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Abstract

Background

A relatively simple life history allows us to derive an expression for the extinction
probability of populations of tsetse, vectors of African sleeping sickness. We present the
uncertainty and sensitivity analysis of extinction probability for tsetse population, to
offer key insights into parameters in the control/eradication of tsetse populations.

Methods

We represent tsetse population growth as a branching process, and derive closed form
estimates of population extinction from that model. Statistical and mathematical
techniques are used to analyse the uncertainties in estimating extinction probability,
and the sensitivity of the extinction probability to changes in input parameters
representing the natural life history and vital dynamics of tsetse populations.

Results

For fixed values of input parameters, the sensitivity of extinction probability depends on
the baseline parameter values. For example, extinction probability is more sensitive to
the probability that a female is inseminated by a fertile male when daily pupal
mortality is low, whereas the extinction probability is more sensitive to daily mortality
rate for adult females when daily pupal mortality, and extinction probabilities, are high.
Global uncertainty and sensitivity analysis showed that daily mortality rate for adult
females has the highest impact on the extinction probability.

Conclusions

The strong correlation between extinction probability and daily female adult mortality
gives a strong argument that control techniques to increase daily female adult mortality
may be the single most effective means of ensuring eradication of tsetse population.
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Author summary 1

Tsetse flies (Glossina spp) are vectors of Trypanosomiasis, a deadly disease commonly 2

called sleeping sickness in humans and nagana in livestock. The relatively simple life 3

history of tsetse enabled us to model its population growth as a stochastic branching 4

process. We derived a closed-form expression for the probability that a population of 5

tsetse goes extinct, as a function of death, birth, development and insemination rates in 6

female tsetse. We analyzed the sensitivity of the extinction probability to the different 7

input parameters, in a bid to identify parameters with the highest impact on extinction 8

probability. This information can, potentially, inform policy direction for tsetse 9

control/elimination. In all the scenarios we considered, the daily mortality rate for adult 10

females has the greatest impact on the magnitude of extinction probability. Our 11

findings suggest that the mortality rate in the adult females is the weakest link in tsetse 12

life history, and this fact should be exploited in achieving tsetse population control, or 13

even elimination. 14

Introduction 15

Tsetse flies (Glossina spp) are biting flies of both public health and economic 16

importance in 36 Sub-Saharan Africa countries. They feed exclusively on the blood of 17

vertebrates – game animals and livestock, and also humans, and provide the link that 18

drives the transmission of African trypanosomiasis, a tropical disease called Sleeping 19

Sickness in humans and nagana in livestock. According to a WHO 2018 factsheet for 20

Human Sleeping Sickness, the disease still occurs in about 36 countries in sub-Saharan 21

Africa, mostly among poor farmers living in rural areas. Due to sustained control 22

efforts, the number of cases of the disease has reduced. In 2015 there were about 2804 23

cases recorded: 97% of these were chronic infections with Trypanosoma brucei 24

gambiense [1]. To sustain the reduction in cases, it is important to continue to improve 25

understanding of the tsetse fly vector, in a bid to develop more effective control 26

techniques: with improved cost effectiveness. 27

A recent study [2] employed the theory of branching processes to derive an expession 28

for the extinction probability for closed populations of tsetse. This equation involves 29

numerous parameters representing death, development and fertility rates during the 30

fly’s lifecycle. These results allow us to determine, by sensitivity analysis, the relative 31

importance of changing, through control techniques, the various parameters. Sensitivity 32

analysis is often used to investigate the robustness of model output to parameter 33

values [3–5]. In this context, it is important to identify the parameters that have the 34

greatest influence on extinction probabilities of tsetse, since this information will provide 35

insight to the eradication of tsetse, and inform policy on the direction of control efforts. 36

Here we adopt the model developed by Kajunguri et al [2] and Hargrove [6] for the 37

reproductive performance of female tsetse flies inseminated by a fertile male. We then 38

use a framework, developed by Harris [7], to derive a fixed point equation for the 39

extinction probability for a tsetse population. This approach allows us to obtain the 40

same expression for extinction probability as [2], but it is derived with fewer steps and 41

with less mathematical complexity. We compute local sensitivity indices of extinction 42

probability with respect to all input parameters by allowing the value of daily mortality 43

rate of female pupae (χ) to vary between 0.001 per-day and 0.025 per-day. Due to 44

nonlinearities and interdependencies between input parameters, local sensitivity may be 45

highly dependent on the baseline values of the parameters [8]. 46

To identify the most important input parameters, we use Latin Hypercube Sampling 47

(LHS) and Partial Rank Correlation Coefficient (PRCC) methods for the global 48
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uncertainty and sensitivity of the extinction probability. The Latin Hypercube 49

Sampling was first applied in epidemiological modelling by Blower ( [9] in [10]). Several 50

studies have since applied LHS in disease modelling, detailing its advantage over other 51

sampling methods and describing the methodology concisely ( [8]– [11]). PRCC has 52

been used widely in determining the sensitivity of models of various systems 53

( [8], [12], [13]) especially to assess the sensitivity of disease models to various input 54

parameters. Combining LHS and PRCC provides a robust method for assessing the 55

uncertainty and the sensitivity of the extinction probability to all input parameters. 56

In the next section, we present the branching process model developed in [2] and [6] 57

and present an approach based on a method used in [7] to derive a fixed point equation 58

for the extinction probability for a tsetse population. In section 3, we present the local 59

sensitivity analysis for the extinction probability at two fixed baseline values of the 60

input parameters and the mathematical derivation of the sensitivity indices of 61

extinction probability w.r.t all input parameters. Section 4 presents global uncertainty 62

and sensitivity analysis using LHS/PRCC methods. The results are discussed in detail 63

in section 5. 64

Materials and methods 65

The aim of this section is to develop a stochastic model for tsetse population growth in 66

the form of a branching process and to use the model to obtain a fixed point equation 67

for extinction probability for tsetse populations ( [2], [6], [14], [15]). We develop the 68

branching process focusing only on female tsetse flies [6]. We follow a framework 69

developed in [6], assuming a female tsetse fly is fertilized with probability ε and survives 70

to deposit her first larva with probability λν+τ :ν is days to first ovulation, τ is the 71

inter-larval period, and λ is adult female daily survival probability. She produces a 72

female pupa with probability β, and the pupa survives to adulthood with probability φg 73

(where g is the pupal duration and φ is the daily survival probability of the pupa). The 74

mother dies before the next pregnancy, having produced a single surviving daughter, 75

with probability (1− λτ ). The probability that an adult female tsetse dies after 76

producing a single surviving daughter after surviving one pregnancy is: 77

p1,1 = ελν+τβφg(1− λτ ). (1)

Equation (1) can be generalized by induction to obtain the probability that a female 78

tsetse produces k surviving female offspring after surviving n pregnancies. Thus 79

pn,k = ελν+τ
(
n

k

)
βnφkg(

1

β
− φg)n−k, n > 0; 1 ≤ k ≤ n, (2)

where
(
n
k

)
= n!

(n−k)!k! is the binomial coefficient. 80

Suppose p0, p1, p2, ... are the probabilities that a female tsetse produces 0, 1, 2, ... 81

surviving female offspring in her lifetime, respectively. Suppose also that p0 + p1 < 1, to 82

avoid the trivial case where a tsetse fly only produces 0 or 1 female offspring. 83

Summing equation (2) over all n, gives pk, the probability that a female produces k 84

surviving female offspring in its lifetime. 85

pk =
ελν+τ (1− λτ )βkφkg

(1− βλτ ( 1
β − φg))k+1

, k > 0. (3)

Equation (3) was used in [2] to obtain the mean and variance of the population size, 86

extinction probability and time to extinction of populations of tsetse. Proofs of 87

equations (1) and (2) are provided in [2] (Supplementary Information). 88
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It can be shown easily that p0, p1, p2, ... follow a geometric series, such that 89

pk = bck−1, k = 1, 2, 3, ..., where b, c > 0; and p0 = 1−
∑∞
i=1. Equation (3) then 90

becomes: 91

pk =
ελν+τ (1− λτ )βφg

(1− βλτ ( 1
β − φg))2

(
βφgλτ

(1− βλτ ( 1
β − φg)

)k−1, (4)

where b = ελν+τ (1−λτ )βφg
(1−βλτ ( 1

β−φg))2
and c = βφgλτ

(1−βλτ ( 1
β−φg)

. 92

Following a framework developed by Harris [7], the generating function g(θ) of pk, is 93

a fractional linear function given by; 94

g(θ) = 1− b

(1− c)
+

bθ

1− cθ
, 0 ≤ θ ≤ 1. (5)

Extinction probability 95

The extinction probability for tsetse population is the non-negative fixed point of 96

equation (5), i.e. 0 ≤ θ ≤ 1 such that g(θ) = θ. 97

θ =
1− λτ (1− βφg(1− ελν))

βφgλτ
, (6)

where βφgλτ 6= 0. In practice, 0 < β < 1, 0 < λ < 1 and 0 < φ < 1. This implies that 98

the survival probabilities for both adult females and female pupa, and the probability 99

that a pupa deposited is female are all in the open interval (0, 1). Which allows us to 100

avoid a case where θ=0 or 1 trivially. Equation (6) is the solution for the situation 101

where the initial population consists of just a single female fly. For N flies in the 102

pioneer population, and assuming that the survival and reproductive rates of all 103

individual flies are independent, extinction probability is θN . 104

Local sensitivity analysis of θ 105

In this section, we perform local sensitivity analysis, otherwise known as elasticity 106

analysis, on the extinction probability for tsetse populations. Given that the extinction 107

probability θ, depends differentiably on each input parameter, the normalized forward 108

sensitivity (elasticity) index of θ w.r.t all input parameters is: 109

Πθ
ρi =

ρi
θ

∂θ

∂ρi
, i = 1, 2, ..., 7, (7)

where ρi is the set of all input parameters of the extinction probability. This method 110

has been used extensively in the literature to determine the sensitivity of the 111

reproduction number Ro of epidemiological models to model parameters [4, 5, 16]. When 112

the initial population consists of N female tsetse, the extinction probability is θN . The 113

sensitivity indices of θN w.r.t all input parameters is; 114

ΠθN

ρi =
ρi
θN

∂θN

∂ρi
= N

ρiθ
N−1

θN
∂θ

∂ρi
= N

ρi
θ

∂θ

∂ρi
= NΠθ

ρi . (8)

Notice that, when there are N female flies in the initial population, the sensitivity 115

indices of θN w.r.t all input parameters is the sensitivity indices of θ multiplied by N . 116

The larger the size of the initial population, the more sensitive extinction probability is 117

to input parameters. 118

Writing equation (6) in terms of daily mortality rate for adult females (ψ), and the 119

daily mortality rate for female pupae (χ), yields: 120
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θ =
1−

(
e−ψ

)τ (
1− β (e−χ)

g (
1− ε

(
e−ψ

)ν))
(e−ψ)

τ
(e−χ)

g
β

. (9)

Table 1 shows the derivations of the sensitivity indices of extinction probability with 121

respect to all seven input parameters. These expressions were derived from equations 122

(7) and (9) with a simple code in MAPLE 17 environment. 123
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Table 1. Expressions for the sensitivity indices of extinction probability
with respect to all seven input parameters.

Parameters
The sensitivity of extinction probability (θ)

to input parameters

ψ Πθ
β = − −1+(e−ψ)

τ

−1+(e−ψ)τ−(e−ψ)τ (e−χ)gβ+(e−ψ)τ+ν(e−χ)gβ ε

χ Πθ
χ =

χ g(−1+(e−ψ)
τ
)

−1+(e−ψ)τ−(e−ψ)τ (e−χ)gβ+(e−ψ)τ+ν(e−χ)gβ ε

ε Πθ
ε =

(e−ψ)
τ+ν

(e−χ)
g
β ε

−1+(e−ψ)τ−(e−ψ)τ (e−χ)gβ+(e−ψ)τ+ν(e−χ)gβ ε
.

g Πθ
χ =

χ g(−1+(e−ψ)
τ
)

−1+(e−ψ)τ−(e−ψ)τ (e−χ)gβ+(e−ψ)τ+ν(e−χ)gβ ε

ψ Πθ
ψ = −

ψ
(
(e−ψ)

τ+ν
(e−χ)

g
β ε ν+τ

)
−1+(e−ψ)τ−(e−ψ)τ (e−χ)gβ+(e−ψ)τ+ν(e−χ)gβ ε

.

τ Πθ
τ =

τ ln(e−ψ)
−1+(e−ψ)τ−(e−ψ)τ (e−χ)gβ+(e−ψ)τ+ν(e−χ)gβ ε

.

ν Πθ
ν =

ν β (e−χ)
g
(e−ψ)

τ+ν
ε ln(e−ψ)

−1+(e−ψ)τ−(e−ψ)τ (e−χ)gβ+(e−ψ)τ+ν(e−χ)gβ ε
.

Results 124

Table 2 shows the sensitivity indices of extinction probability w.r.t all input parameters 125

for different values of extinction probabilities. For instance, the sensitivity indices of θ 126

w.r.t to ε (probability female is inseminated by a fertile male) decreases by > 60% when 127

θ (extinction probability) approaches 1, implying that, at θ = 0.419, a 10% decrease in ε 128

will yield a 22% increase in θ, whereas, at θ = 0.96, a 10% decrease in ε will only yield 129

an 8.7% increase in θ. 130
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Table 2. List and description of parameters affecting extinction
probabilities for tsetse populations, and the sensitivity indices for these
parameters, at two different values of extinction probability.

Parameters & descriptions Baseline values Sensitivity indices
θ = 0.419 θ = 0.960

Daily mortality rate for
adult females (ψ = − ln(λ)) 0.02-0.03 per-day [17] +1.030 +1.080

Daily mortality rate for
female pupae (χ = − ln(φ)) 0.01-0.025 per-day [17] +0.507 +0.374

Probability deposited
pupa is female (β) 0.5 [6] -0.836 -0.832

Probability female is inseminated
by a fertile male (ε) 1 [6] -2.220 -0.870

Inter-larval period (τ) 9 days [6] +0.875 +0.929

Pupal duration (g) 27 days [6] +0.507 +0.374

Time from adult female
emergence to first ovulation (ν) 7 days [6] +0.158 +0.154

Varying sensitivity indices of θ w.r.t all input parameters as a 131

function of χ 132

Here we investigate the changes that occur in the sensitivity indices of extinction 133

probability with respect to six input parameters by allowing χ to vary between 0.1% to 134

2.5%. A simple script was written in MAPLE 17 environment to calculate the local 135

sensitivity indices of θ w.r.t to the six remaining input parameters for different values of 136

χ. Figure 1(A and B) show changes in the sensitivity indices of θ w.r.t to each 137

parameter as the daily mortality rate for female pupae (χ) varies from 0.1% to 2.5%, 138

while keeping constant the other baseline values of g, τ, ν, ψ, β, and ε (Table 1). 139

As χ increases from 0.001 to 0.0065, the sensitivity index of θ w.r.t ε reduces below 140

the sensitivity index of θ w.r.t ψ. At that point extinction probability becomes more 141

sensitive to ψ than ε. When χ increases further to 0.013, the sensitivity of extinction 142

probability to ε drops further below the sensitivity of extinction probability to τ(Fig 1 143

(A and B)). 144

Local sensitivity analysis may not be robust enough to capture the actual influence 145

of all input parameter values on the extinction probability since there are 146

interdependencies between input parameters. We, therefore, proceed to carry out global 147

uncertainty and sensitivity analysis of the extinction probability for tsetse population. 148

Global uncertainty and sensitivity analysis of θ 149

The exact values of the input parameters are not known in field suituatins, where many 150

of these parameters depend on temperature and other climatic factors. It is therefore 151

important to quantify the uncertainty involved in estimating the extinction probability. 152

To quantify the uncertainty involved in estimating the extinction probability (θ) and to 153

establish the most important input parameters, we use LHS and PRCC methods for the 154

global uncertainty and sensitivity analysis of the extinction probability. The method 155

follows the approach of Samsuzzoha et al [4]. 156
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Uncertainty analysis 157

We aim to analyse the uncertainty involved in quantifying extinction probability (θ) 158

based on the uncertainties associated with the input parameters. Accordingly, in order 159

to investigate the sensitivity to this uncertainty we sample values from prior 160

distributions of these parametes. We define prior probability distribution functions for 161

each of the input parameters, based on the studies done on the life cycle of tsetse 162

published in the literature [17,18]. The probability distribution functions are given in 163

Table 3, where β, N and U denote beta, normal and uniform distributions, respectively. 164

Table 3. List of parameters and their prior probability distributions .

Parameters Prior probability distribution

ψ β(0.4, 12)

χ β(0.3, 12)

β N(0.5, 0.01)

τ N(9, 0.747)

g N(30, 1)

ν N(8, 0.011)

Using LHS, we obtain the uncertainty output for all the input parameters and also 165

for the extinction probability. LHS is used to sample from the stratified probability 166

distribution functions for different parameters. Using 1000 intervals of equal 167

probabilities. Figure 2 shows the uncertainty output for all the input parameters and 168

the shape of their probability distribution together with their summary statistics. The 169

uncertainty output for extinction probability (θ) shows that it is beta distributed with 170

mean = 0.415 and standard deviation = 0.386. 171

PRCC/sensitivity indices of θ w.r.t all input parameters 172

To identify key input parameters, we carry out a sensitivity analysis by calculating the 173

PRCC between each input parameter and the extinction probability. The parameter 174

with the highest PRCC has the largest influence on the magnitude of the extinction 175

probability. Figure 3 shows the PRCC outputs for all input parameters, where the 176

probability (ε) that a female fly is inseminated by a fertile male is essentially equal to 1. 177

In the field, males manage to find and mate with females, even when population levels 178

are quite low [19]. For most tsetse populations, the probability of insemination is thus 179

close to 1. Accordingly, we allow ε to vary between 0.999-1. In figure 5, the prior 180

probability distributions are kept the same save for ε which is sampled between 0.885 181

and 1 [10,11,20]. 182

LHS is used to sample from the prior probability distributions, where ε is sampled 183

from a uniform distribution U(0.999, 1). Figure 3 shows that daily mortality rate for 184

adult females (ψ) has a strong correlation with the extinction probability with PRCC 185

score 0.91, followed by daily mortality rate for female pupae (χ) and inter-larval period 186

(days) (τ) having PRCC scores 0.47 and 0.058, respectively. 187

The female tsetse fly generally mates only once in her lifetime, storing the sperm in 188

spermathecae and using small amounts to fertilize her eggs one at a time [21, 22]. When 189

sterile males are introduced into tsetse population, the probability (ε) that a female is 190

inseminated by a fertile male falls below unity, by an amount that depends on the ratio 191

of sterile to fertile males in the population. 192

The Sterile Insect Technique (SIT) has been used in attempts to control tsetse flies 193

populations [23,24] and was used to eradicate a small population of G. austeni on 194
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Unguja Island, Zanzibar, Tanzania [25]. The probability that a female is inseminated by 195

a sterile male is 1− ε. We now allow baseline values of ε to vary over a wide range, in 196

order to assess the sensitivity of extinction probability to changes in ε at varying 197

baseline levels of the proportions of sterile males in the population. Figures 4 – 6 show 198

the PRCC scores when ε is uniformly distributed either as U(0.855, 1), U(0.51, 1) or 199

U(0.1, 1). The PRCC scores for ε in these three scenarios were -0.51, -0.64 and -0.72, 200

respectively. Thus the absolute value of the PRCC score for ε increases as we allow 201

more variability in the probability distribution function. 202

Discussion 203

The simple life history of the tsetse fly enabled us to model its population dynamics as 204

a stochastic branching process. We derived an expression for the extinction probability 205

for tsetse populations and performed local and global sensitivity analyses, as well as 206

global uncertainty analysis, on the extinction probability. We calculated all results for 207

two fixed baseline values for χ, corresponding to values that resulted in low or high 208

extinction probabilities. We obtained the sensitivity indices of the extinction probability 209

to seven input parameters. When the extinction probability (θ) is fixed at either low or 210

high levels (0.419 or 0.960) θ is more sensitive to changes in daily adult mortality (ψ) 211

and the fertile insemination probability (ε) than to any of the other parameters. For a 212

change in θ from 0.419 to 0.960, the sensitivity index of θ w.r.t. ψ increases by 0.05, 213

whereas the change w.r.t. ε is larger, at 1.35 (decrease in absolute value) (Table2). The 214

parameters ψ and ε are important as they underpin the two main approaches to tsetse 215

control. Hocking et al [26] broadly classified tsetse control and elimination techniques to 216

include: game destruction, bush clearing, use of insecticides and biological control. 217

These techniques can be pooled into two fundamental control philosophies - those which 218

aim, primarily, to increase mortality rates in adult flies and those, like SIT, which aim 219

to reduce tsetse birth rates [24]. Sensitivity analysis will indicate which parameter out 220

of the two has the highest impact on the extinction probability. 221

From Table 2, observe that the sensitivity indices of θ to the input parameters 222

depends on the value of the extinction probability. We allowed the daily mortality rate 223

for pupae (χ) to vary from 0.001 to 0.025. The lower and upper bound values result in 224

low and high extinction probabilities, respectively. We then calculated the sensitivity 225

indices of θ w.r.t. the remaining six parameters. Figure 1(A and B) shows that the 226

sensitivity of θ to each of the input parameters changes as extinction probability 227

increases with increasing values of χ. Observe that for χ ≥ 0.018, the sensitivity indices 228

of all the six parameters converged to zero. This is expected since the set baseline 229

parameters values for all input parameter will correspond to extinction probability 230

(θ) = 1 at χ ≥ 0.018. This can be verified easily, by substituting parameter values into 231

equation (6). 232

LHS and PRCC provide a suitable technique for assessing the impact of input 233

parameters on the output and therefore inform possible choices for effective control 234

efforts [27]. We defined prior probability density functions for the seven input 235

parameters and we sampled from intervals of equal probability using LHS. The PRCC 236

score of all input parameters was obtained for three sets of the probability distribution 237

function, fixed for six parameters and varied only for ε. In all cases, ψ has the strongest 238

impact on the extinction probability. The PRCC score for ε increases as we allow for 239

more variability in its prior probability distribution. 240
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The SIT is an effective technique used to suppress or eradicate populations of tsetse, 241

but its major drawback is the large number of sterile flies that have to be produced and 242

introduced into the wild [23]. Our results confirm this; the higher the number of sterile 243

males introduced into the wild, the higher the impact of ε on the extinction probability 244

(Figs 3-6). 245

Conclusions 246

In all scenarios considered, control techniques which can achieve high mortality rates for 247

adult female flies have the strongest impact on extinction probability. Control 248

techniques such as SIT, which can reduce reproductive rates, without increasing 249

mortality, can also have a strong impact on extinction probability. This happens only 250

when the number of sterile males, introduced into the population, massively outnumber 251

wild males, such that the probability is low that a virgin female will mate with a fertile 252

male. 253

A limitation of our work is the assumption that the tsetse flies experience fixed 254

environmental conditions throughout their life history. This assumption is not true in 255

the wild, where tsetse experience daily and seasonal changes in various climatic effects. 256

We will address this problem in future work. 257
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Legends for figures 342

Fig 1. Variation in the sensitivity of extinction probability θ to six input
parameters (β, ε, ν, g, ψ, τ) as a function of the values of the background
daily rate (χ) of pupal female mortality.
(A) The sensitivity indices of extinction probability to six input parameters with signs.
(B) The sensitivity indices of extinction probability to six input parameters, in absolute
value. The arrow through B indicates the point where θ becomes more sensitive to ψ
than ε.

Fig 2. The uncertainty output for all input parameters, together with
uncertainty output of the extinction probability, obtained from Latin
hypercube sampling using a sample size of 1000 for the seven input
parameters.
Each parameter appears at the top of the corresponding sub-plot.

Fig 3. PRCC output for all input parameters with respect to the
extinction probability. Sampling ε between 0.999 and 1.

Fig 4. PRCC output for all input parameters with respect to the
extinction probability. Sampling ε between 0.855 and 1

Fig 5. PRCC output for all input parameters with respect to the
extinction probability. Sampling ε between 0.51 and 1

Fig 6. PRCC output for all input parameters with respect to the
extinction probability. Sampling ε between 0.1 and 1
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