
N

k

k∑
i=1

i2 =
N(k + 1)(2k + 1)

6
, (12)

which allows us to rewrite equation (8) as

IF (s) = IF =
N

2σ2P

12(σ2P /σ
2
C) +N(k2 − 1)

6(σ2P /σ
2
C) +N(2k2 + 3k + 1)

. (13)

The form of the mutual information follows directly from plugging equation (13) into equation (9).
The analytical expressions for the structured regime reveal the asymptotic behavior of the information

quantities. Neither quantity saturates as a function of the number of neurons, N , except in the case of
kw = 1 (Fig. 3a, b). In this regime, increasing the population size of the system also enhances coding
fidelity. Furthermore, both quantities are monotonically increasing functions of the common noise synaptic
heterogeneity, kw (Fig. 3c, d), implying that decoding is enhanced despite the fact that the amplitude of
the common noise is magnified for larger kw. Our analytical results show linear and logarithmic growth
for the Fisher and mutual information, respectively, as one might expect in the case of Gaussian noise [11].
These qualitative results hold for essentially any choice of (σS , σP , σC).

In the case of kw = 1, the signal and common noise are aligned perfectly in the neural representation.
Thus, the common noise becomes equivalent in form to shared input noise. As a consequence, we observe
the saturation of both Fisher information and mutual information as a function of the neural popula-
tion. This saturation implies the existence of differential correlations, consistent with the observation that
information-limiting correlations occur under the presence of shared input noise [24].

The structured weight distribution described above allows us to derive analytical results, but the
limitation to only a fixed number of discrete synaptic weight values is not realistic for biological networks.
Thus, we utilize unstructured weights, described in Section 2.4, in which the synaptic weights are drawn
from a lognormal distribution. In this case, we estimate the linear Fisher information and the mutual
information over many random draws according to wi ∼ ∆+Lognormal(µ, σ2). We are primarily concerned
with varying µ, as an increase in this quantity uniformly increases the mean, median, and mode of the
lognormal distribution (Fig. 3e, inset), akin to increasing kw for the structured weights.

Our numerical analysis demonstrates that increasing µ increases the average Fisher information and
average mutual information across population sizes (Fig. 3e, f: bold lines). In addition, the benefits of
larger weight diversity are felt more strongly by larger populations (Fig. 3e, f: different colors).

In the structured weight regime, our analytical results show that weight heterogeneity can ameliorate
the harmful effects of additional information-limiting correlations induced by common noise mimicking
shared input noise. They do not imply that weight heterogeneity prevents differential correlations, as the
common noise in this model is manipulated by synaptic weighting, in contrast with true shared input noise.
For unstructured weights, we once again observe that larger heterogeneity affords the network improved
coding performance, despite the increased noise in the system. Together, these results show that linear
networks can manipulate common noise to prevent it from causing differential correlations.

3.2 Quadratic Nonlinearity

We next consider the performance of the network after a quadratic nonlinearity gi(x) = x2 for all neurons
i [35]. In this case, both the Fisher information and mutual information are analytically intractable. Thus,
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Figure 3: Network coding performance of the linear stage representation. Here, the noise variances are
σ2P = σ2C = 1. Fisher information is shown on the top row while mutual information is shown on the
bottom row. (a), (b) Structured weights. Linear Fisher Information and Mutual Information are shown as
a function of the population size, N , across different levels of weight heterogeneity, kw (indicated by color).
(c), (d) Linear Fisher Information and Mutual Information are shown as a function of weight heterogeneity,
kw, for various population sizes, N . (e), (f) Unstructured weights. Linear Fisher Information and Mutual
Information are shown as a function of the mean of the lognormal distribution used to draw common noise
synaptic weights. Information quantities are calculated across 1000 random drawings of weights: solid
lines depict the means while the shaded region indicates one standard deviation. Inset: the distribution of
weights for various choices of µ. Increasing µ shifts the distribution to the right, increasing heterogeneity.

we will instead turn to the linear Fisher information, which can be calculated, and approximate the mutual
information numerically.

3.2.1 Linear Fisher Information

An analytic expression of the linear Fisher information is calculated in Appendix 5.3. Its analytic form
is too complicated to be restated here, but we will examine it numerically for both the structured and
unstructured weights. The qualitative behavior of the Fisher information depends on the magnitude of the
common variability (σC) and private variability (σP ) in a more complicated fashion than the linear stage,
which depends on these variables primarily through their ratio σC/σP . Thus, we separately consider how
common and private variability impact coding efficacy under various synaptic weight structures.

As before, we first consider the structured weights with kv set to 1 while only varying kw. We start
with the special case where σP = σC = 1 (i.e., equal private and common noise variance). Here, the Fisher
information saturates for both kw = 1 and kw = 2, but increases without bound for larger kw (Fig. 4a).
We can also consider the case where the structured weight heterogeneity grows in magnitude with the
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Figure 4: Linear Fisher information after quadratic nonlinearity in a network with structured weights. (a)
Fisher information as a function of population size when σP = σC = 1, i.e., private and common noise have
equal variances. Solid lines denote constant k while dashed lines denote k scaling with population size.
(b) Same as (a), but for a network where private variance dominates (σP = 5, σC = 1). (c) Normalized
fisher information: for a choice of σP , the Fisher information is calculated for a variety of kw (y-axis) and
divided by the maximum Fisher information (across the kw, for the choice of σP ). For a given σP , the
normalized Fisher information is equal to one at the value of kw which maximizes decoding performance.
(d) Behavior of the Fisher information as a function of synaptic weight heterogeneity for various population
sizes (σP = σC = 1). (e) Same as (d), but for networks where private variance dominates (σP = 5, σC = 1).
(f) The coefficient of the linear term in the asymptotic series of the Fisher information at different levels
of private variability. At kw = 1, 2, the coefficient of N is exactly zero.

population size (i.e., kw is a function of N). In this scenario, the Fisher information is much smaller and
saturates (Fig. 4a, dashed lines). This implies the existence of differential correlations.

When private variability dominates, we observe qualitatively different finite network behavior (σP = 5,
Fig. 4b). For N = 1000, both kw = 1 and kw = 2 exhibit better performance relative to larger values of
kw (by contrast, the case with kw ∼ O(N) quickly saturates). We note that, unsurprisingly, the increase
in private variability has decreased the Fisher information for all cases we considered compared to σP = 1
(compare the scales of Fig. 4a and Fig. 4b). Our main interest, however, is identifying effective synaptic
weighting strategies given some amount of private and common variability.

The introduction of the squared nonlinearity produces qualitatively different behavior at the finite
network level: in contrast with Figure 3, increased heterogeneity does not automatically imply improved
decoding. In fact, there is a regime in which increased heterogeneity improves Fisher information, beyond
which we see a reduction in decoding performance (Fig. 4d). If the private variability is increased, this
regime shrinks or becomes nonexistent, depending on the population size (Fig. 4e). Furthermore, entering
this regime for higher private variability requires smaller kw (i.e., less weight heterogeneity).
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Figure 5: Linear Fisher information after quadratic nonlinearity, unstructured weights. In contrast to
Figure 4, subplots (a) and (b) are plotted on a log-scale. (a) Linear Fisher information as a function of
the mean, µ, of the lognormal distribution used to draw the common noise synaptic weights. Solid lines
denote means while shaded regions denote one standard deviation across the 1000 drawings of weights
from the lognormal distribution. (b) Same as (a), but for networks in which private variability dominates
(σP = 5, σC = 1). (c) Normalized Linear Fisher information. Same plot as Figure 4c, but the average
Fisher information across the 1000 samples is normalized across µ (akin to normalizing across kw).

The results shown in Figure 4d and Figure 4e imply that there exists an interesting relationship between
the network’s decoding ability, its private variability, and its synaptic weight heterogeneity kw. To explore
this further, we examine the behavior of the Fisher information at a fixed population size (N = 1000) as
a function of both σP and kw (Fig. 4c). To account for the fact that an increase in private variability will
always decrease the Fisher information, we calculate the normalized Fisher information: for a given choice
of σP , each Fisher information is divided by the maximum across a range of kw values. Thus, a normalized
Fisher information allows us to determine what level of synaptic weight heterogeneity maximizes coding
fidelity, given a particular level of private variability σP .

Figure 4c highlights three interesting regimes. When the private variability is small, the network
benefits from larger weight heterogeneity on the common noise. But as the neurons become more noisy,
the “Goldilocks zone” in which the network can leverage larger noise weights becomes constrained. When
the private variability is large, the network is achieves superior coding fidelity by having less heterogeneous
weights, despite the threat of induced differential correlations from the common noise. Between these
regimes, there are transitions for which many choices of kw result in equally good decoding performance.

It is important to point out that Figures 4a-e only captures finite network behavior. Therefore, we
extended our analysis by validating the asymptotic behavior of the Fisher information as a function of the
private noise by examining its asymptotic series at infinity (Fig. 4f). For kv = 1, 2, the coefficient of the
linear term is zero for any choice of σP , implying that the Fisher information always saturates. In addition,
when the common noise weights increase with population size (i.e., kw ∼ O(N)), the asymptotic series is
always sublinear (not shown in Fig. 4f). Thus, there are multiple cases in which the structure of synaptic
weighting can induce differential correlations in the presence of common noise. Increased heterogeneity
allows the network to escape these induced differential correlations and achieve linear asymptotic growth.
If kw becomes too large, however, the linear asymptotic growth begins to decrease. Once kw scales as the
population size, differential correlations are once again significant.

Next, we reproduce the above analysis with unstructured weights. As before, we draw 1000 samples of
common noise weights from a shifted lognormal distribution with varying µ. The behavior of the average
(linear) Fisher information is qualitatively similar to that of the structured weights (Fig. 5). There exists
a regime for which larger weight heterogeneity improves the decoding performance, beyond which coding
fidelity decreases (Fig. 5a). If the private noise variance dominates, this regime begins to disappear for
smaller networks (Fig. 5b). Thus, with very noisy neurons, the coding fidelity of the network is improved
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when the synaptic weights are less heterogeneous (and therefore, smaller).
To summarize these results, we once again plot the normalized Fisher information (this time, normalized

across choices of µ and averaged over 1000 samples from the lognormal distribution) for a range of private
variabilities (Fig. 5c). The heat map exhibits a similar transition at a specific level of private variability.
At this transition, a wide range of µ’s provide the network with similar decoding ability. For smaller σP , we
see behavior comparable to Figure 5a, where there exists a regime of improved Fisher information. Beyond
the transition, the network performs better with less diverse synaptic weighting, though it becomes less
stringent as σP increases. The behavior exhibited by this heat map is similar to Figure 4c, but contains
fewer uniquely identifiable regions. This may imply that the additional regions in Figure 4c are an artifact
of the structured weights.

The amount of the common noise will also impact how the network behaves and what levels of synaptic
weight heterogeneity are optimal. For example, consider a network with private noise variability set to
σP = 1. When common noise is small, the Fisher information is comparable among various choices of
synaptic weight diversity (Fig. 6a). When the common noise dominates, however, the network benefits
strongly from diverse weighting (Fig. 4b), though it is punished less severely for having kw scale with N
(Fig. 6b, dashed lines; compare to Fig. 4b). These observations are true at finite population size. As
before, the Fisher information saturates for kw = 1, 2 and kw ∼ O(N), no matter the choice of common
noise variance.

We calculated the normalized Fisher information across a range of common noise strengths to determine
the optimal synaptic weight distribution. The results for structured weights and unstructured weights are
shown in Figures 6c and 6d, respectively. While they strongly resemble Figure 4c and Figure 5c, they
exhibit opposite qualitative behavior. As before, there are three identifiable regions in Figure 6c, each
divided by abrupt transitions where many choices of kw are equally good for decoding. For small common
noise, the coding fidelity is improved with less heterogeneous weights, but as the common noise increases,
the network enters the “Goldilocks regions”. After another abrupt transition near σC ≈ 0.34, the network
performance is greatly improved by heterogeneous weights.

Thus, common noise and private noise seem to have opposite impacts on the optimal choice of synaptic
weight heterogeneity. When private noise dominates, the Fisher information is maximized under a set of
homogeneous weights, since coding ability is harmed by amplification of common noise. When common
noise dominates, the network coding is improved under diverse weighting: this prevents additional differ-
ential correlations and furthermore helps the network cope with the punishing effects on coding due to the
amplified noise.

How should we choose the synaptic weight distribution within the extremes of private or common noise
dominating? We assess the behavior of the Fisher information as both σP and σC are varied over a wide
range. For the structured weights, we calculate the choice of kw that maximized the network’s Fisher
information (within the range kw ∈ [1, 10]) (Fig. 6e). For the unstructured weights, we calculated the
choice of µ that maximizes the network’s average Fisher information over 1000 drawings of w from the
lognormal distribution specified by µ (Fig. 6f).

Figures 6e and 6f reveal that the network is highly sensitive to the values of σP and σC . Figure 6e
exhibits a band like structure and abrupt transitions in the value of kw which maximizes Fisher information.
This band-like structure would most likely continue to form for smaller σP if we allowed kw > 10. One
might expect that the band-like structure is due to the artificial structure in the weights; however, we see
that Figure 6f also exhibits these types of bands. Note that the regime of interest for us is when private
variability is a smaller contribution to the total variability than the common variability. When this is the
case, Figures 6e and 6f imply that a population of neurons will be best served by having a diverse set of
synaptic weights, even if the weights amplify irrelevant signals.
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Figure 6: The relationship between common noise, private noise, and synaptic weight heterogeneity. (a),
(b) Fisher information as a function of population size, N , when common noise contribution is drowned
out by private noise (a), and when common noise dominates (σP = 1) (b). Solid lines indicate constant kw
while dashed lines refer to kw that scales with N . (c), (d) Normalized Fisher information as a function
of common noise for structured weights (c) and unstructured weights (d). For unstructured weights, each
Fisher information is calculated by averaging over 1000 networks with their common noise weights drawn
from the respective distribution. (e) The value of kw that maximizes the network’s Fisher information
for a given choice of σP and σC . The maximum is taken over over kw ∈ [1, 10]. (f) The value of µ that
maximizes the average Fisher information over 1000 draws for a given choice of σP and σC .
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Together, these results highlight how the introduction of the nonlinearity in the network reveal an in-
tricate relationship between the amount of shared variability, private variability, and the optimal synaptic
weight heterogeneity. Our observations that the network benefits from increased synaptic weight hetero-
geneity in the presence of common noise are predicated on the size of the network (Fig. 4a-b, Fig. 6a-b)
and the amount of private and shared variability (Fig. 4c, Fig 6c-d). In particular, when shared variability
is the more significant contribution to the overall variability, the coding performance of the network ben-
efits from increased heterogeneity, whether the weights are structured or unstructured (Fig. 6e-f). This
implies that, in contrast to the linear network, there exist regimes where increasing the synaptic weight
heterogeneity beyond a point will harm coding ability (Fig. 4d-e, Fig 5a-b), demonstrating that there is
a tradeoff between the benefits of synaptic weight heterogeneity and the amplification of common noise it
may introduce.

3.2.2 Mutual Information

When the network possesses a quadratic nonlinearity, the mutual information I[s, r] is far less tractable
than for the linear case. Therefore, we computed the mutual information numerically on data simulated
from the network, using an estimator built on k-nearest neighbor statistics [28]. We refer to this estimator
as the KSG estimator.

We applied the KSG estimator to 100 unique datasets, each containing 100,000 samples drawn from
the linear-nonlinear network. We then estimated the mutual information within each of the 100 datasets.
The computational bottleneck for the KSG estimator lies in finding nearest neighbors in a kd-tree, which
becomes prohibitive for large dimensions (∼20), so we considered much smaller population sizes than in
the case of Fisher information. Furthermore, the KSG estimator encountered difficulties when samples
became too noisy, so we limited our analysis to smaller values of (σP , σC). Due to these constraints, we
are only able to probe the finite network behavior of the mutual information.

Our results for the structured weights are shown in Figure 7. When utilizing estimators of mutual
information from data, caution should be taken before comparing across different dimensions, due to bias
in the KSG estimator [20]. Thus, we restrict our observations to within a specified population size. First,
we evaluated the mutual information for various population sizes (N = 8, 10, 12, 14) in the case where
σC = σP = 0.5. Observe that, as before, the mutual information increases with larger weight heterogeneity
(kw, Fig. 7a). The improvement in information occurs for all four population sizes.

Decreasing the private variability increases mutual information (Fig. 7b). However, the network sees
a greater increase in information with diverse weighting when σP is small. This is consistent with the
small σP regime highlighted in Figure 4c: the smaller the private variability, the more the network benefits
from larger synaptic weight heterogeneity. Similarly, decreasing the common variability increases mutual
information (Fig. 7c). If the common variability is small enough (for example, σC = 1), then larger kw
harms the encoding. Thus, when the common noise is small enough, the amplification of noise that results
when kw is increased harms the network’s encoding. It is only when the common variability becomes the
dominant contribution to the variability that the diversification provided by larger kw improves the mutual
information.

As for the unstructured weights, we calculated the mutual information I[s, r] over 100 synaptic weight
distributions drawn from the aforementioned lognormal distribution. For each synaptic weight distribution,
we applied the KSG estimator to 100 unique datasets, each consisting of 10,000 samples. Thus, the mutual
information estimate for a given network was computed by averaging over the individual estimates across
the 100 datasets. With this procedure, we explored how the mutual information behaves as a function of
the private noise variability, common noise variability, and mean of the lognormal distribution.

Similar to the normalized Fisher information, we present the normalized mutual information as a
function of the private and common variances (Fig. 8). For a given σP or σC , the mutual information
is calculated across a range of µ ∈ [−1, 1]. The normalized mutual information is obtained by dividing
each individual mutual information by the maximum value across the µ. Thus, for a given σP , the
value of µ whose normalized mutual information is 1 specifies the lognormal distribution that maximizes
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Figure 7: Mutual information computed by applying the KSG estimator on data simulated from the
network with quadratic nonlinearity and structured weights. The estimates consist of averages over 100
datasets, each containing 100,000 samples. Standard error bars are smaller than the size of the markers.
(a) Mutual information as a function of common noise weight heterogeneity for various population sizes
N . We consider smaller N than in the case of Fisher information as computation time becomes prohibitive
for larger dimensionalities. Here, σP = σC = 0.5. (b) The behavior of mutual information for various
choices of σP , while σC = 0.5. (c) The behavior of mutual information for various choices of σC , while
σP = 0.5.

the network’s encoding performance. As private variability increases, the network benefits more greatly
benefits diverse weighting (larger µ, Fig. 8a). As common variability increases, the network once again
prefers more diverse weighting. If the common variability is small enough, however, the network is better
suited to homogeneous weights (Fig. 8b). Therefore, the analysis utilizing the unstructured weights largely
corroborates our findings for the structured weights shown in Figure 7.

Thus, these results highlight that there exist regimes where neural coding, as measured by the Shannon
mutual information, benefit from increased synaptic weight heterogeneity. Furthermore, similarly to the
case of the linear Fisher information, the improvement in coding occurs more significantly when shared
variability is large relative to private variability.

4 Discussion

We have demonstrated in a simple model of neural activity that if synaptic weighting of common noise
inputs is broad and heterogeneous, coding fidelity is actually improved despite inadvertent amplification of
common noise inputs. We showed that for squaring nonlinearities, there exists a regime of heterogeneous
weights for which coding fidelity is maximized. We also found that the relationship between the magnitude
of private and shared variability is vital for determining the ideal amount of synaptic heterogeneity. In
neural circuits where shared variability is dominant, as has been reported in some parts of the cortex [16],
larger weight heterogeneity results in better coding performance (Fig. 6e).

Why are we afforded improved neural coding under increased synaptic weight heterogeneity? An
increase in heterogeneity, as we have defined it, ensures that the common noise is magnified in the network.
At the same time, however, the structure of the correlated variability induced by the common noise is
altered by increased heterogeneity. Previous work has demonstrated that the relationship between signal
correlations and noise correlations is important in assessing decoding ability: for example, the sign rule
states that noise correlations are beneficial if they are of opposite sign as the signal correlation [22].
Geometrically, the sign rule is a consequence of the intuitive observation that decoding is easier when the
noise correlations lie perpendicular to the signal manifold [4, 33, 53].

For example, consider the correlated activity for two neurons in the network against their signal space
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Figure 8: Normalized mutual information for common and private variability. For a given µ, 100 networks
were created by drawing common noise weights w from the corresponding lognormal distribution. The
mutual information shown is the average across the 100 networks. For a specified network, the mutual
information was calculated by averaging KSG estimates over 100 simulated datasets, each containing 10,000
samples. Finally, for a choice of (σP , σC), mutual information is normalized to the maximum across values
of µ. (a) Normalized mutual information as a function of µ and private variability (σC = 0.5). (b)
Normalized mutual information as a function of µ and common variability (σP = 0.5).

(black lines, Fig. 9a, b) as a function of kw. Note that the signal space is linear, due to the quadratic linearity
(see Appendix). After the linear stage, the larger weight heterogeneity pushes the cloud of neural activity
to lie more orthogonal to the signal space. At the same time, the variance becomes observably larger due
to the magnification of the common noise (Fig. 9a). Importantly, note that the variability for kw = 1 lies
parallel to the signal space, signifying the presence of differential correlations. The correlated variability
after the nonlinear stage is similar in that orthogonality to the signal space increases with kw. There is a
notable difference: squaring the linear stage ensures non-negative activities, thereby limiting the response
space. Thus, for large enough kw, the rectification manifests strongly enough that the network enters a
regime where increased heterogeneity harms decoding. These figures only demonstrate the relationship
between a pair of neurons, while the collective correlated variability structure ultimately dictates decoding
performance. They do, however, shed light on how the distribution of synaptic weights can radically shape
the common noise and thereby the overall structure of the shared variability.

The linear stage of the network constitutes a noisy projection of two signals (one of which is not useful
to the network) in a high-dimensional space. Thus, we can assess the entire population by examining the
relationship between the projecting vectors v and w. We might expect that improved decoding occurs
when these signals are farther apart in the N -dimensional space [23]. For a chosen kv, this occurs as
kw is increased when the weights are structured. When the weights are unstructured, the average angle
between the stimulus and weight vectors is large as either µv or µw increases. Increased heterogeneity
implies access to a more diverse selection of weights, thus pushing the two signals apart. From this
perspective, the nonlinear stage acts as a mapping on the high-dimensional representation. Given that no
noise is added after the nonlinear processing stage in the networks, if the nonlinearities were one-to-one,
the data processing inequality would ensure that the results from the linear stage would hold. But, as we
observed earlier, the nonlinear stage benefits from increased heterogeneity only in certain regimes. Thus,
the rectifying nature of the nonlinearities is important: the application of both the quadratic nonlinearity
restricts the high-dimensional space that the neural code can occupy, and thus limits the benefits of diverse
synaptic weighting. We would expect similar behavior if the neural activity were passed through a Poisson
distribution, further rectifying the outputs.

It may seem unreasonable that the neural circuit possesses the ability to weight common noise inputs.
However, excitatory neurons receive many excitatory synapses in circuits throughout the brain. Some sub-
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Figure 9: The benefits of increased synaptic weight heterogeneity. (a) The responses of a pair of neurons
against the signal space, taken after the linear stage. Colors indicate different choices of kw (while kv = 1).
Each cloud contains 1000 sampled points. (b) Same as (a), but responses are taken after the quadratic
nonlinearity.

set of common inputs across a neural population will undoubtedly be irrelevant for the underlying neural
computation, even if these signals are not strictly speaking “noise” and could be useful for other compu-
tations. Thus, these populations must contend with common noise sources contributing to their overall
shared variability and potentially hampering their ability to encode a stimulus. Our work demonstrates
that neural circuits, armed with a good set of synaptic weights, need not suffer adverse impacts due to inad-
vertently amplifying potential sources of common noise. Instead, broad, heterogeneous weighting ensures
that common noise sources will project the signal and noise into a high-dimensional space in such a way that
is beneficial for decoding. This observation is in agreement with recent work that explored the relationship
between heterogeneous weighting and degrees of synaptic connectivity [31]. Furthermore, synaptic input,
irrelevant on one trial, may become the signal on the next: heterogeneous weighting provides a general,
robust principle for neural circuits to follow.

We chose the simple network architecture in order to maintain analytic tractability, which allowed us
to explore the rich patterns of behavior it exhibited. Our model is limited, however. It is worthwhile to
assess how our qualitative conclusions hold with added complexity in the network. For example, interesting
avenues to consider include the implementation of recurrence, spiking dynamics, and other, thresholded
nonlinearities (e.g., rectified linear unit or a squared threshold). In addition, these networks could also
be equipped with varying degrees of sparsity and inhibitory connections. Importantly, the balance of
excitation and inhibition in networks has been shown to be vital in decorrelating neural activity [38]. Past
work has explored how to approximate both information theoretic quantities studied here in networks with
some subset of these features [8, 50]. Thus, analyzing how common noise and synaptic weighting interact
in more complex networks is of interest for future work.

We established correlated variability structure in the linear-nonlinear network by taking a linear combi-
nation of a common noise source and private noise sources (though our model ignores any noise potentially
carried by the stimulus). This was sufficient to establish low-dimensional shared variability observed in
neural circuits. As a consequence, our model as devised enforces stimulus-independent correlated variabil-
ity. Recent work, however, has demonstrated that correlated variability is in fact stimulus-dependent. Such
work used both phenomenological [19, 30] and mechanistic [53] models in producing fits to the stimulus-
dependent correlated variability. These models all share a doubly stochastic noise structure, stemming
from both additive and multiplicative sources of noise [21]. It is therefore worthwhile to fully examine
how both additive and multiplicative sources of noise interact with synaptic weighting to influence neural
coding.
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5 Appendix

5.1 Calculation of Fisher Information, Linear Stage

All variability after the linear stage is Gaussian; thus, the Fisher information can be expressed in the form
[1, 26]:

IF (s) = f ′(s)TΣ−1(s)f ′(s) +
1

2
Tr
[
Σ′(s)Σ−1(s)Σ′(s)Σ−1(s)

]
. (14)

Our immediate goal is to calculate f(s), the average response of the linear stage, and Σ, the covariance
between the responses. The output of the ith neuron after the linear stage is

`i = vis+ wiσCξC + σP ξP,i, (15)

so that the average response as a function of s is

fi(s) = 〈`i〉 = vis. (16)

Thus,

f(s) = vs⇒ f ′(s) = v, (17)

and

〈`i`j〉 = 〈(vis+ wiσCξC + σP ξP,i)(vjs+ wjσCξC + σP ξP,j)〉 (18)

= vivjs
2 + wiwjσ

2
C + σ2P δij (19)

so that

Σij = 〈`i`j〉 − 〈`i〉〈`j〉 (20)

= σ2P δij + wiwjσ
2
C (21)

⇒ Σ = σ2P I + σ2CwwT . (22)

Notice that the covariance matrix does not depend on s, so the second term in equation (14) will vanish.
We do, however, need the inverse covariance matrix for the first term:

Σ−1 =
1

σ2P

(
I− σ2C

σ2P + σ2C |w|2
wwT

)
. (23)

Hence, the Fisher information is

IF (s) =
1

σ2P
vT

(
I− σ2C

σ2P + σ2C |w|2
wwT

)
v (24)

=
1

σ2P

(
σ2P /σ

2
C

)
|v|2 +

(
|v|2|w|2 − (v ·w)2

)
(σ2P /σ

2
C) + |w|2 . (25)

5.2 Calculation of Mutual Information, Linear Stage

The mutual information is given by

I[s, `] =

∫
d`dsP [s]P [`|s] log

P [`|s]
P [`]

(26)

= H[`] +

∫
dsP [s]

∫
d`P [`|s] logP [`|s]. (27)
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Note that P [`] and P [`|s] are both multivariate Gaussians. The (differential) entropy of a multivariate
Gaussian random variable X with mean µ and covariance Σ is given by

H[X] =
1

2
log (det Σ) +

N

2
(1 + log(2π)). (28)

Therefore, by the Gaussianity of the involved distributions,

P [`|s] =
1

σN−1P

√
(2π)N (σ2P + σ2C |w|2)

× exp

[
− 1

2σ2P
(`− vs)T

(
I− σ2CwwT

σ2P + σ2C |w|2
)

(`− vs)

]
(29)

P [`] =
1√

(2π)Nσ2N−4P κ
exp

[
−1

2
`T
(
σ2P I + σ2SvvT + σ2CwwT

)−1
`

]
. (30)

where

κ = (σ2P + σ2C |w|2)(σ2P + σ2S |v|2)− σ2Cσ2S(v ·w)2. (31)

Thus,

H[`] =
1

2
log
(
σ2N−4P κ

)
+
N

2
(1 + log(2π)). (32)

and ∫
d`P [`|s] logP [`|s] = −1

2
log(σ2N−2P (σ2P + σ2C |w|2))−

N

2
(1 + log(2π)), (33)

which is notably independent of s. Thus, the integral over s will marginalize away. We are left with

I[s, `] =
1

2
log

(
κ

σ2P (σ2P + σ2C |w|2)

)
(34)

=
1

2
log
(
1 + σ2SIF (s)

)
. (35)

5.3 Calculation of Fisher Information, Quadratic Nonlinearity

We repeat the calculation of the first section, but after the nonlinear stage. In this case, we consider a
quadratic nonlinearity. Instead of the Fisher information, we calculate the linear Fisher information (since
it is analytically tractable). The output of the network is

ri = (vis+ wiσCξC + σP ξP,i)
2 (36)

= v2i s
2 + w2

i σ
2
Cξ

2
C + σ2P ξ

2
P,i + 2sviwiσCξC + 2sviσP ξP,i + 2wiσCσP ξCξP,i. (37)

Thus, the average is then

fi(s) = 〈ri〉 = v2i s
2 + w2

i σ
2
C + σ2P , (38)

which implies

〈ri〉〈rj〉 = (v2i s
2 + w2

i σ
2
C + σ2P )(v2j s

2 + w2
jσ

2
C + σ2P ) (39)

= σ4P + s2σ2P (v2i + v2j ) + σ2Pσ
2
C(w2

i + w2
j )

+ s2σ2C(v2iw
2
j + v2jw

2
i ) + s4v2i v

2
j + σ4Cw

2
iw

2
j (40)
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Next, the covariate can be written as

〈rirj〉 = σ4P + s2σ2P (v2i + v2j ) + σ2Pσ
2
C(w2

i + w2
j ) + s2σ2C(v2iw

2
j + v2jw

2
i )

+ s4v2i v
2
j + 3σ4Cw

2
iw

2
j + 4s2σ2Cvivjwiwj . (41)

The off diagonal terms of the covariance matrix are then

〈rirj〉 − 〈ri〉〈rj〉 = 2σ4Cw
2
iw

2
j + 4s2σ2Cvivjwiwj . (42)

Lastly, the variance of ri (the diagonal terms of the covariance matrix) is given by

Var(ri) = 〈r2i 〉 − 〈ri〉2 (43)

= 3σ4P + 6s2σ2P v
2
i + 6σ2Pσ

2
Cw

2
i + 6s2σ2Cv

2
iw

2
i + s4v4i + 3σ4Cw

4
i

−
(
v2i s

2 + w2
i σ

2
C + σ2P

)2
(44)

= 2σ4Cw
4
i + 4s2σ2Cv

2
iw

2
i + 2σ4P + 4s2σ2P v

2
i + 4σ2Pσ

2
Cw

2
i . (45)

Thus, the total covariance, which takes the variance into consideration, is

Σij = δij
(
2σ4P + 4σ2P (s2v2i + σ2Cw

2
i )
)

+ 4s2σ2Cvivjwiwj + 2σ4Cw
2
iw

2
j . (46)

In vector notation, this can be expressed as

Σ = 2σ4P I + 4σ2P s
2diag(V) + 4σ2Pσ

2
Cdiag(W) + 4s2σ2CXXT + 2σ4CWWT (47)

where

V = v � v (48)

W = w �w (49)

X = v �w, (50)

where � indicates the Hadamard product (element-wise product). We now proceed to the linear Fisher
information:

ILFI(s) = f ′(s)TΣ(s)−1f ′(s). (51)

We start by calculating the inverse covariance matrix, which we will achieve with repeated applications of
the Sherman-Morrison formula [43]. We can write

Σ−1 = (M + 2σ4CWWT )−1 (52)

= M−1 − M−1(2σ4CWWT )M−1

1 + 2σ4CWTM−1W
(53)

= M−1 − 2σ4C
1 + 2σ4CWTM−1W

M−1WWTM−1. (54)

Where

M−1 ≡
(
2σ4P + 4σ2P s

2v2i + 4σ2Pσ
2
Cw

2
i

)−1
δij

− s2σ2C

σ4P + 2s2σ2Cσ
2
P

∑
i

v2iw
2
i

σ2P + 2s2v2i + 2σ2Cw
2
i

× vivjwiwj(
σ2P + 2s2v2i + 2σ2Cw

2
i

) (
σ2P + 2s2v2j + 2σ2Cw

2
j

) . (55)
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Note that

f ′(s) = 2sV, (56)

so the Fisher information is

ILFI(s) = 4s2
(

VTM−1V − 2σ4C
1 + 2σ4CWTM−1W

VTM−1WWTM−1V

)
(57)

= 4s2
(

VTM−1V − 2σ4C
1 + 2σ4CWTM−1W

(
VTM−1W

)2)
. (58)

To facilitate the matrix multiplications, we will define the following notation

{v, w}m,n =
∑
i

vmi w
n
i

σ2P + 2s2v2i + 2σ2Cw
2
i

. (59)

Thus,

VTM−1V =
1

2σ2P

∑
i

v4i
σ2P + 2s2v2i + 2σ2Cw

2
i

− s2σ2C
σ4P + 2s2σ2Cσ

2
P {v, w}2,2

(∑
i

v3iwi

σ2P + 2s2v2i + 2σ2Cw
2
i

)2

(60)

=
1

2σ2P
{v, w}4,0 −

s2σ2C
σ4P + 2s2σ2Cσ

2
P {v, w}2,2

{v, w}23,1 . (61)

Furthermore,

WTM−1W =
1

2σ2P
{v, w}0,4 −

s2σ2C
σ4P + 2s2σ2Cσ

2
P {v, w}2,2

{v, w}21,3 (62)

and finally

VTM−1W =
1

2σ2P
{v, w}2,2 −

s2σ2C
σ4P + 2s2σ2Cσ

2
P {v, w}2,2

{v, w}1,3 {v, w}3,1 . (63)

Inserting this expression into equation (58) and simplifying, we can write the Fisher information as

ILFI(s) = 4s2

(
1

σ2P
{v, w}4,0 −

2s2σ2C
σ2P + 2s2σ2Pσ

2
C {v, w}2,2

{v, w}23,1 + (64)

σ2Pσ
4
C {v, w}2,2 + 2s2σ6C({v, w}2,2 − 2 {v, w}1,3 {v, w}3,1)

σ4P + σ2P (σ4C {v, w}0,4 + 2s2σ2C {v, w}2,2) + 2s2σ6C({v, w}0,4 {v, w}2,2 − 2 {v, w}21,3)

)
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45. Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of
synaptic connectivity in local cortical circuits. PLoS biology 3, e68 (2005).

46. Vidne, M. et al. Modeling the impact of common noise inputs on the network activity of retinal
ganglion cells. Journal of computational neuroscience 33, 97–121 (2012).

47. Wei, X.-X. & Stocker, A. A. Mutual information, Fisher information, and efficient coding. Neural
computation 28, 305–326 (2016).

48. Wilke, S. D. & Eurich, C. W. Representational accuracy of stochastic neural populations. Neural
computation 14, 155–189 (2002).

49. Wu, S., Nakahara, H. & Amari, S.-I. Population coding with correlation and an unfaithful model.
Neural Computation 13, 775–797 (2001).

50. Yarrow, S., Challis, E. & Seriès, P. Fisher and Shannon information in finite neural populations.
Neural computation 24, 1740–1780 (2012).

51. Yoon, H. & Sompolinsky, H. The effect of correlations on the Fisher information of population codes
in Advances in neural information processing systems (1999), 167–173.

52. Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications
for psychophysical performance. Nature 370, 140 (1994).

53. Zylberberg, J., Cafaro, J., Turner, M. H., Shea-Brown, E. & Rieke, F. Direction-selective circuits
shape noise to ensure a precise population code. Neuron 89, 369–383 (2016).

54. Zylberberg, J., Pouget, A., Latham, P. E. & Shea-Brown, E. Robust information propagation through
noisy neural circuits. PLoS computational biology 13, e1005497 (2017).

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811364doi: bioRxiv preprint 

https://doi.org/10.1101/811364
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Network Architecture
	Measures of Coding Strength
	Structured Weights
	Unstructured Weights

	Results
	Linear Stage
	Quadratic Nonlinearity
	Linear Fisher Information
	Mutual Information


	Discussion
	Appendix
	Calculation of Fisher Information, Linear Stage
	Calculation of Mutual Information, Linear Stage
	Calculation of Fisher Information, Quadratic Nonlinearity


