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ABSTRACT

Machine learning optimizes flexible models to predict data. In scientific appli-
cations, there is a rising interest in interpreting these flexible models to derive
hypotheses from data. However, it is unknown whether good data prediction
guarantees accurate interpretation of flexible models. We test this connection
using a flexible, yet intrinsically interpretable framework for modeling neural
dynamics. We find that many models discovered during optimization predict
data equally well, yet they fail to match the correct hypothesis. We develop
an alternative approach that identifies models with correct interpretation by
comparing model features across data samples to separate true features from
noise. Our results reveal that good predictions cannot substitute for accurate
interpretation of flexible models and offer a principled approach to identify
models with correct interpretation.

With advances in measurement technologies, machine learning has become critical for trans-
lating data from biological systems into theories about their function. Theories are tradition-
ally derived by fitting data with simple ad hoc models, which are based on a priori hypothe-
ses (1, 2). The best fitting model is selected and used to draw conclusions about biological
mechanisms (3–7). An obvious pitfall is, however, that none of the a priori hypotheses may
be correct (8). Alternatively, data can be fitted with flexible models, such as artificial neu-
ral networks (ANNs), which cover a broad class of hypotheses within a single model archi-
tecture (9–12) (Fig. 1). With only loose a priori assumptions, flexible models can discover
hypotheses directly from the data. Flexible models are usually optimized for their ability to
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predict new data (i.e. to generalize), and the best predictive model is then analyzed and inter-
preted in terms of biological mechanisms (9–14). This widely used approach tacitly assumes
that good data prediction implies correct interpretation of the model, but whether this assump-
tion is valid is unknown. Indeed, Ptolemy’s geocentric model of the solar system predicted
the movements of celestial bodies as accurately as the Copernicus’s heliocentric model. While
interpreting flexible models optimized for prediction is a common practice, the derived theories
can be misleading if good generalization does not guarantee correct interpretation of the model.
If so, a different optimization goal is required to prioritize accurate interpretation.

We assessed the accuracy of interpretation of flexible models by taking advantage of a flex-
ible, yet intrinsically interpretable framework for modeling neural dynamics (15, 16). This
framework allows for direct comparison of the inferred hypotheses with the ground truth on
synthetic data, thus testing the correctness of interpretation. As a case in point, we focus on
modeling dynamics of neural responses on single trials (3–5,8). Inference of underlying dynam-
ical models is notoriously hard due to doubly-stochastic nature of neural spike-trains, leading to
controversial conclusions about biological mechanisms (3–5, 8, 17). Spikes provide sparse and
irregular sampling of noisy firing-rate trajectories on single trials, which are best described as
latent dynamics (18). Accordingly, we model spike trains as an inhomogeneous Poisson process
with time-varying intensity that depends on the latent trajectory x(t) via the firing-rate function
f(x) (Fig. 2A).

In our framework, the latent dynamics are governed by a non-linear stochastic equation
(15, 16)

ẋ = −DdΦ(x)

dx
+
√

2Dξ(t). (1)

Here Φ(x) is a deterministic potential, and the noise ξ(t) with magnitude D accounts for
stochasticity of latent trajectories. The potential Φ(x) can be any continuous function. Hence
our framework covers a broad class of hypotheses, each represented by a non-linear dynami-
cal system defined by Φ(x). At the same time, the shape of Φ(x) is intrinsically interpretable,
e.g., the potential minima reveal attractors (19). For clarity, we focus here on inference of one-
dimensional Φ(x) with f(x) and D provided (our results generalize to simultaneous inference
of F (x), f(x) and D in multiple dimensions, materials and methods 1.7).

The hypotheses are discovered from spike data Y (t) by optimizing the shape of the potential
Φ(x). To efficiently search through the space of all possible Φ(x), we developed a gradient-
descent optimization of the data-likelihood functional L [Y (t)|Φ(x)] (materials and methods
1.1–1.4). We derived analytical expression for the variational derivative of log-likelihood δΦ(x) =

−δ log L [Y (t)|Φ(x)]/δΦ(x). Our gradient-descent algorithm increases the data likelihood by
updating the potential shape: Φ(x) → Φ(x) − γδΦ(x) (γ is a learning-rate). Similar gradient-
descent algorithms are used for optimizing ANNs (20).
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The gradient-descent optimization produces a series of dynamical models, each defined
by a different potential shape Φn(x) (n = 1, 2, . . . is the iteration number, Fig. 2B,C). At
some intermediate iterations, the potential closely matches the ground-truth model. However, as
optimization continues, Φ(x) develops spurious features not present in the ground-truth model.
These spurious features arise mainly due to overfitting to the finite sample of stochastic spikes
and are unique for each data sample. We verified that re-sampling a new data realization on each
gradient-descent iteration—mimicking the infinite data regime—results in a robust recovery
of the ground truth (fig. S1). Overfitting to a finite spike sample is universally observed for
different dynamics and data amount (fig. S2), which poses a challenge when ground truth is not
available.

Multiple techniques exist to combat overfitting, which are all based on the idea that models
matching a particular set of data too closely will fail to predict new data reliably. Accordingly,
the model with the best ability to generalize is selected by evaluating its performance on a
validation set of data not used for training (18, 21). This widely-used validation strategy aims
at models that generalize well, but whether it produces models with correct interpretation (i.e.
accurately matching the ground truth) is unknown. The relationship between generalization and
interpretation could possibly be non-trivial for flexible models optimized on noisy data. This
relationship can be effectively tested in our framework, which is difficult in ANNs that lack
interpretability (i.e. the hypothesis represented by ANN’s parameters is generally unknown
(10, 22)).

We discovered that good generalization can be achieved by many models with different
interpretation. We computed the validated likelihood for each model produced by the gradient-
descent (Fig. 2C). The training and validated likelihoods closely track each other: after rapid
initial improvement both curves level off at long plateaus. Along these plateaus, we observed
a continuum of models with similar likelihood but different features. Strikingly, the plateau
in the validated likelihood indicates that all models along this continuum generalize almost
equally well. Indeed, spurious features develop on top of the correct potential shape that is
discovered first (Fig. 2C) and have little impact on the model’s ability to predict new data. For
example, the overfitted models generate spike trains with the first- and second-order statistics
virtually indistinguishable from the ground truth (fig. S3). Similar generalization plateaus are
also observed in ANNs (fig. S4) (23–25).

Surprisingly, we found that selection of the model with the best generalization shows little
consistency across different sets of training and validation data. The model with the best gen-
eralization is chosen at the minimum of the validated negative log-likelihood. We repeated
our simulations on multiple realizations of training and validation data generated from the
same ground-truth model. On some realizations, the model with the best generalization closely
matches the ground truth (Fig. 2C, lower row). On other realizations, the model with the best
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generalization exhibits spurious features (Fig. 2C, upper row). This counterintuitive behavior
arises because the validation set, just like the training set, contains noise. As a result, any
model with good generalization can be chosen by chance. This problem, known as overfitting
in model selection (26), cannot be overcome with common regularization strategies (fig. S5 and
materials and methods 1.5), and it affects any flexible model optimized on finite noisy data,
including ANNs (fig. S4). Although overfitting in model selection is less likely with more data,
it is still substantial for realistic data amounts (Table S2). As a result, the model with the best
generalization cannot be reliably interpreted.

These results entail that correct interpretation requires an optimization goal different from
generalization. To identify models with correct interpretation, we leverage the fact that true fea-
tures are the same, whereas noise is different across data samples. Hence, comparing models
discovered on different data samples could distinguish the true features from noise. The diffi-
culty is, however, that on different data samples, the same features are discovered at different
iterations of the gradient-descent (fig. S6A). For meaningful comparisons across models, we
therefore need a measure to quantify the complexity of features independent of when they are
discovered. Then models of the same complexity can be directly compared for consistency of
their features.

We define model complexity as a negative entropy of latent trajectories M = −S[Φ(x)]

(materials and methods 1.6) (27). Higher model complexity indicates more structure in the po-
tential Φ(x). The model complexity increases over gradient-descent iterations, as more features
develop in Φ(x) (Fig. 3A, similar behavior is observed in ANNs (28)). After the true features
are discovered, M exceeds the ground-truth complexity, and further increases of M indicate
fitting noise in the training data. Although the iteration when M exceeds the ground-truth
complexity varies across data samples (Fig. 3A), the features are aligned along the complexity
axis (Fig. 3B). To detect the boundary M∗ between the true features and noise, we compare
models of the same complexity obtained from different data samples (Fig. 3B). ForM <M∗,
the potentials of the same complexity tightly overlap across data samples (Fig. 3C left). For
M >M∗, the potentials of the same complexity diverge, since overfitting patterns are unique
for each data sample (Fig. 3C right). The potentials with complexity M∗ closely match the
ground-truth model (Fig. 3C middle). We confirmed that complexity boundary M∗ reliably
indicates the model with correct interpretation for different ground-truth dynamics (fig. S6, S7).
The complexity boundaryM∗ can be used to identify the model with correct interpretation in
biological data when the ground truth is unknown.

We validated our results using recordings of spiking activity from the visual cortex of be-
having monkeys (dataset from Ref. (2)). In these data, neural activity spontaneously transitions
between episodes of vigorous (On) and faint (Off) spiking that are irregular within and across
trials (Fig. 4A). These endogenous On-Off dynamics were previously fitted with a model that
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assumes abrupt transitions between discrete On and Off states, and with an alternative model,
which assumes smooth activity fluctuations (2). These ad hoc models with contrasting as-
sumptions can both segment spiking activity into On and Off episodes, but they cannot resolve
whether the cortical On-Off dynamics constitute fluctuations around a single attractor or tran-
sitions between multiple metastable states. Within our framework, these alternative hypotheses
correspond to potential shapes with a single or multiple wells (fig. S8).

We divide the full data (D) in halves (D1 and D2), and further divide each set (D , D1, D2) in
the training and validation sets. We perform gradient-descent optimization on each training set,
evaluate models on the corresponding validation set, and track consistency of features in models
discovered from D , D1, and D2 along the complexity axis to findM∗. We fit spikes on each
recorded channel separately (example channel in Fig. 4B-E), and compare model fits across all
channels (fig. S9). Since On-Off dynamics are largely synchronous across the population (2),
similarity of potentials discovered from different channels would indicate that our approach
reliably identifies models with correct interpretation.

With the neurophysiological recordings, we observe the same phenomena as described for
synthetic data. The gradient-descent optimization continuously improves the training likeli-
hood, producing a sequence of models with increasing complexity. Many of these models gen-
eralize equally well, which manifests in a long plateau in the validated likelihood (Fig. 4B). The
models with the best generalization are inconsistent across datasets D , D1, and D2 (Fig. 4C),
indicating likely overfitting in model selection. The complexity boundaryM∗ reliably identifies
models that are consistent across datasets D , D1, and D2 (Fig. 4D) and across channels (fig. S9).
The inferred potentials exhibit two wells, suggesting that On-Off dynamics are metastable tran-
sitions and not fluctuations around a single attractor.

We leverage a flexible and intrinsically interpretable framework to demonstrate that good
data prediction does not guarantee correct interpretation of flexible models. Gradient-descent
optimization discovers many models that generalize well despite differences in their features
and interpretation. Overfitting in model selection affects any flexible model fitted and validated
on finite noisy data. Our results raise a caution for methods based on fitting data with a flexible
model (e.g., ANN) and interpreting the fitted model as a biological mechanism. Flexible models
require non-trivial hyperparameter tuning geared towards models with the best generalization,
and our results suggest that interpretation of such models may be uncertain. Our work is the
first to explore the link between generalization and interpretation, which have been studied
only separately in ANNs that lack interpretability. Models with correct interpretation can be
reliably identified by comparing features of the same complexity discovered on different data
samples. This comparison requires quantifying the complexity of fitted models, in contrast
to conventional measures of complexity for ANNs that characterize the full capacity of the
model architecture. Developing appropriate complexity measures for ANNs is a significant
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outstanding issue, the solution of which would provide the necessary theoretical foundation for
interpretable machine learning.
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Fig 1. Deriving hypotheses from data using flexible models. Data is fitted with a flexible
model, which covers many alternative hypotheses within a single model architecture (typically
with a large number of parameters, such as in ANNs). The model is optimized for its ability
to predict new data (i.e. generalize). The hypothesis is derived by interpreting the structure of
the best predictive model. It is unknown whether this approach delivers correct hypotheses that
accurately represent biological mechanisms.

Fig 2. Good data prediction does not guarantee accurate interpretation of flexible models.
(A) A flexible and intrinsically interpretable framework for modeling neural dynamics. Spike
data are modeled as an inhomogeneous Poisson process with intensity that depends on the la-
tent trajectory x(t) via firing-rate function f(x). Latent dynamics are governed by a non-linear
stochastic equation (1) with a deterministic potential Φ(x) and Gaussian noise. (B) Negative
log-likelihood monotonically decreases during gradient-descent optimization. (C) Fitted poten-
tials Φn(x) at selected iterations of the gradient-descent (colors correspond to dots in panel B)
and the ground-truth potential (grey) from which the data was generated. Starting from an un-
specific guess (a single-well potential on iteration 1), the optimization accurately recovers the
ground-truth model (iteration 50). At later iterations, spurious features develop due to overfit-
ting. (D) Left: Training and validated negative log-likelihoods for two data samples generated
from the same ground-truth potential. Validated likelihood exhibits a long plateau indicating
a continuum of models that generalize well. Models with the best generalization (minimum
of the validated negative log-likelihood, red and green arrows) are shown to the right (colors
correspond to the validated likelihood) along with the ground-truth potential (grey). The model
with the best generalization matches the ground truth for data sample 2, but exhibits spurious
features for data sample 1.

Fig 3. Identifying models with correct interpretation by comparing features across data
samples. (A) Model complexityM increases over gradient-descent iterations at a rate varying
across data samples. The ground-truth model complexity is exceeded at different iterations for
different data samples. (B) Normalized validated negative log-likelihood plotted against model
complexity (colors correspond to data in A).M∗ (arrow) is the maximal model complexity for
which fitted potentials are consistent across data samples. M∗ coincides with the ground-truth
model complexity (dot). (C) Potentials forM <M∗ (left),M =M∗ (middle) andM >M∗

(right), colors correspond to data in A.

10

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/808261doi: bioRxiv preprint 

https://doi.org/10.1101/808261
http://creativecommons.org/licenses/by-nd/4.0/


Fig 4. Discovering interpretable model of neural dynamics from neurophysiological
recordings. (A) An example trial (right) showing spontaneous transitions between episodes
of vigorous (On) and faint (Off) spiking in multiunit activity simultaneously recorded with 16-
channel electrodes (left) from the primate visual cortical area V4 during a fixation task. Spikes
are marked by vertical ticks. Modeling results for the first channel are shown in B-E. (B) Val-
idated negative log-likelihoods over iterations of the gradient-descent for three data samples
(D , D1, D2). Models with the best generalization correspond to minima indicated by arrows.
(C) Models with the best generalization are inconsistent across data samples. (D) Validated
negative log-likelihoods plotted against model complexity for three data samples (D , D1, D2).
M∗ (arrow) is the maximal model complexity for which potentials are consistent across data
samples. (E) The potentials atM∗ tightly overlap for three data samples. The potential shape
supports the hypothesis of metastable transitions. Colors in panels C-E correspond to data in B.
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Figure-2 Genkin and Engel
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