
1University of Southern California, Los Angeles, CA; 2Northwestern University, Chicago, IL;
3University of Geneva, Geneva, Switzerland; *e-mail: shixianw@usc.edu

Interactions of encoding and decoding problems to understand motor control

Shixian Wen1, Allen Yin, Li Zheng, M.G. Perich3, L.E. Miller2, Laurent Itti1

Abstract

Learning a map from movement to neural data (Encoding Problem) and vice versa

(Decoding Problem) are crucial to understanding motor control. A principled encoding

model that understands underlying neural dynamics can help better solve the decoding

problem. Here, we develop a new generative encoding model leveraging deep learning

that autonomously captures neural dynamics. After training, the model can synthesize

spike trains given any observed kinematics, under the guidance of the learned neural

dynamics. When neural data from other sessions or subjects are limited, synthesized

spike trains can improve cross-session and cross-subject decoding performance of a

Brain Computer Interface decoder. For cross-subject, even with ample data for both

subjects, neural dynamics learned from a previous subject can transfer useful knowledge

that improves the best achievable decoding performance for the new subject. The

approach is general and fully data-driven, and hence could apply to neuroscience

encoding and decoding problems beyond motor control.

Introduction

To understand motor control, one often distinguishes between two crucial problems. Given

a goal for complex movement (e.g., specific limb kinematics), the “encoding” problem

concerns how to generate neural spike trains to activate muscles and execute the plan.

The encoding model needs to learn how to find a good set of neural dynamics, how they

interact, and how they may be adjusted and combined for different tasks and behaviors.

Conversely, the “decoding” problem seeks to estimate or recover a motor plan from given

neural spike trains. Solving the problem of how to decode new and complex movements

from neural spike trains may benefit from a formalism that includes neural dynamics

learned from the encoding problem.

Much previous research has tried to demystify the encoding and decoding problems. The

encoding problem1–3 can be formulated as finding appropriate statistical models that

assign a conditional probability, P(D|x), to any possible neural response D, given the

desired movement plan x. However, previous studies4–6 have imposed a strong prior

mathematical model onto P(D|x), which limits their generality. To tackle the decoding

problem, for brain-machine interfaces7, one needs to learn the mapping from recorded

neural spikes to limb or artificial actuator kinematics. Several methods have been

proposed to solve this problem, exploiting Wiener Filters8,9, Kalman Filters10,11, Particle

Filters12,13, Point Process methods14,15, and state-of-the-art Long Short-Term Memory

(LSTM) networks. While powerful, these methods, require a large amount of neural data

to achieve good performance)16,17.

Cross-session and cross-subject scenarios are crucial to designing a commercial brain

computer interface (BCI) decoder. In the cross-session scenario, a decoder trained with

data from one recording session is used with data from another session with a possibly

different number of neurons. This scenario is important for designing a fast adapting BCI

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

decoder, as scarring18,19, motion, neural plasticity20, or cell death19, may change the

effective number of recording channels from day to day. In the cross-subject scenario, a

decoder is trained with data from one subject and used with data from another subject,

usually also with a different number of neurons. Leveraging data from the first subject can

be beneficial in some cases, such as obtaining neural activity and covariates of interest

from the second subject is challenging, expensive, or impossible21. In addition, neural data

from the first subject might be inherently easier to decode (e.g., the quality of signal

collected by the implanted electrode arrays might be better) than the neural data from the

second subject. Even in cases where ample neural data may be available for both subjects,

neural dynamics learned from the easier subject might transfer some useful knowledge

that improves the decoding performance of the harder subject. However, existing BCI

decoders usually fail to generalize to different sessions22 or subjects, because they fail to

capture the underlying neural dynamics23. We believe this is because current approaches

lack a principled representation of neural dynamics, obtained through exploration of

possible interactions between encoding and decoding problems.

The intuition of this paper is that building a better encoding model that understands neural

dynamics can help better solve a decoding problem commonly encountered in brain

computer interface experiments. Here we propose a generative model leveraging Deep

Learning24–30 (Methods) that creates a direct mapping from kinematics to neural data.

Contrary to previous approaches, this model does not rely on any strong prior, but instead

learns neural dynamics end-to-end from the training data. After learning from kinematics

and associated spike trains, we evaluate the learning process by showing that the model

is able to synthesize spike trains, given kinematics in the training set (footnote 1), that has

realistic characteristics (position activity maps, velocity neural tuning curves, and

histogram of mean firing rates). In addition, the encoding model can generalize to novel

situations, producing synthesized spike trains which we show are sufficient for practical

use in a decoder, even though they may not be perfect in all aspects. To show how the

encoding model can help better solve the decoding problem, we fine-tune it with small

amounts of neural data from another session or subject, thereby quickly adapting31,32 it to

synthesize spike trains for a different number of neurons, a different day, and possibly a

different monkey. In the cross-session scenario, we show that training a BCI decoder on

a combination of a limited amount of neural data and the synthesized spike trains can

yields higher decoding performance on an independent test set of additional neural data,

compared to training the BCI decoder only on the limited neural data. We confirm that this

approach also yields better performance than three alternative data augmentation

methods (Methods). In the cross-subject scenario, even with ample neural data for both

subjects, training a BCI decoder on a combination of the neural data from the second

subject and synthesized spike trains derived from the first subject does not impair and

sometimes improves beyond the best achievable decoding performance using the neural

1 Current deep generative models can only generate samples from the distribution they have been trained
on. For example, in machine vision, a generative model can only generate images of dogs and cats if it has
only been trained on images of cats and dogs. We do not expect it can generalize to images of birds. Here,
because each distinct kinematics is a new category such as birds, we do not expect our model to
generalize well to novel kinematics in terms of neural dynamics. However, we show that, after fine-tuning
with a small amount of neural data from another session or subject, our encoding model can generalize to
novel situations improving cross-session and cross-subject decoding performance.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

data from the second subject only. This is because neural dynamics learned from the

easier to decode subject can transfer some useful knowledge that may improve the

decoding performance for the harder to decode subject. In addition, when the neural data

from the second subject is limited, synthesized spike trains that capture the neural

dynamics improve the cross-subject decoding performance on some aspects of

kinematics. The good performance of the BCI decoder further validates the good quality

of the encoding model. For the first time, our results show how one can leverage a deep

learning model to effectively enable neural decoding across sessions and subjects.

Recently, Pandarinath et al.22 proposed a deep learning generative approach to infer

neural population dynamics using sequential auto encoders (LFADS). Our method is a

complementary approach to their work. The key difference is that LFADS focuses on

creating a mapping from the neural data to low-dimensional latent variables, and then on

reconstructing the same neural data from the latent variables. Our method creates a direct

mapping from kinematics to neural data. We argue that this direct mapping is an encoding

model of how our brain works under the current task. More differences between the two

approaches are described in the discussion section.

Results

Experimental setup and data preparation

Two monkeys (Monkey C and Monkey M) were chronically implanted with electrode arrays

(Blackrock microsystems) in the arm representation of primary motor cortex (M1). We

recorded from these electrodes while the monkeys made reaching movements to a

sequence of randomly-placed targets appearing on a computer screen33. The monkeys

were seated in front of the screen and grasped the handle of a planar manipulandum that

controlled the position of a cursor. After the cursor reached a given target, a new target

appeared, to which the monkeys could reach immediately (Fig. 1a).

In the first set of the experiments we analyzed one session of neural data with 33.3 minutes

and 69 neurons from Monkey C. We parsed and binned all neural and kinematics data

with 10ms time resolution.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1: a) Experiment demonstration. b) Train neural encoding model (cc-LSTM-GAN)

on neural spikes from Monkey C, letting it learn neural dynamics (position activity maps,

velocity neural tuning curves) and synthesize spike trains with a realistic histogram of

mean firing rates given the kinematics in the training set.

Encoding Problem:

To characterize the properties of each neuron in motor cortex, one often collects spike

trains from the neurons and calculates properties such as firing rates, position activity

maps, and velocity neural tuning curves. We first trained the neural encoding model to

synthesize spike trains by presenting two inputs to the model: the kinematics of a

movement, and a vector of Gaussian noise which allows the model to generate many

different instances of neural spike trains (for different instances of the noise vector). In

essence, the neural encoding model has learned a mapping from noise and kinematics to

neural spike trains. We can characterize the properties of synthesized spike trains to

characterize each virtual neuron of the model in the same way as one characterizes real

neurons. We found that the neural encoding model learned realistic neural dynamics

(position activity maps, velocity neural tuning curves), comparable to real neurons (Fig.2,

Fig.3). Given any kinematics in the training set, we confirmed that the neural encoding

model synthesized spike trains with a realistic histogram of mean firing rates of virtual

neurons compared to real neurons (Fig.3), as further detailed below.

Encoding model learned position activity maps.

We first asked whether the virtual neurons had position activity maps (activity as a function

of position in the workspace) that resembled those of real neurons. This would indicate

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

that the neural encoding model captured how neurons encode position information in the

M1 area.

To answer this question, we analyzed neurons’ activity as a function of position. We

compared the position activity maps built from synthesized spikes trains and real position

activity maps built from neural data. The position activity map is calculated by counting the

number of neural spikes across time for different end effector positions and normalizing

with respect to the averaged spike counts across positions. Fig. 2a is the normalized real

position activity map for real neuron 35. Fig. 2b is the normalized generated position

activity map for virtual neuron 35. Fig. 2c is the normalized real position activity map for

real neuron 3. The mean square error between the position activity maps Fig. 2a to Fig.

2b is 0.0086 (high similarity) while the mean square error between Fig. 2a to Fig. 2c is

0.4448 (lower similarity). Fig. 2d shows a histogram of mean squared error between real

position activity map and generated activity map for each neuron. The mean squared error

histogram is right-skewed, and, for 61 out of 69 neurons’ (88.4%), the mean squared error

between real position activity map and generated position activity map is less than the

average mean squared error between real position activity maps. This shows that, with

respect to position activity maps, the model has learned realistic virtual neurons. To show

the difference between position activity maps, we plot all maps (Fig. 2e). Note how, in Fig.

2, the position activity maps for neurons in M1 exhibited a strong center bias and limited

variability. This is consistent with prior reports that neurons in M1 only weakly represent a

conditional probability distribution of the reaches33. Dorsal premotor cortex, rather than

M1, may exhibit stronger activity when the monkey’s reaches is in a neuron’s preferred

direction33. Thus, our neural encoding model learned position activity maps that resembled

those of real neurons.

Learned velocity neural tuning curve.

We then asked whether the virtual neurons’ activities had a similar velocity neural tuning

curve as the real neurons (Fig. 3a-f). We calculated the hand velocity direction for each

300ms and calculated the spike counts during that 300ms. We plotted the spikes counts

vs hand velocity direction for each real and virtual neuron. To calculate the velocity neural

tuning curve, we fit a cosine function in velocity space. Fig 3. a-d show that our synthesized

spikes trains have similar velocity neural tuning curve shapes for every virtual and real

neuron pair. However, from the heatmap, comparing Fig. 3a and Fig. 3b, real neurons

exhibit a better systematic structure than virtual neurons (larger amplitude of the tuning

curve). The preferred directions of virtual neurons are similar to those of real neurons Fig.

3e, f. The encoding model captures most of the important preferred directions which

neurons are tuned to. Thus, our encoding model learned velocity neural tuning curves that

resembled those of the real neurons.

Learned to synthesize spike trains with a realistic histogram of mean firing rates.

We asked whether the neural encoding model can learn to synthesize spike trains with a

realistic histogram of mean firing rates given a specific kinematic in the training set. We

fed the kinematics of a trial in the training set to the encoding model. The encoding

model could synthesize neural spikes from kinematics (Fig. 3g, h, i) of the trial. We

normalized the summation for each neuron from the synthesized neural spikes (Fig. 3k)

and neural data (Fig. 3j). By comparing the mean firing rates for real and virtual neurons

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

over a trial (Fig. 3i), the neural encoding model produces a pattern of firing rates over the

population of virtual neurons that is not distinct from the distribution of from real neurons

(p >= 0.1019, Kolmogorov–Smirnov test 34). Further, we did a bootstrapping test with 1

million samples. 80.43% of samples did not reject the null hypothesis from the

Kolmogorov–Smirnov test under 5% significance level. In general, a statistical test

cannot conclude that two distributions are identical because there could be minor

differences in the distributions, but so small that tests cannot really find the difference35.

We can only conclude that our sample gives us no evidence against the null hypothesis

that the two distributions are the same. Thus, we argue that the patterns of mean firing

rates of virtual and real neurons are similar for all practical purposes.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2: Normalized position activity map, constructed as the histogram of neural

activities as a function of position. a) Normalized real position activity map for real neuron

35. b) Normalized generated position activity map for virtual neuron 35. c) Normalized real

position activity map for real neuron 3. d) Histogram of mean square error between real

position activity map and generated activity map for each neuron. The red line is the

averaged mean square error (0.1344) between real neurons. It provides us an upper

bound for the difference between real and virtual neurons. The difference from a) to b) is

0.0086. the difference from a to c is 0.4448. The mean squared error histogram is right-

skewed, and, for 61 out of 69 neurons’ (88.4%), the mean squared error between real

position activity map and generated position activity map is less than the average mean

squared error between real position activity maps. e) Position activity maps for all virtual

and real neurons with clipped color bar.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3: For a-d), we calculated the hand velocity direction for each 300ms and calculated

the spike counts during that 300ms. We plotted the spikes counts vs hand velocity

direction for each real and virtual neuron. The red line is the velocity neural tuning curve

fitted by a cosine function. The black dot is the spike counts for each bin at each angle.

The heatmap counts how many black dots are in an area. a) real velocity neural tuning

curve for neuron 32. b) generated velocity neural tuning curve for neuron 32. c) real

velocity neural tuning curve in velocity space for neuron 57. d) generated velocity neural

tuning curve for neuron 57. e) histogram of preferred direction for real neurons. f)

histogram of preferred direction for virtual neurons. g-i) position, velocity and acceleration

from a trial j) real neuron spikes for this trial k) synthesized spikes trains for this trial l)

mean firing rates during this trial for real and virtual neurons.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4: Step 1: Fine-tuning the neural encoding model using small amount of neural data

from another session or subject. Step 2: synthesizing a large amount of spike trains using

a small amount of real kinematics from another session or subject. Step 3: Combining the

large amount of synthesized spike trains with a small amount of neural data from another

session or subject to train a BCI decoder. Step 4: Testing the trained BCI decoder on an

independent test set from another session or subject.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

Decoding problem

In the second experiment, we analyzed an additional session from Monkey C (session 2)

with 36.7 minutes and 77 neurons. We also analyzed one session from a new Monkey M

– session 1: 11.4 minutes with 60 neurons. We applied the same pre-processing routines

as in the previously-analyzed session.

Turning to the decoding problem, previous literature did not consider encoding and

decoding models together, with some efforts focusing on encoding and others in decoding.

In contrast, we view encoding and decoding models as strongly interacting - a good

encoding model that understand neural dynamics can help better solve a decoding

problem. Here, we consider two interacting systems: our neural encoding model and a

BCI decoder. A good encoding model can synthesize spikes trains from kinematics under

the guidance of learned neural dynamics. In the cross-session scenario, when the neural

data from another session is limited, we posit that, with the help of synthesized spike trains

that captures neural dynamics, we can train a BCI decoder that has a better decoding

performance. In the cross-subject scenario, even with ample neural data for both subjects,

the neural dynamics learned from one subject (easier to decode) can transfer some useful

knowledge to improve the decoding performance of another subject (harder to decode).

Training a BCI decoder on a combination of the neural data (from another subject) and

the synthesized spike trains, can improve beyond the best achievable decoding

performance on acceleration by using the neural data only. In addition, when the neural

data from the second subject is limited, synthesized spike trains that capture the neural

dynamics improves the cross-subject decoding performance on some aspects of

kinematics. Good decoding performance of the BCI decoder further validates the good

quality of the encoding model.

The overview of the decoding problem is depicted in Fig. 4 and has 4 steps.

Step 1: we finetuned (see Methods) the trained neural encoding model using a small

amount of neural data from another session or subject. During the finetuning, the neural

dynamics are intact. Finetuning only changes the combination rules and number of output

neurons. Step 2: we used the finetuned encoding model to synthesize spike trains with

real kinematics from another session or subject as inputs. Step 3: we trained a BCI

decoder using a small amount of neural data from another session or subject in

combination with synthesized spike trains (GAN-Augmentation method). Step 4: we tested

the BCI decoder on an independent test set of neural data from another session or subject.

We compare the decoding performance from the GAN-Augmentation method with the

decoding performance from three other data augmentation methods (Mutation-

Augmentation, Stretch-Augmentation, Real-Augmentation, see Methods) and using

neural data only (Real-Only, see Methods).

Synthesized spike trains improve cross-session decoding performance when training data

is limited

With the help of synthesized spike trains, even with very small amount of neural data from

another session, we can still achieve a good cross-session decoding performance, which

is useful for designing a fast-adapting BCI decoder. In comparison, training a BCI decoder

on the same small amount of neural data does not even converge. We trained the neural

encoding model on neural data from the session 1 of Monkey C (69 neurons). We used a

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

limited amount of neural data from the session 2 of Monkey C to finetune the neural

encoding model, and synthesized spike trains with different number of neurons (77

neurons). From Fig.5, when the neural data from the session 2 of Monkey C is less than

17 minutes, our GAN augmentation method (red curve) is better than the other 3

augmentation methods (blue, yellow, and black curves, p < 0.05) and the Real-Only

method (green curve, p < 0.05). if we do not have any augmentation method and train on

limited neural data only (Real-Only method), we need at least 8.5 minutes of neural data

to make our BCI decoder converge (green). For example, if we only have 35.19 seconds

of neural data from the session 2 of Monkey C, the cross-session decoding performance

of the GAN-Augmentation method for acceleration x is 0.7569 compared to 0.7053 (7.31%

better, p<0.05, Real-Concatenation), 0.7263 (4.22% better, p<0.05, Mutation-

Augmentation) and 0.7294 (3.78% better, p<0.05, Stretch-Augmentation) methods. The

Real-Only method cannot converge because the neural data from the session 2 of Monkey

C is limited. Thus, when the neural data from another session is limited, the neural

encoding model can synthesize spike trains to improve the cross-session decoding

performance compared to other data-augmentation methods.

Transferring learned dynamics and improving the best achievable decoding performance

across subject

The neural dynamics learned from Monkey C can transfer some useful knowledge that

helps the decoding performance of Monkey M, even with ample neural data for both

subjects. Training a BCI decoder on a combination of the neural data (from another subject)

and the synthesized spike trains, can improve beyond the best achievable decoding

performance on acceleration by using the neural data only. When neural data are ample

for both Monkey M and Monkey C, the decoding performance of acceleration of Monkey

C (Fig.5, Real-Only method, green curve) is higher than decoding performance of Monkey

M (Fig.6, Real-Only method, green curve). This might come from the quality of signals

collected by the electrode arrays, or from the fact that neural data from Monkey C is

inherently easier to decode than the neural data from Monkey M. Thus, training an

encoding model that learns good neural dynamics from Monkey C might transfer some

useful knowledge to help the decoding performance of Monkey M on acceleration. For

example, from Fig. 6, when all neural data of Monkey M is available (the neural data of

Monkey M is ample), the best acceleration y performance is 0.6442 (GAN-Augmentation,

2.28 minutes of neural data used, red curve), compared to 0.4774 (34.9% better, p <0.05,

Real-Only method, 9.12 minutes of real neural data used, green curve), 0.6233 (3.35%

better, p<0.05, Stretch-Augmentation Method, 9.12 minutes of neural data used, black

curve), 0.5909 (9.02% better, p<0.05, Real-Concatenation, 1.824 minutes of neural data

used, blue curve) and 0.5127 (25.64% better , p<0.05, Mutant-Augmentation, 4.562

minutes of neural data used, yellow curve). Thus, even with ample neural data for both

subjects, the synthesized spike trains learned from Monkey C transferred some useful

knowledge to help the cross-subject decoding performance on the acceleration of Monkey

M.

Synthesized spike trains improve cross-subject decoding performance on some aspects

of kinematics when training data is limited.

In addition, synthesized spike trains that capture the neural dynamics improves the cross-

subject decoding performance on acceleration when the neural data from another subject

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

is limited. For example, if we only have 2.28 minutes of neural data from the Monkey M

(Fig.6), the cross-subject decoding performance of the GAN-Augmentation method for

acceleration y is 0.6442 compared to 0.5812 (10.83% better, p<0.05, Real-

Concatenation), 0.4809 (33.95% better, p<0.05, Mutation-Augmentation) and 0.4688

(37.4% better, p<0.05, Stretch-Augmentation) methods.

Figure 5 Cross-session decoding. The GAN-Augmentation, Mutation-Augmentation,

Stretch-Augmentation, Real-Concatenation and Real-Only methods are shown in red,

yellow black, blue and green curves with an error bar. The horizontal axis is the number

of minutes of neural data from the session 2 of Monkey C used. The vertical axis is

correlation coefficient between the decoded kinematics and real kinematics on an

independent test set from the session 2 of Monkey C. Synthesized spike trains that capture

the neural dynamics improves the cross-session decoding performance when the neural

data from another session is limited.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 6 Cross-subject decoding. The GAN-Augmentation, Mutation-Augmentation,

Stretch-Augmentation, Real-Concatenation and Real-Only methods are shown in red,

yellow black, blue and green curves with an error bar. Cross-subject decoding. The

horizontal axis is the number of minutes of neural data from Monkey M used. The vertical

axis is the correlation coefficient between the decoded kinematics and real kinematics on

an independent test set from the Monkey M. When the neural data from another subject

is limited, synthesized spike trains that capture the neural dynamics improves the cross-

subject decoding performance on acceleration. Even with ample neural data for both

subjects, the neural dynamics learned from one subject can transfer some useful

knowledge that improves the best achievable decoding performance on acceleration of

another subject.

Discussion

In the encoding problem, our neural encoding model learned velocity neural tuning curves

and position activity maps of virtual neurons that are similar to real neurons. Given any

kinematics in the training set, our neural encoding model synthesizes spikes trains that

have similar firing pattern as neural data. In addition, the neural encoding model can

generalize to novel situations, producing synthesized spike trains which we show are

sufficient for practical use in a decoder, even though they may not be perfect in all aspects.

In the decoding problem, for the cross-session scenario, with the help of the synthesized

spike trains produced by neural encoding model, we could better train the BCI decoder

and improve its cross-session decoding performance. For the cross-subject scenario, the

synthesized spike trains learned from one subject can transfer some useful knowledge

that improves the best achievable decoding performance, on some aspects of the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

kinematics, of another subject, comparing to training a BCI decoder only on the neural

data from another subject. In addition, when the neural data from another subject is limited,

synthesized spike trains can improve the cross-subject decoding performance on some

aspects of kinematics. Thus, building a better encoding model by understanding

underlying neural dynamics can help better solve a decoding problem.

Neural dynamics (position activity maps and velocity neural tuning curves) learned by

neural encoding model have a special name in the literature36–41 – Motor primitives. Motor

cortex is believed to control movement through flexible combinations of motor primitives,

elementary building blocks that can be combined and composed to give rise to complex

motor behavior. Shadmehr et al. 40 defined a motor primitive as the velocity neural tuning

curve for each neuron, fitted by a Gaussian function. They built movement trajectories

through linear combinations of those velocity tuning curves. In related research, Stround

et al.41 used gain patterns over neurons or neural groups to predict movement trajectories.

Here we use an extended version of Shadmehr’s40 definition of motor primitive that

includes both position and velocity tuning for each neuron. We hypothesize that our neural

encoding model learned motor primitives and their combination rules in an autonomous

and principled way. In addition, the encoding model can synthesize corresponding spike

trains given kinematics, under the guidance of motor primitives. With a structured

representation of motor primitives, and with the consequent help of synthesized spikes

trains, we can improve cross-session and cross-subject decoding performance.

In addition, we could interpret the improvement in the decoding performance gained with

the encoding model from the perspective of statistics of movements. Kording, et al.42

proposed a fundamentally new approach, alignment decoding (DAD), leveraging the

statistics of movements. The understanding of the statistics of movements can help us in

many situations where obtaining simultaneous recordings of both neural activity and

kinematics is challenging, expensive, or impossible. They built prior distributions for

feeding, running and reaching tasks. DAD aligned the distribution of its output with

statistics of prior distributions to learn a linear decoder. However, to achieve better

decoding performance in more complex movements, one would need many prior

distributions (high-level templates), because the complex movements might involve sub-

part movements such as holding still, rapid reaching, slow reaching, etc. It takes a lot of

time to manually craft these templates. It is hard to choose the right form of the templates

for a task and to combine them properly. In comparison, our neural encoding model

learned neural dynamics such as position activity maps, velocity neural tuning curves (low-

level templates) directly from the data. For any complex kinematics, our encoding model

could synthesize spike trains (sufficient for practical use) with distributions corresponding

to its high-level movements (such as distribution for holding and distribution for rapid

reaching) by properly combining those neural dynamics in an autonomous way. There is

no need to handcraft high-level templates because they can be constructed from more

fundamental low-level templates. Thus, training a BCI decoder to learn those prior

distributions contained in the synthesized spike trains can improve the cross-session and

cross-subject decoding performance.

Recently, Pandarinath et al.22 proposed an interesting method to infer latent dynamics

from single-trial neural spike data leveraging an auto-encoder of deep learning (LFADS).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

Our method is complementary to this work for the following reasons. First, the focus of

LFADS is on how to construct the low-dimensional latent variables. Pandarinath et al.22

use an auto-encoder that creates a mapping from the neural data to low-dimensional latent

variables (neural population dynamics), and reconstructs the same neural data from these

low-dimensional latent variables. In comparison, our method uses a generative adversarial

network that creates a mapping directly from the kinematics to the neural data. It can

synthesize realistic spike trains which demonstrate realistic neural dynamics (position

activity maps, velocity neural tuning curve, mean firing rates), given the kinematics in the

training set. In addition, it can synthesize novel, but good enough spike trains for practical

usage (improve cross-session and cross-subject decoding), given the kinematics from

another independent session or subject. Second, LFADS assumes that spikes are

samples from a Poisson process. In contrast, our method does not impose any prior

distribution on the data and can fit the distribution directly from the data, since a strong

prior distribution might limit the generality of the model. Third, a need for stabilization of

the latent space arises because of continuous changes in the recording device.

Pandarinath et al.22 cope with this instability by continuing to train the interface over as

long as five months. This may not always be a viable solution in practical applications,

because it requires the user to continuously adapt to a changing interface. In comparison,

our model only needs one full session (about 24 mins) to achieve stable predictions from

kinematics to synthesized spike trains.

Last but not the least, the approach is general and fully data-driven, and hence could be

applied to other neuroscience encoding and decoding problems beyond motor control

without modifying too many domain specific structures.

Acknowledgements

This work was supported by the National Science Foundation (grant number CCF-

1317433), C-BRIC (one of six centers in JUMP, a Semiconductor Research Corporation

(SRC) program sponsored by DARPA), and the Intel Corporation. The authors affirm that

the views expressed herein are solely their own, and do not represent the views of the

United States government or any agency thereof.

Reference

1. Gold, J. I. & Shadlen, M. N. The Neural Basis of Decision Making. Annu. Rev.
Neurosci. (2007). doi:10.1146/annurev.neuro.29.051605.113038

2. Felsen, G. & Dan, Y. A natural approach to studying vision. Nature Neuroscience
(2005). doi:10.1038/nn1608

3. Paninski, L., Pillow, J. & Lewi, J. Statistical models for neural encoding, decoding,
and optimal stimulus design. Progress in Brain Research (2007).
doi:10.1016/S0079-6123(06)65031-0

4. Paninski, L. Superlinear Population Encoding of Dynamic Hand Trajectory in
Primary Motor Cortex. J. Neurosci. (2004). doi:10.1523/JNEUROSCI.0919-
04.2004

5. Truccolo, W., Eden, U., Fellows, M., Donoghue, J. & Brown, E. A Point Process
Framework for Relating Neural Spiking Activity to Spiking History, Neural
Ensemble, and Extrinsic Covariate Effects. J. Neurophysiol. (2005). doi:doi:

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

10.1152/jn.00697.2004

6. Yu, B. M. et al. Gaussian-Process Factor Analysis for Low-Dimensional Single-
Trial Analysis of Neural Population Activity. J. Neurophysiol. (2009).
doi:10.1152/jn.90941.2008

7. Lebedev, M. A. & Nicolelis, M. A. L. Brain-machine interfaces: past, present and
future. Trends in Neurosciences (2006). doi:10.1016/j.tins.2006.07.004

8. Wessberg, J. et al. Real-time prediction of hand trajectory by ensembles of
cortical neurons in primates. Nature (2000). doi:10.1038/35042582

9. Carmena, J. M. et al. Learning to control a brain-machine interface for reaching
and grasping by primates. PLoS Biol. (2003). doi:10.1371/journal.pbio.0000042

10. Li, Z. et al. Unscented Kalman filter for brain-machine interfaces. PLoS One
(2009). doi:10.1371/journal.pone.0006243

11. Wu, W. et al. Neural Decoding of Cursor Motion Using a Kalman Filter. Adv.
Neural Inf. Process. Syst. 15 Proc. 2002 Conf. (2003). doi:10.1.1.6.8776

12. Brockwell, A. E. Recursive Bayesian Decoding of Motor Cortical Signals by
Particle Filtering. J. Neurophysiol. (2004). doi:10.1152/jn.00438.2003

13. Gao, Y., Black, M. J., Bienenstock, E., Wu, W. & Donoghue, J. P. A quantitative
comparison of linear and non-linear models of motor cortical activity for the
encoding and decoding of arm motions. in International IEEE/EMBS Conference
on Neural Engineering, NER (2003). doi:10.1109/CNE.2003.1196789

14. Eden, U. T., Frank, L. M., Barbieri, R., Solo, V. & Brown, E. N. Dynamic Analysis
of Neural Encoding by Point Process Adaptive Filtering. Neural Comput. (2004).
doi:10.1162/089976604773135069

15. Eden, U. T. Point process adaptive filters for neural data analysis: Theory and
applications. in Proceedings of the IEEE Conference on Decision and Control
(2007). doi:10.1109/CDC.2007.4434708

16. Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. Neural Comput.
(1997). doi:10.1162/neco.1997.9.8.1735

17. Glaser, Joshua I and Chowdhury, Raeed H and Perich, Matthew G and Miller, Lee
E and Kording, K. P. Machine learning for neural decoding. (2017).

18. Moeendarbary, E. et al. The soft mechanical signature of glial scars in the central
nervous system. Nat. Commun. (2017). doi:10.1038/ncomms14787

19. Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T.
Brain tissue responses to neural implants impact signal sensitivity and
intervention strategies. ACS Chem. Neurosci. (2015). doi:10.1021/cn500256e

20. Duffau, H. Brain Plasticity and Reorganization Before, During, and After Glioma
Resection. in Glioblastoma (2016). doi:10.1016/B978-0-323-47660-7.00018-5

21. Tkach, D., Reimer, J. & Hatsopoulos, N. G. Observation-based learning for brain-
machine interfaces. Current Opinion in Neurobiology (2008).
doi:10.1016/j.conb.2008.09.016

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

22. Pandarinath, C. et al. Inferring single-trial neural population dynamics using
sequential auto-encoders. Nat. Methods (2018). doi:10.1038/s41592-018-0109-9

23. Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal dynamics: From
single neurons to networks and models of cognition. Neuronal Dynamics: From
Single Neurons to Networks and Models of Cognition (2014).
doi:10.1017/CBO9781107447615

24. Goodfellow, I. Generative Modeling Generative Modeling. NIPS (2016).
doi:10.1001/jamainternmed.2016.8245

25. Ian J. Goodfellow, Jean Pouget-Abadie∗, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair†, Aaron Courville, Y. B. Generative Adversarial Nets Ian. Vet.
Immunol. Immunopathol. (2013). doi:10.1016/j.vetimm.2013.08.005

26. Mirza, M. & Osindero, S. CGAN. CoRR (2014). doi:10.1017/CBO9781139058452

27. Odena, Augustus and Olah, Christopher and Shlens, J. Conditional image
synthesis with auxiliary classifier gans. (2017).

28. Odena, A. Semi-supervised learning with generative adversarial networks. (2016).

29. Chen, Xi and Duan, Yan and Houthooft, Rein and Schulman, John and Sutskever,
Ilya and Abbeel, P. Infogan: interpretable representation learning by information
maximizing generative adversasrial nets. in Advances in neural information
processing systems (2016).

30. Miyato, Takeru and Koyama, M. cGANs with projection discriminator. (2018).

31. Dai, W., Yang, Q., Xue, G.-R. & Yu, Y. Boosting for transfer learning. in
Proceedings of the 24th international conference on Machine learning - ICML ’07
(2007). doi:10.1145/1273496.1273521

32. Arnold, A., Nallapati, R. & Cohen, W. W. A comparative study of methods for
transductive transfer learning. in Proceedings - IEEE International Conference on
Data Mining, ICDM (2007). doi:10.1109/ICDMW.2007.109

33. Glaser, J. I., Perich, M. G., Ramkumar, P., Miller, L. E. & Kording, K. P.
Population coding of conditional probability distributions in dorsal premotor cortex.
Nat. Commun. (2018). doi:10.1038/s41467-018-04062-6

34. Rosenblad, A. The Concise Encyclopedia of Statistics. J. Appl. Stat. (2011).
doi:10.1080/02664760903075614

35. Hinton, P. R. Statistics Explained. Statistics Explained (2014).
doi:10.4324/9780203496787

36. Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P. & Schaal, S. Dynamical
movement primitives: Learning attractor models formotor behaviors. Neural
Computation (2013). doi:10.1162/NECO_a_00393

37. Schaal, S. Dynamic Movement Primitives -A Framework for Motor Control in
Humans and Humanoid Robotics. Adapt. Motion Anim. Mach. (2006).

38. Poggio, T. & Bizzi, E. Generalization in vision and motor control. Nature (2004).
doi:10.1038/nature03014

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

39. Nuyujukian, P. et al. Performance sustaining intracortical neural prostheses. J.
Neural Eng. (2014). doi:10.1088/1741-2560/11/6/066003

40. Thoroughman, K. A. & Shadmehr, R. Learning of action through adaptive
combination of motor primitives. Nature (2000). doi:10.1038/35037588

41. Stroud, J. P., Porter, M. A., Hennequin, G. & Vogels, T. P. Motor primitives in
space and time via targeted gain modulation in cortical networks. Nat. Neurosci.
(2018). doi:10.1038/s41593-018-0276-0

42. Dyer, E. L. et al. A cryptography-based approach for movement decoding. Nat.
Biomed. Eng. (2017). doi:10.1038/s41551-017-0169-7

43. Zaremba, Wojciech and Sutskever, Ilya and Vinyals, O. Recurrent neural network
regularization. (2014).

44. Senior, A., Heigold, G., Ranzato, M. & Yang, K. An empirical study of learning
rates in deep neural networks for speech recognition. in ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing -
Proceedings (2013). doi:10.1109/ICASSP.2013.6638963

45. Schuster, M. & Paliwal, K. K. Bidirectional recurrent neural networks. IEEE Trans.
Signal Process. (1997). doi:10.1109/78.650093

46. LeCun, Y. A theoretical framework for Back-Propagation. Proceedings of the 1988
Connectionist Models Summer School (1988). doi:10.1007/978-3-642-35289-8

Methods

The BCI decoder. We use the state-of-the-art Long Short-Term Memory (LSTM)

network16,17 as the decoder. Recurrent neural networks can use their feedback

connections to store representation of recent input in the hidden states. However, with the

traditional backpropagation through time to update the hidden states, they suffer either

gradient exploding or vanishing problem. Long Short-Term Memory creates an

uninterrupted gradient flow and thus have a better performance. The structure of LSTM

cell can be formalized as

(

ⅈ
𝑓
𝑜
𝑔

) = (

𝜎
𝜎
𝜎

𝑡𝑎𝑛ℎ

)𝑊 (
ℎ𝑡−1

𝑥𝑡
)

(1)

 𝑐𝑡 = 𝑓 ⊙ 𝑐𝑡−1 + ⅈ ⊙ 𝑔 (2)

 ℎ𝑡 = 𝑜 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (3)

Where 𝑥𝑡 is the input at time t. ℎ𝑡−1 is hidden dimension at time t-1. ℎ𝑡 is hidden dimension

at time t. 𝑊 is the weight. 𝜎 is the sigmoid function. i is the input gate, deciding whether

to write to cell. f is the forget gate, deciding whether to erase cell. g is the gate gate,

deciding how much to write to cell. o is the output gate, deciding how much to reveal cell. 𝑐𝑡

is the middle variable. In the LSTM decoder case, we unroll our LSTM cell and consider

200 timesteps for each sample. The input dimension is (N, T, D), where N is the number

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

of samples, T is the number of timesteps, D is the feature dimensions. Our input is batched

neural spikes where there are 128 samples, 200 timesteps and number of neurons (69 for

session 1, 77 for session 2 of Monkey C, 60 for session 1 of Monkey M) for feature

dimensions. The hidden dimensions h is 200 for the LSTM decoder. So, we have an output

dimension (N 128, T 200, H 200) from LSTM decoder. We feed this output into a fully

connected layer to produce the kinematics (dimension [128, 200, 6]). We apply dropout

techniques43 and learning rate decay44 while training the LSTM decoder.

Bidirectional LSTM45. The output of a sequence at a current time slot not only rely on the

sequences before it, but also depends on the sequences after it. So, to better capture the

neural dynamics, we use the bidirectional LSTM to build the generator and discriminator

in our Constrained Conditional LSTM GAN model. At each time-step t, this network has

two hidden state, one for left-to-right propagation and another for the right-to-left

propagation. The update rule is

 ℎ⃑ 𝑡 = 𝑔(�⃑⃑⃑� 𝑥𝑡 + �⃑� ℎ⃑ 𝑡−1 + �⃑�) (4)

 ℎ⃑⃖𝑡 = 𝑔(�⃑⃑⃑⃖�𝑥𝑡 + �⃑⃖�ℎ⃑⃖𝑡+1 + �⃑�) (5)

Where ℎ⃑ 𝑡 and ℎ⃑⃖𝑡 maintains the left-to-right hidden state and right-to-left hidden state

separately at time t. g is the LSTM cell update function in Eq.1,2,3.

Generative adversarial network (GAN). GANs25 provide a tool to learn a map from a

random noise input to the desired data distribution in an end to end way, updating its

parameters via backpropagation46. Thus, it does not require any assumption about the

data distribution. It is pure data-driven and does not need a strong prior model which limits

the generality. The process of training a GAN can be thought as an adversarial game

between a generator and a discriminator. The role of the generator can be thought of as

to produce fake currency and use it without detection, while the discriminator learns to

detect the counterfeit currency. Competition in this adversarial game can improve both

components’ abilities until the counterfeits are indistinguishable from real currency. After

this competition, the generator can take the random noise that provides the variations as

input and outputs different kinds of realistic bills with different textures. Several

approaches have been proposed for image synthesis using GANs enhanced to be able to

generate output images for a particular object class, such as conditional GAN26, Semi-

Supervised GAN28, InfoGAN29, AC-GAN27 and cGANs30. In this fake currency scenario, by

injecting the conditions (labels of each bill) into the input of GAN, we can select which kind

of bills we want to generate (e.g., a 100-dollar bill), the noise provides only the variations

of the textures of the bills (e.g. wrinkled, old).

Constrained Conditional LSTM GAN (cc-LSTM-GAN Supplementary Fig.1):

We propose the constrained conditional LSTM GAN to model the behavior of M1 area

given the kinematics. A normal LSTM model takes input which has a dimension of (N, T,

D) where N is the number of samples in one minibatch, T is the time horizon, D is the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

hidden dimension size. We choose 2 seconds as time horizon in our experiments. the first

input dimension N is the number of batches. The third input dimension D is the number of

neurons for the discriminator or noise dimension for the generator. For each item in the

batch, we have a 2 seconds slice of neural spikes with D neurons. Since the number of

neurons is the third hidden dimension of LSTM in the discriminator, our discriminator treats

different neurons as different individuals that have different neural tuning property. Thus,

we call this CC-LSTM GAN encoding model as multiple neural encoding model.

Training assistant LSTM decoder (GAN-ta LSTM decoder). We train a LSTM decoder on

neural data from Monkey C beforehand and freeze its parameters when we train our

Constrained Conditional Bidirectional LSTM GAN. This decoder applies constrains to the

cc-LSTM-GAN. We want to maintain the decoding performance while we train the encoder.

Bidirectional LSTM generator. The bidirectional-LSTM generator takes Gaussian noise

and real kinematics as input and synthesizes the corresponding spikes trains. We feed

the outputs (dimensions [Sample size, Time horizon, Hidden dimension]) of the

bidirectional-LSTM into a fully connected layer to synthesize spikes trains with the correct

number of neurons (dimensions [Sample size, Time horizon, number of neurons]). We

apply
1

2
 x tanh function as the output layer of the fully connected layer which maps a real

value to [-0.5, 0.5] that gives us a probability representation of whether the current bin

contains a spike event or not. E.g., if the value is 0.3 in the current bin, it means the

probability there is a spike event in this bin is 0.8.

Bidirectional LSTM discriminator. The Discriminator is a bidirectional-LSTM. It takes the

synthesized spikes trains and neural data as input and learns to determine whether a

sample is from the neuron data or synthesized spikes trains. We feed the outputs of the

bidirectional-LSTM into a fully connected layer to obtain a decision value (0,1). It is a

probability that decides whether the current sample is real or fake. In the multiple neural

encoding model, we feed the output of a bidirectional-LSTM into another fully connected

layer to get the decoded kinematics. This helps us to apply the category constraints.

Multiple neural encoding model (CC-LSTM-GAN). we use a conditional structure that has

a GAN category loss to let discriminator tell the difference of both data source distribution

(neural spikes distribution) and data labels (kinematics corresponding to this neural spikes)

distribution. When the input of bidirectional LSTM discriminator is the neural data

(synthesized spikes trains), the real (fake) embedding features are the output of

bidirectional LSTM discriminator. GAN embedding category loss is the L2 loss between

the real embedding features and the fake embedding features.

 GAN embedding category loss = (𝑅𝑒𝑎𝑙 𝑒𝑚𝑏𝑒𝑑𝑑ⅈ𝑛𝑔 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 − 𝐹𝑎𝑘𝑒 𝑒𝑚𝑏𝑒𝑑𝑑ⅈ𝑛𝑔 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)2 (6)

When the input of bidirectional LSTM discriminator is the neural data (synthesized spikes

trains), the real (fake) decoded kinematics are the output of the fully connected layer after

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

bidirectional LSTM discriminator. Real (fake) GAN decoding category loss is the L2 loss

between real (fake) decoded kinematics and real kinematics. The GAN category loss is

the average of real GAN decoding category loss, fake GAN decoding category loss and

GAN embedding category loss.

GAN
category loss =

1

3
 x (Real GAN decoding category loss +

Fake GAN decoding category loss +
GAN Embedding category loss)

(7)

To maintain the source distribution, our cc-LSTM-GAN need to play the min max game,

we need to minimize GAN loss discriminator(𝐿 𝐷) and GAN loss generator (𝐿 𝐺).

𝐿 𝐷 = − 𝐸𝑥 ~ 𝑝𝑑𝑎𝑡𝑎
[𝑙𝑜𝑔𝐷(𝑥)] − 𝐸𝑧 ~ 𝑝(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))] (8)

𝐿 𝐺 = − 𝐸𝑧 ~ 𝑝(𝑧)[𝑙𝑜𝑔(𝐷(𝐺(𝑧)))] (9)

Where z is the Gaussian noise, x is the neuron spikes, k is the kinematics, p(z) is the noise

distribution, 𝑝𝑑𝑎𝑡𝑎is the data distribution. 𝐿 𝐷 is the discriminator loss, 𝐿 𝐺 is the generator

loss.

To further maintain the virtual neurons biological structure, we want to maximize the inner

product loss between the neural data and synthesized spikes trains. Thus, we have our

inner product loss

 inner product loss = synthesized spike trains ∙ neural 𝑑𝑎𝑡𝑎 (10)

The pre-trained GAN-ta LSTM decoder takes the synthesized spike trains as input and

decodes the corresponding decoded generated kinematics. It also takes the neural data

as input and decodes the corresponding decoded real kinematics. We apply L2 loss

between real kinematics and decoded generated kinematics. We apply L2 loss between

decoded generated kinematics and decoded real kinematics. The pre-trained GAN-ta

LSTM decoder helps our generator synthesize a more realistic spike trains in terms of the

performance of GAN-ta LSTM decoder.

So, the total generator loss is the weighted average of GAN loss discriminator, the L2 loss

between decoded generated kinematics and decoded real kinematic, the L2 loss between

decoded generated kinematics and real kinematics, and the GAN category loss.

Total
generator loss=

0.7 * 𝐿 𝐺 + 0.2 * GAN category loss + 0.1 * inner product loss +
0.1 * L2 Loss between decoded generated kinematics and decoded real kinematics +
0.1 * L2 Loss between decoded generated kinematics and real kinematics

(11)

The total discriminator loss is the weighted average of GAN discriminator loss and the

GAN category loss. We train this network by real GAN training set and minimize the total

discriminator loss and the total generator loss.

 Total discriminator loss = = 0.8 ∗ 𝐿 𝐷 + 0.2 ∗ 𝐺𝐴𝑁 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑙𝑜𝑠𝑠 (12)

Finetuning

we train a multiple neural encoding model on the session 1 of Monkey C. In the finetuning

process, we take a limited amount of neural data from the session 2 of Monkey C (cross-

session) or a limited amount of neural data from Monkey M (cross-subject). We add

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

another fully connected layer on top of the bidirectional LSTM generator and use it to

generate the corresponding neural spikes with the same number of neurons as the limited

amount of neural data from another session or subject. We freeze the parameter of

bidirectional LSTM generator and only trained this new fully connected layer with limited

amount of neural data from another session or subject. The loss function of the finetuning

process is the inner product loss in Eq.10. Then, we feed the kinematics corresponding

this limited amount of neural data into the Generator multiple times to synthesize a large

amount of spike trains.

Data Augmentation

We use multiple data augmentation methods to train a BCI decoder and achieve a better

decoding performance than training a BCI decoder on the neural data only.

Real-Only method: Without any data augmentation, we train the BCI decoder on the neural

data only and test on the neural data of an independent test set. This method requires at

least 8.5 mins neural data in the training set to let the BCI decoder converge.

Real-Concatenation: We take a limited neural data from the training set and concatenate

this limited neural data multiple times until it has the equal or longer length than the whole

training set. We train the BCI decoder on the concatenated neural data and test on the

neural data of an independent test set.

Mutation-Augmentation: We take a limited neural data from the training set. We flip the

value of this neural data with 5% probability. We repeat these two steps several times

and concatenate the mutated neural data and its kinematics together until it has an equal

or longer length than the whole training set. We train the BCI decoder on the mutated

neural data and test on the neural data of an independent test set.

Stretch-Augmentation: We take a limited neural data from the training set. We stretch the

neural data by 10 percent. We fill the empty stretched slots of the neural data by zeros

(50% probability) or ones (50% probability). We calculate the average absolute gradients

for each kinematics during the transition of each time slot. We fill the empty stretched slots

of the kinematics by summation of the positive average absolute gradients (50%

probability) or negative absolute gradients (50% probability) and the value of its last slot.

We repeat the above steps several times and concatenate the stretched neural data and

its kinematics together until it has an equal or longer length than the whole training set.

We train the BCI decoder on the stretched neural data and test on the neural data of an

independent test set.

GAN-Augmentation: we use a limited neural data from the training set for the finetuning

process. Then, we combined the synthesized spike trains with the augmented data from

Real-Concatenation method. We train the BCI decoder on the combination of synthesized

spike trains and concatenated neural data. We test on neural data of an independent test

set.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary

Supplementary figure 1: neural encoding model (CC-LSTM-GAN)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/811356doi: bioRxiv preprint

https://doi.org/10.1101/811356
http://creativecommons.org/licenses/by-nc-nd/4.0/

