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ABSTRACT

Cell migration is pivotal for their development, physiology
and disease treatment. A single cell on a 2D surface can
utilize continuous or discontinuous migration modes. To
comprehend the cell migration, an adequate quantification
for single cell-based analysis is crucial. An automatized ap-
proach could alleviate tedious manual analysis, facilitating
large-scale drug screening. Supervised deep learning has
shown promising outcomes in computerized microscopy im-
age analysis. However, their implication is limited due to the
scarcity of carefully annotated data and uncertain determinis-
tic outputs. We compare three deep learning models to study
the problem of learning discriminative morphological rep-
resentations using weakly annotated data for predicting the
cell migration modes. We also estimate Bayesian uncertainty
to describe the confidence of the probabilistic predictions.
Amongst three compared models, DenseNet yielded the best
results with a sensitivity of 87.91%± 13.22 at a false negative
rate of 1.26%± 4.18.

Index Terms— Bayesian deep learning, cell migration,
systems microscopy, weakly supervised learning

1. INTRODUCTION

An increased understanding of cancer cell migration regard-
ing environmental factors and drug treatment may provide us
with clues on how to reduce the risk of metastasis. With an au-
tomated and quantitative approach to analyze the cell migra-
tion process, we open up for large-scale systems microscopy
experiments and drug screening. Here, we specifically focus
on mesenchymal migration, where the cells adopt two distinct
migration sub-modes: continuous and discontinuous, and can
also switch between modes [1].

During live-cell imaging, cells are repeatedly exposed
to light for capturing dynamic cellular responses over time.
Light over-exposure can cause photo-toxicity, changing cells
behavior and possibly cause apoptosis, and thereby reducing
the number of cells for downstream experiments [1]. There-
fore, we aim to determine individual cell migration modes

from a minimal number of frames, capacitating gene expres-
sion analysis in single cells, disected from a cell culture.

The study of cell migration yields an overabundance of
experimental data that requires demanding processing and hu-
man efforts. With an increasing amount of time-lapse se-
quences, the biologists are often unable to annotate (like in
our case) the migration modes in each image-frame with high
confidence, which makes the ground-truth labels noisy. Thus,
it is desired for learning-based approaches to be able to work
with weak supervision. Weak supervision provides a simple,
model-agnostic way to integrate the domain-expertise into a
learning model [2].

As in all applications of supervised deep learning, an in-
sufficient understanding of model outputs may provide sub-
optimal results [3, 4]. Estimating uncertainties (i.e., aleatoric
and epistemic) can eventually increase the confidence for the
predictions and lead to an improved decision [5]. Model un-
certainty (epistemic) for an image can be obtained by keeping
the dropout mechanism on at test time and performing multi-
ple predictions using Monte Carlo sampling, which is similar
to Bernoulli approximated variational inference [3, 5].

There are several existing methods, dealing with migra-
tion problem using cell tracking [6]. However, merely track-
ing will not reveal the migration mode as migration is heavily
characterized by cell morphology. Recent studies have shown
that the current cell morphology influences its future move-
ment [7]. Therefore, we were inspired to explore whether
convolutional neural networks (CNNs) can be exploited to
predict migration modality based on the current cell morphol-
ogy. In this study, we compare three popular CNN architec-
tures for predicting the migration mode in a single cell frame.
We employ Bayesian CNNs for probabilistic prediction of
mesenchymal migration modes from weakly annotated data.

2. IMAGE DATA AND ANNOTATIONS

High resolution images (1024×1024×3 px) of H1299 human
non-small lung carcinoma cells stained with EGFP-Paxillin
(CMAC marker), RubyRed-LifeAct (F-actin marker) and
a far-red membrane dye were acquired using Nikon A1R
confocal microscope with 60× objective. The images were
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acquired for 8–10 hr at 5 min intervals with a pixel resolu-
tion of 0.21 µm, resulting in 90-110 frames per time-lapse
sequence. Altogether, the dataset consists of images with
1-3 cells, plated onto 96-well glass plates pre-coated with
two different Fibronectin (FN) concentrations (10µg/ml, or
2.5µg/ml). All the images were downsampled by a factor of
two (512×512×3 px) to fit the networks (see Sect. 3).

An expert biologist annotated cells in each frame as either
discontinuous, continuous mode or unknown for the frames
difficult to visually interpret. The unknown class is discarded
from both training and testing phases. After filtering out, we
obtained 137 single cell sequences to train and evaluate our
method. Amongst all, 78 and 54 cells are labeled as con-
tinuous and discontinuous modes throughout the time-lapse
sequence whereas five cells switched between these modes.

We selected 102 sequences for training and 31 sequences
for independent testing. The number of images is larger for
one migration mode than others, presenting a class imbalance
during training. We thus employ stratified sampling, ensuring
that the relative class frequencies are approximately balanced
in each fold. We also ensure that the images from the same
cell are not present in both training and validation sets.

We augmented the training images by applying horizon-
tal and vertical flipping, and multiple 90◦ rotations. The aug-
mented images were further extended by including translation
up to ± 2 pixels from the centroid position in both x- and y-
directions, resulting in 72 variations per image.

3. PROPOSED METHOD

Preprocessing: We extracted 227×227×3 px patches from
the manually annotated centroid on each cell frame to include
sufficient contextual information as an input for the network
model. The input image intensities in all 3 channels are then
normalized to zero mean and unit standard deviation.
Weak supervision label assignment: Our annotations are
noisy as manually characterizing the mesenchymal migration
modes with high confidence is challenging due to their inher-
ent switching properties. It is thus reasonable to predict the
confidence of migration modes instead of directly classifying
them. Motivated by [8], we introduce a weakly-supervised
learning-based criterion. Unlike the former approach, we
formulate the classification problem into regression by gener-
ating probabilistic labels from the discrete frame-wise labels.

We begin with an assumption that confidence in visual as-
sessment increases over time when the cell behaves similarly
throughout the sequence and decreases during switching be-
havior. As we are provided with discrete frame-wise labels of
length n’ for every cell sequence of length n in the training
phase, the goal is to predict probabilistic confidence for the
training data, as well as for unseen testing data. To achieve
that we linearly interpolate the frame-wise labels in a contin-
uous range of [0, 1] for assigning them to their corresponding
n’/n frames. We linearly mapped labels of a cell correspond-

ing to continous mode in the range 0 - 0.4 and discontinous
mode in the range 0.6 - 1. The range between 0.41 - 0.59 char-
acterizes the confidence regarding the conditions when a cell
starts switching migration modalities.
Bayesian Uncertainity: We measure uncertainty for each im-
age sample x by independently dropping (with probability
Pdrop) the weights in all layers while drawing Monte Carlo
samples from a Bernoulli distribution. The predictive uncer-
tainity is estimated by:

U(x) =
1

T

T∑
t=1

diag(ŷt)− ŷ⊗
2

t︸ ︷︷ ︸
aleatoric

+
1

T

T∑
t=1

(ŷt − ȳ)⊗
2

︸ ︷︷ ︸
epistemic

, (1)

where ȳ =
∑T
t=1 ŷt/T , ŷt = Sigmoid{fθt(x)} and T

refers to as the sampling rate. We fixed T= 50, as it was found
in our case to be sufficient for predictive mean estimation.
Network models: We modified three existing networks, i.e.,
VGG16 [9], Resnet50 [10], DenseNet [11], to our need for
comparison purposes. We transformed each network model
to function as a variational dropout network [12], i.e., each
weight of a model has a dropout rate, that allows efficient ap-
proximation of Bayesian inference. Each convolutional layer
in all three models was employed with L2 regularization to
prevent overfitting, and is equivalent to putting a Gaussian
prior on the network parameters, resulting in a maximum-a-
posteriori (MAP) solution [3].

We employed the batch normalization operation specifi-
cally in the VGG16 network model and replaced the fully-
connected layers with global average polling operation to re-
duce the computational complexities. To obtain the regression
output, we replaced softmax with sigmoid in the final activa-
tion layer of all three models. The dropout rate (Pdrop) for the
initial layer in all three models was fixed to 0.1, which grows
linearly at a rate of 0.02 for each subsequent layer. We found
it to be a good compromise between getting a reasonable per-
formance and uncertainty measures.

We trained all three models in a 5-fold grouped stratified
cross-validation scheme for 30 epochs with an initial learn-
ing rate of 0.01 using Tensorflow backend in Keras, where
the overall training took twenty hours on a Titan X GPU. The
weights were initialized using Glorot normal distribution and
the biases were set to zeros. The weights were updated in
a batch of 32 samples using the ADAM optimizer. The net-
works were optimized by minimizing the logarithmic hyper-
bolic cosine error as loss function. All related codes are avail-
able at: 10.5281/zenodo.3490575

4. RESULTS

We present the mean square error (MSE) for all three mod-
els over 31 cell sequences from the independent test set in
Fig. 1.a. Although all the three models performed reason-
ably well, we observed that the MSE monotonically reduces
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Fig. 1: Comparison of models. (a) left: Violin plots of MSE per cell sequence, right: fraction (in %) of correctly classified
cells per sequence. The number at the top corresponds to the number of frames in the sequence. (b) shows prediction results of
the best CNN model with confidence intervals determined by epistemic uncertainty for three example cell sequnces. (c) shows
visual results verification for these three cells at three frames interval are shown in (c). Here, C and D refer to only continuous,
and discontinuous modes, and C/D mode to switching between them.

with increasing model capacity. DenseNet performed better
than the other two models because of its inherent densely-
connected skip connections, enabling it to capture fine mor-
phologically discriminative representations.

This observation is further validated by the results shown
in the second column of Fig. 1.a. Here, we further quantita-
tively compare all three models by adopting prediction errors
per frame as a metric to determine their confidence per im-
age. In particular, we consider the result as true positive only
when the predicted values are in the ranges of continuous and

discontinuous as described in Sect. 3 and as Uncertain when
the predictions range between 0.4-0.6. Each bar plot rep-
resents: True positive (TP) – correct prediction, False nega-
tive (FN) – wrong predictions, and Uncertain – less confident
predictions; as the fraction of total number of frames in the
cell sequence. Notice how the TP rate improves with increas-
ing network capacity. Both Resnet50 and DenseNet mod-
els yielded reasonably similar performances; however, there
were substantial differences in their confidence regarding pre-
dictions. Overall, DenseNet yielded the best results: a TP rate
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of 87.91%± 13.22, and Uncertain rate of 10.83%± 11.28 at
FN rate of 1.26%± 4.18.

According to both violin and bar plots, we can ob-
serve that misclassifications (FN) were more frequently seen
when predictions are made using VGG, compared to that of
Resnet50 and DenseNet. We assume that it was mainly be-
cause these models receive concatenated feature maps from
the preceding layers as an input, allowing them to encode
more diversified and richer representations. Also, VGG uses
only the most complex features for predictions, whereas the
other two models use representations of all complexity levels,
thus providing smoother decision boundaries.

Detailed results for three test cells classified by DenseNet
are shown in Fig. 1.b (displaying confidence intervals per cell
and as well as per frame), and sample frames at three intervals
are shown in Fig. 1.c. Both the human expert and CNN might,
to a large extent, take into account the cell morphologies in
the prediction process. However, CNNs are able to predict
migration modes from a static frame because they can observe
subtle morphological characteristics in cell migration modes
that are somewhat difficult to notice for human-observers.

5. CONCLUSION

We present an automated approach for predicting the mes-
enchymal cell migration mode using weakly supervised data.
Our results indicate that the CNNs can capture discriminative
morphological representations directly from static images. To
address the observer prediction variability, we modified and
compared three popular CNNs by modeling Bayesian approx-
imation into them for providing probabilities with model un-
certainties that describe the prediction confidences. Our com-
parison study between the models with differential informa-
tion supports the utility of the epistemic uncertainty. Com-
puting epistemic uncertainty using Monte Carlo samples for
variational inference is fast and can also be applied to already
trained models.

In the future study, we will visualize the features of the
cell images that were learned by the CNNs and contributed
to their prediction (e.g., the protrusions and trailing edge) to
reveal how and why CNNs can predict the migration modes.
Given the spatiotemporal behavior of cells, we also intend to
explore recurrent neural networks to encode morphological
and temporal representations. For that, we are collecting more
imaging data with annotations from multiple observers.
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