
Tensor Factorization-based Prediction with an Application to
Estimating the Risk of Chronic Diseases

Haolin Wang1, Qingpeng Zhang1*, Frank Youhua Chen2, Eman Yee Man Leung2, Eliza
Lai Yi Wong3, Eng-Kiong Yeoh3

1 School of Data Science, City University of Hong Kong, Hong Kong SAR, China
2 Department of Management Sciences, College of Business, City University of Hong
Kong, Hong Kong SAR, China
3 JC School of Public Health and Primary Care, The Chinese University of Hong Kong,
Hong Kong SAR, China

* qingpeng.zhang@cityu.edu.hk

Abstract

Tensor factorization has emerged as a powerful method to address the challenges of high
dimensionality regarding disease development and comorbidity. Chronic diseases have a
high likelihood to co-occur, making patients suffering from one chronic disease to have
an elevated risk for the other diseases in the course of aging. Individualized prediction
of chronic diseases can help patients prevent new diseases and reduce the healthcare
costs. Despite rich results of risk assessment models for chronic diseases, individualized
risk prediction considering the complex mechanisms of disease development and
comorbidity remains to be under-researched. This research aims to develop tensor
factorization-based machine learning models to predict the onset of new chronic diseases
for individual patients through incorporating the comorbidity patterns with the clinical
and sequential factors revealed in the electronic health records (EHR) data. We propose
two tensor factorization-based methods to incorporate the clinical and sequential factors
to reveal the latent patterns of co-occurring chronic diseases. The efficacy of the
proposed methods was validated through predicting the onset of new chronic diseases
for individual patients using the EHR data for 23 years from a major hospital in Hong
Kong. The proposed methods consistently outperform benchmark predictive models.
The top 10 predictions of new chronic diseases have approximately 60% recall. Tensor
factorization is an appropriate method for predicting the onset of chronic diseases at the
individual level. The proposed predictive models could inform proactive health
management programs for at-risk patients with different chronic conditions at discharge.

Author summary

The existing risk assessment models mainly focused on the prediction of single diseases
in the population base. Chronic disease risk prediction considering the complex
mechanisms of disease development and comorbidity is under-researched. To support
and inform clinical decision making for healthcare professionals in the aging society, this
study provides an innovative approach to mapping an interconnected web of chronic
illnesses and investigated the performance of chronic disease prediction using 2 years’
worth of patient assessment records and 23 years’ admission history data from a major
hospital in Hong Kong. We proposed matrix and tensor-based methods to represent the
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high-order interrelations of patients, chronic diseases and additional features, which can
reveal the latent patterns of co-occurring chronic diseases to enable more effective
prediction. The proposed methods exhibit state-of-the-art performance in predicting the
onset of new chronic diseases for individual patients.

Introduction 1

Tensor factorization, the high order extension of the two-dimensional matrix 2

factorization, has emerged as a promising method to address the challenges regarding 3

the high dimensionality of the EHR data with good interpretability and scalability [1, 2]. 4

Tensor factorization has been widely used in recommender systems, social network 5

analysis, process monitoring etc. [3–5]. Recently, tensor-based models have also been 6

applied to healthcare problems, including phenotype generation, medical information 7

retrieval, image-based diagnosis, and precision medicine [6–11]. 8

Compared with traditional machine learning methods, tensor-based models have the 9

unique advantages of having: (a) the capability to utilize multi-aspect features in 10

multiple dimensions; (b) the versatility in incorporating domain knowledge from 11

physicians or knowledge bases in medicine; and (c) the capability to solve the sparsity 12

problem, a major challenge for many data mining tasks, particularly for an EHR 13

dataset. These advantages make tensor factorizations a promising modeling approach to 14

disease prediction using the EHR data, which usually have high dimensionality and 15

sparsity, and needs domain expertise to ensure model validity [1, 12,13]. 16

Chronic diseases are a major cause of morbidity and mortality worldwide [14]. As of 17

2012, approximately half of all adults in the US had one or more chronic health 18

conditions, and one in four adults had at least two chronic conditions [15]. The reasons 19

for the rapid rise in chronic illness include the population aging, longer life expectancies 20

due to improvements in medical care, and advances in diagnostic technology and 21

treatment options for many chronic diseases. Among older adults in the US, 77% of 22

them have at least two chronic illnesses [16] and 43% of Medicare beneficiaries have 23

three or more [17]. For instance, chronic conditions such as hypertension, heart diseases, 24

diabetes and chronic obstructive pulmonary disease (COPD) have a high likelihood to 25

co-occur, making patient suffering from any one of these five chronic conditions to have 26

an elevated risk for the other four conditions in the course of aging [18–20]. In addition, 27

even acute conditions that are frequently considered as causes for hospitalization among 28

the elderly, such as sepsis, peritonitis or fall, they could, nonetheless, be a manifestation 29

of the underlying chronic conditions. It has also been recognized that early risk 30

identification can facilitate early prevention/disease management in the community, 31

thereby reducing the number of people suffering from chronic diseases and their acute 32

presentations [21]. However, it is not until the widespread adoption of Electronic Health 33

Records (EHRs) could predictive analytics be applied to shed light on the evolution and 34

comorbidity of chronic diseases [22–24]. 35

Harnessing the EHRs data to predict diseases has emerged as an important topic for 36

medical informatics and precision medicine [25–27]. Predictive models based on EHR 37

data can help physicians assess the future risk of an individual for a certain chronic 38

condition or multiple conditions and identify the patients who are likely to acquire new 39

diseases. Moreover, predictive models enable the comparison of benefits and the 40

costs/risks of alternative treatments and prevention strategies, and allows for 41

personalized disease management for individuals [28,29]. 42

Existing research on chronic diseases prediction, and subsequent prevention and 43

management, has mainly focused on developing regression models to estimate the 44

clinical risk factors and genomic variables, such as biomarkers, medical history, family 45

history and genealogy records, and demographics [28,30]. For instance, QDScore was 46
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proposed as the first diabetes prediction (regression-based) algorithm for type-2 47

diabetes [31]. In another study, logistic regression-based DiaRem score was proposed to 48

predict the readmission of type-2 diabetes after Roux-en-Y gastric bypass surgery [32]. 49

Similar research on developing regression models for diabetes prediction is rich and has 50

been validated with various datasets [33–35]. In addition to diabetes, successful 51

regression-based risk assessment models exist for other chronic diseases, like 52

cardiovascular and chronic kidney disease [36–38]. Refer to a recent review for 53

details [12]. 54

During the past decade, machine learning models have been recognized as an 55

effective method for chronic disease predictions. For instance, Himes et al. developed a 56

Bayesian network model to predict COPD in asthma patients, and demonstrated the 57

good accuracy of the model using 15 years of the EHR data [39]. Kurosaki et al. 58

constructed decision tree models that can identify patients at a high risk of 59

hepatocellular carcinoma development among different datasets [40,41]. In another 60

study, artificial neural networks and C5.0 classifiers were merged with decision trees to 61

form a hybrid model to predict type-1 diabetes mellitus [42]. A recent study evaluated 62

the performance of three classic models (näıve Bayesian classifier, Bayesian network, 63

and support vector machines) in leveraging daily self-monitoring reports to predict 64

asthma exacerbation and demonstrated the potential of machine learning models in 65

providing personalized monitoring decision support [28]. 66

Despite the rich results of risk assessment models for chronic diseases, the existing 67

literature mainly focused on the prediction of single diseases in the population base, but 68

not the individualized risk prediction considering the complex mechanisms of disease 69

development and comorbidity, which usually have a high dimensionality [12,43]. 70

This research proposes two third-order tensor factorization-based models to predict 71

the onset of new chronic diseases for individual patients by uncovering the latent 72

comorbidity patterns of chronic diseases. Both models are extended from a second-order 73

patient-disease matrix to a third-order tensor. One model incorporates the clinical 74

assessment factors as the third dimension, whereas the other model incorporates the 75

sequential factors as the third dimension. In developing new models for risk analytics 76

related to chronic diseases, the current research aims to develop predictive and 77

prescriptive models to improve the accuracy of risk assessment of underlying and 78

co-occurring chronic conditions and has the potential to facilitate better post-discharge 79

individualized care planning and patient education concerning one’s future risk of 80

chronic and acute conditions given the patients’ chronic conditions. 81

This study provides an innovative approach to mapping an interconnected web of 82

chronic illnesses and therefore contributes to the research in using advanced machine 83

learning techniques to support and inform clinical decision making for healthcare 84

professionals in our aging society. By identifying the unique health trajectories of 85

patients, the proposed tensor factorization-based predictive models can predict the 86

onset of new chronic diseases at the individual patient level. Compared with traditional 87

regression and machine learning models, the proposed tensor factorization-based model 88

is not only more accurate but is also more sensible and actionable for healthcare 89

professionals to develop personalized prevention programs to reduce the chance of 90

acquiring new chronic diseases and getting hospitalized. 91

Methods 92

Data 93

Two datasets were obtained from the internal medicine department of a major hospital 94

in Hong Kong. The first dataset, admission history dataset, comprises 23 years (1993 to 95
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2015) of diagnoses records from 20,070 patients. Another dataset for 2014 and 2015 96

(patient assessment dataset) contains the patient assessment information (e.g. heart 97

rate, blood pressure, smoking). The two datasets contain 39 prevalent chronic diseases 98

in Hong Kong. The diagnoses were encoded with the International Classification of 99

Diseases (ICD-10) standard. To classify diseases, the commonly used Clinical 100

Classifications Software and Chronic Condition Indicator [44] were adapted. Noting 101

that acute myocardial infarction (most of which caused by coronary artery disease) 102

caused by chronic conditions is included. The data were manually screened to ensure 103

the encoding was consistent. Ten most common chronic diseases with occurrence and 104

ICD-10 codes are shown in Table 1. 105

Table 1. Chronic disease classification

Disease Category ICD-10 Code # of patients

Essential hypertension I10 3417
Chronic kidney disease N18.5, N18.9, Z94.0, Z99.2 3238
Diabetes mellitus without complication E10.9, E11.9 1998
Chronic obstructive pulmonary disease
and bronchiectasis

J43.9, J44.9 1944

Coronary atherosclerosis and other
heart disease

I20.0, I20.9, I24.8, I25.2, I25.5, I25.9 1908

Acute myocardial infarction I21.4 1283
Disorders of lipid metabolism E78.0, E78.1, E78.2, E78.4 931
Secondary malignancies C77.0, C77.1, C77.2, C77.8, C77.9, C78.2, C78.6, C78.7,

C79.9
632

Other endocrine disorders E16.0, E16.1, E16.2, E20.9, E21.0, E21.3, E22.0, E22.2,
E23.0, E23.2, E23.6, E23.7, E24.2, E24.9, E27.1, E27.2,
E27.8

511

Deficiency and other anemia D50.0, D56.0, D56.1, D56.3, D56.9, D58.0, D58.9, D59.1,
D59.4, D59.5, D59.6, D59.9, D60.9, D61.3, D61.9

456

Preliminaries on Matrix and Tensor Factorizations 106

Matrix factorization decomposes a matrix into the product of matrices [45]. Tensor 107

factorization is the high order extension of matrix factorization and enables the 108

modeling of heterogeneous and multidimensional data. Matrix and tensor factorizations 109

can extract the latent components to enhance data mining tasks [1]. The most widely 110

used tensor factorization methods are CANDECOMP/PARAFAC (CP) factorization 111

and Tucker factorization [5]. The Tucker factorization decomposes a tensor into a core 112

tensor multiplied by a matrix along each mode. Meanwhile, CP factorization 113

decomposes the tensor into the sum of rank one tensors. CP factorization is also a 114

special case of Tucker factorization, in which the core is superdiagonal. CP factorization 115

is unique under mild assumptions, making it suitable to uncover and interpret the 116

actual latent factors because no equivalent rotated factorization yields the same fit [1]. 117

The rest of this paper adopts CP factorization to perform prediction. 118

To illustrate matrix and tensor factorizations, we present the factorizations of a 119

second-order matrix χ ∈ RI×J and a third-order tensor χ ∈ RI×J×K in Fig 1. The 120

matrix and the tensor can be expressed as the following Eq (1) and Eq (2), respectively: 121

χ ≈
D∑

r=1

ar ◦ br (1)
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χ ≈
D∑

r=1

ar ◦ br ◦ cr (2)

where ◦ denotes the outer product. 122

Fig 1. Illustration of matrix and third-order tensor factorizations.

Each data entry in the second-order matrix (xij) could be interpreted as the inner 123

product of two latent feature vectors, as shown by Eq (3). Similarly, each data entry in 124

the third-order tensor (xijk) could be interpreted as the inner product of three latent 125

feature vectors, as shown by Eq (4). Such factorization is highly interpretable for 126

multidimensional data mining applications, as we can interpret the decomposed 127

components as high-order grouping patterns [1]. 128

xij ≈ aibj =
D∑

r=1

airbjr (3)

xijk ≈ aibjck =

D∑
r=1

airbjrckr (4)

Many matrix and tensor factorization methods have different assumptions regarding 129

factors and the underlying structures. Particularly, nonnegative matrix and tensor 130

factorizations, both of which incorporate nonnegative constraints, have proven to be 131

successful in many applications [46]. Such nonnegative constraints are suitable for this 132

study because the values of EHR data entries are mostly nonnegative. The most 133

popular cost functions are (a) the least squares error that corresponds to an assumption 134

of normal independently and identically distributed noise, and (b) the Kullback-Leibler 135

(KL) divergence that corresponds to maximum likelihood estimation under an 136

independent Poisson assumption [3, 47]. As the count of admissions is used to construct 137

tensors in the predictive models, we adopt the tensor factorization methods using 138

generalized KL divergence and the multiplicative update rules [48, 49]. Refer to a recent 139

review for the details of tensor factorizations [1]. 140

Matrix and Tensor Factorizations for Chronic Disease 141

Prediction 142

In this study, we use matrices to represent the two-dimensional relationship between 143

patients and diseases. Third-order tensors are constructed to represent the 144

high-dimensional interrelations among patients, chronic diseases, and additional features. 145

The matrices and tensors constructed by the EHR data are usually sparse with 146

numerous “Nil” values. For example, there are many possible chronic diseases, and a 147

patient usually has a few of them upon discharge. There is no value for the rest of the 148

diseases, meaning that the patient has not acquired these diseases yet. Estimating 149

which disease will be likely acquired by this patient is difficult. Matrix and tensor 150

factorizations have been demonstrated to be effective estimating the values of such “Nil” 151

data through exploring the latent grouping patterns in the observed tensors [50]. In the 152

context of disease prediction, we can use matrix/tensor factorization to extract the 153

latent grouping patterns of patients and diseases and reconstruct the observed 154

matrix/tensor with factorized ones. Then, the updated values (in the reconstructed 155

matrix/tensor) for those “Nil” entries can be used to estimate the risks of acquiring 156

different diseases. 157
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Nonnegative Matrix Factorization (NMF) 158

Initially, as a baseline method to illustrate the factorization approach for prediction, the 159

NMF methods are adopted to characterize the patients and chronic diseases by the 160

vectors of factors inferred from the 〈patients, diseases〉 matrix in Fig 2(a). The data 161

entries in the matrix are binary values to indicate whether the patient has the 162

corresponding chronic disease. 163

Fig 2. Illustration of (a) the matrix representation of the relations of
patients and diseases and (b) the tensor representation of the ternary
interrelations of patients, diseases and clinical attributes.

We decompose the matrix as shown in Fig 1(a) and obtain the feature factors of 164

patients (pi) and chronic diseases (dj). The predicted risk score for patient i to acquire 165

chronic disease j is the inner product of extracted latent feature vectors as 166

riskij = pidj =
D∑

r=1

pirdjr (5)

Nonnegative Tensor Factorization with Clinical information (NTF-C) 167

Matrix-based data mining methods lack the capability to capture the characteristics 168

and patterns in multi-aspect data. Medical research has recognized that clinical 169

attributes could indicate the patients’ various health trajectories, which could lead to 170

acquiring different diseases in the future [51]. For instance, hypertension could lead to 171

several chronic diseases for the patient, given the specific clinical attributes (e.g. certain 172

symptoms) he/she has at present. Patients who smoke are more likely to acquire 173

respiratory disease like COPD, whereas patients with irregular heartbeat could be on 174

the path to cardiovascular disease. Tensor factorizations provide a powerful framework 175

to model such multi-aspect data by explicitly exploiting the multi-aspect structure to 176

identify the latent clusters of data [1]. We extend the second-order NMF model into a 177

third-order nonnegative tensor factorization (NTF) method to capture the clinical 178

attributes. 179

To model the multi-aspect interrelations among patients, chronic diseases, and 180

clinical attributes, we construct a third-order observed tensor χ (as shown in Fig 2(b)), 181

in which xijk represents the frequency of admissions that comprise the corresponding 182

ternary interrelations of 〈patient i, chronic disease j, clinical attribute k〉. Our model, 183

named Nonnegative Tensor Factorization with Clinical information (NTF-C), 184

decomposes observed tensor χ to the sum of rank-one tensors as illustrated in Fig 1(b). 185

xijk can then be estimated through the inner product of three latent feature vectors. 186

xijk ≈ pidjck =
D∑

r=1

pirdjrckr (6)

where pi, dj , and ck are the feature vectors of patients, chronic diseases, and clinical 187

attributes, respectively. 188

Then, R is defined as the reconstructed tensor. Specifically, R is obtained by taking 189

the outer product of the factorized components. The values of data entries rijk in the 190

reconstructed tensor are the estimated values for xijk obtained by Eq (6). This 191

reconstructed tensor R is not equal to the observed tensor χ; instead, R is a low-rank 192

approximation of χ. This reconstruction process can capture the latent 193

high-dimensional grouping patterns of χ. Thus, R provides evidence for predicting the 194

values of the entries that are ”Nil” in the observed tensor χ. The risk factors are 195
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determined by the values of entries in R. If the entry is “Nil” in the observed tensor χ, 196

but positive in the reconstructed tensor R, it indicates a risk of acquiring this disease 197

for the corresponding patient. In the tensor, a tube represents risk factors embedded in 198

different clinical attributes for patient i and disease j. This set of risk factors is 199

integrated across clinical attributes to generate a risk score for patient i in acquiring 200

disease j as follows: 201

riskij =
K∑
i=1

〈pi,dj , ck〉 =
K∑
i=1

D∑
r=1

pirdjrckr (7)

Nonnegative Tensor Factorization with Sequential Information (NTF-S) 202

The chronic diseases of patients evolve over time with a complicated comorbidity 203

relationship among different diseases [20]. Acquiring one chronic disease may lead to the 204

risk of subsequently acquiring another chronic disease. Another third-order tensor-based 205

model is proposed to model the sequence of chronic diseases. As shown in Fig 3, the 206

sequence of diagnoses is incorporated into the model with a two-slice approach. Each 207

admission of patient i due to an existing chronic disease j is recorded in slice T by 208

incrementing 1 to χijT . If another chronic disease m is also present, it is also recorded 209

in slice T by incrementing 1 to χimT . The occurrence of a new chronic disease n will be 210

recorded in slice T + 1 by incrementing 1 to χin(T+1). By default, the diseases 211

diagnosed in the previous visit of a patient are considered as existing diseases (recorded 212

in slice T ). In this way, the comorbidity information and the sequential pattern of these 213

diseases are both represented. 214

Fig 3. Illustration of tensor representation of the ternary interrelations of
patients, diseases and sequence.

We perform NTF on the observed tensor χ. Subsequently, the risk of chronic disease 215

j for patient i in the future can be represented as the inner product of extracted latent 216

feature vectors in slice T + 1 as 217

riskij(T+1) = pidjtT+1 =

D∑
r=1

pirdjrt(T+1)r (8)

For the illustration of the proposed NTF-based prediction method, hypothetical 218

examples are presented in Fig 4. The size of dots is proportional to value of the 219

corresponding entry. The tensors on the left are observed (thus with discrete count 220

values); the tensors on the right are reconstructed ones by factorizations. The tiny dots 221

on the left represent the non-existence of the corresponding risk factors. After tensor 222

factorizations, the values of entries that were ”Nil” in the original tensor are updated in 223

the reconstructed tensor. The updated value of an entry represents the risk of the 224

corresponding disease’s onset for the corresponding patient. For all diseases, the 225

corresponding values in the right tensors can be ranked to determine the risks of 226

different diseases for the individual patients. The rank does not include diseases that 227

already exist in the original tensor (left). 228

Fig 4. Illustration of the reconstructed tensors (right) of the original
tensor (left). (A) The illustration for NTF-C model. (B) The illustration
for NTF-S model.
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Individualized Chronic Disease Prediction System 229

Fig 5 presents the workflow of the proposed approach for chronic disease prediction. 230

First, an appropriate set of data is sampled as the cohort for this study (will be 231

introduced in the next section). Second, the tensor-based on the clinical attributes (for 232

NTF-C) and sequential information (NTF-S) are constructed. Then, we use the 233

sampled EHR data to train the model and evaluate the prediction performance. 234

Fig 5. Workflow of the system.

EXPERIMENTS 235

To evaluate models for the risk prediction of new chronic diseases, we sampled patients 236

with at least two admission records. The subset of the admission history dataset in 2014 237

and 2015 with patient assessment information, consisting of 4,168 patients, was used to 238

evaluate the NTF-C method that incorporated the clinical attributes. The subset of 239

admission history dataset (1993-2013), consisting of 5,160 patients (without clinical 240

attributes information), was used to evaluate the NTF-S method that incorporated the 241

sequential patterns. 242

The 2014-2015 dataset contains clinical attributes including age, blood pressure, 243

pulse, smoking (yes or no), and drinking (yes or no). A total of 690 patients were 244

smokers or ex-smokers, and 381 patients were drinkers or ex-drinkers. Table 2 presents 245

the statistics of other clinical attributes of the patient assessment dataset. To train the 246

model, 2,997 patients with multiple admissions and chronic diseases were set to be the 247

training set, and 1,171 patients who had a new diagnosis in the last admission record 248

were set to be the test set. 249

Table 2. Summary of features from the patient assessments (for 2014-2015
dataset).

mean std max min

Number of admissions 3.50 2.28 31 2
Number of diagnoses 2.82 1.07 9 2

Age 76.40 13.60 106 19
BP(systolic) 142.19 32.30 282 55
BP(diastolic) 73.05 18.66 162 6

Pulse 81.47 22.81 196 8

The 1993-2013 dataset only contains the diagnosis records of patients and could 250

reveal the development of different chronic diseases over time. This dataset was 251

randomly divided into training and test sets for a 5-fold cross-validation. 252

For the demonstration of the performance of the proposed tensor based methods, 5 253

benchmark machine learning methods, including logistic regression (LR), multinomial 254

Bayesian classifier (MB), CART decision tree (DT), truncated singular value 255

decomposition (SVD), and the previously introduced NMF, were used to perform the 256

same tasks. In CP factorization, the number of rank-one components, named the rank 257

of tensor, captures the number of potential sub-groups in the tensor. However, 258

determining the value the rank is difficult [5]. Thus, we empirically evaluated different 259

values of the rank and found that the best experiment result could be obtained with 260

rank = 2. The low value of rank is expected due to the sparse nature of the EHR data. 261

The widely used top-k recall was adopted as the evaluation metric. For each patient, 262
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the risk score is calculated following Eq (7) or Eq (8) for each potential chronic disease, 263

and then those diseases are sorted in descending order of the score. 264

recall@k =
# of recalled disease of top-k prediction

N
(9)

where N is the number of future diagnosed diseases in the dataset. 265

When k increases, the top− k recall will also increase. If k is equal to the total 266

number of diseases, then the top− k recall is 100%, as all possible diseases are covered 267

by the “prediction.” Table 3(a) presents the mean recall@k using the 2014-2015 dataset. 268

Table 3. Experiment results for the 2014-2015 (patient assessment) and 1993-2013 (admission history)
datasets.

(a) Recall (%) of top-k prediction for the 2014-2015 dataset
Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10

LR 5.1 10.8 13.9 17.1 20.8 24.6 28.2 31.3 33.8 36.2
MB 6.6 16.7 24.3 31.9 37.8 43.3 47.8 49.9 53.0 55.6
DT 7.3 16.9 23.3 30.8 40.5 47.5 51.2 54.4 57.5 60.5
SVD 11.1 17.3 25.6 36.6 43.7 48.5 52.4 55.2 58.2 59.5
NMF 11.8 19.4 27.8 38.3 45.1 49.5 53.5 57.0 58.0 59.1
NTF-C 12.6 20.0 29.1 41.2 46.0 48.7 53.2 56.1 58.2 59.9

(b) Recall (%) of top-k prediction for the 1993-2013 dataset
Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10

LR 14.4 24.1 32.5 36.7 40.5 44.8 47.5 49.5 51.1 53.5
MB 14 25.9 31.3 37.3 41.5 44.2 46 49.8 52.3 54.2
DT 12.7 23.9 29.1 35.1 42.5 46.7 49.1 52.4 54.1 56.5
SVD 18.3 29.8 38.2 42.4 46.9 51.5 56.6 62 65.4 66.5
NMF 18.3 29.2 36.6 44.4 51.6 54.7 58 61.8 62.2 64.6
NTF-S 23.2 35.5 42.1 49.2 53.6 56.3 59.8 62.9 64.8 67.2

Table 3(a) also shows the experiment results demonstrating the superior 269

performance of the proposed tensor factorization-based approach. All 270

factorization-based approaches (SVD, NMF and NTF-C) perform better than other 271

benchmark machine learning methods. The tensor factorization-based approach, NTF-C 272

presents the best performance for top− 1 to top− 5 predictions. 273

Table 3(b) presents the results for the 1993-2013 dataset (without patient assessment 274

information). The newly proposed NTF-S method consistently outperformed other 275

methods, except for top-9 prediction (only 0.6% lower than SVD). The recall of the 276

top-1 prediction is over 60% higher than the commonly used machine learning methods 277

for risk predictions, such as DT, MB, and LR. The recalls of the NTF-S method for top 278

5 predictions are higher than 50%. These experiment results demonstrated that 279

modeling the latent high-dimensional associations of 〈patient, disease, sequence〉 could 280

help us capture useful latent features for prediction. 281

The performance of NTF-S is better than NTF-C, largely because NTF-S takes 282

advantage of a 23-year patient assessment record dataset that contains rich sequential 283

comorbidity patterns of chronic diseases, such as disease A usually occurred earlier than 284

disease B for one patient. On the other hand, the NTF-C model contains additional 285

clinical attribute information and, thus, performed better than matrix-based models. 286

However, the smaller 2-year patient assessment record dataset limited the performance 287

of the NTF-C model. In our future research, we plan to request a highly comprehensive 288

23-year EHR dataset (with both sequence and clinical attribute information) to 289

construct an integrated fourth-order ¡patient, disease, clinical attributes, sequence¿ 290

model that takes advantages of both models. 291
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CONCLUSIONS 292

To support and inform clinical decision making for healthcare professionals in this aging 293

society, the current study provides an innovative approach to the mapping of an 294

interconnected web of chronic illnesses over the course of aging. With 2 years’ worth of 295

patient assessment records and 23 years’ admission history data from a major hospital 296

in Hong Kong, we demonstrate that tensor factorization is an appropriate approach to 297

capture the latent high-dimensional associations among patients, diseases, clinical 298

attributes, and sequential patterns. The proposed predictive models can predict the 299

onset of new chronic diseases at the individual level with superior accuracy as compared 300

with benchmark machine learning methods. 301

Benefiting from the capability of tensor to model heterogeneous and multi-aspect 302

data and to extract useful latent features, the proposed tensor factorization-based 303

methods for chronic disease predictive analytics can improve (a) the accuracy of 304

diagnosing underlying and co-occurring chronic conditions and (b) the post-discharge 305

individualized care planning and patient education concerning one’s future risk of 306

chronic and acute conditions given the patients’ chronic conditions at discharge to 307

minimize the likelihood of future hospitalizations. In addition, risk stratification is a 308

proactive strategy to identify at-risk patients with different chronic conditions at 309

discharge into various health management programs, such as telemedicine support with 310

community call centers. In the long run, the implementation of accurate prediction 311

models can prevent readmissions and, thus, reduce the hospital occupancy rate in this 312

aging society. 313

The study has several limitations. First, the performance of the NTF-C model is 314

dependent heavily on the selection of clinical attributes. However, we are not able to 315

access the typical EHRs data including complete clinical information such as lab test 316

results due to privacy concern without sufficient authorization from the patients. In this 317

research, the six adopted clinical attributes helped in slightly improving the prediction 318

accuracy. These clinical attributes are common risk factors for all chronic diseases and, 319

thus, are not sensitive to specific diseases. How to better select clinical attributes for 320

the model is the focus of our future work. Second, the two proposed third-order 321

tensor-based models incorporate the information of clinical attributes and sequential 322

patterns, respectively. We did not propose a fourth-order tensor to incorporate both 323

information in a single model because of the sparsity problem when we go to the higher 324

order. In our future work, we plan to address this problem by augmenting the observed 325

tensor using the semantic information in knowledge bases. We will also explore other 326

factorization methods, such as coupled tensor factorizations, to solve the sparsity 327

problem. Third, the prediction was made by analyzing the existing EHR data, which 328

could be biased towards the selected cohort, or miss the critical medical information, 329

such as the associations between certain diseases. 330
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