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Abstract 

Resting-state functional MRI (rs-fMRI) studies have revealed specific low-frequency 

hemodynamic signal fluctuations (<0.1 Hz) in the brain, which could be related to oscillations in 

neural activity through several mechanisms. Although the vascular origin of the fMRI signal is well 

established, the neural correlates of global rs-fMRI signal fluctuations are difficult to separate from 

other confounding sources. Recently, we reported that single-vessel fMRI slow oscillations are 

directly coupled to brain state changes. Here, we used an echo-state network (ESN) to predict 

the future temporal evolution of the rs-fMRI slow oscillatory feature from both rodent and human 

brains. rs-fMRI signals from individual blood vessels that were strongly correlated with neural 

calcium oscillations were used to train an ESN to predict brain state-specific rs-fMRI signal 

fluctuations. The ESN-based prediction model was also applied to recordings from the Human 

Connectome Project (HCP), which classified variance-independent brain states based on global 

fluctuations of rs-fMRI features. The ESN revealed brain states with global synchrony and 

decoupled internal correlations within the default-mode network. 
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INTRODUCTION 

Neural oscillations have been extensively studied in both animal and human brains from 

cellular to systems levels1-4. Power profiles of EEG signals, as well as slow cortical potentials 

(SCP), exhibit a slow oscillation feature (<1 Hz), which is related to brain states mediating 

memory, cognition and task-specific behaviors5-7. Resting-state functional MRI (rs-fMRI) studies 

have revealed low-frequency hemodynamic signal fluctuations (<0.1 Hz)8-11, which have been 

confirmed by intrinsic optical imaging12, laser-doppler-flowmetry13, and near-infrared 

spectroscopy14. In particular, specific spatial correlation patterns can be observed in the slow 

oscillation of the rs-fMRI signal, e.g. the default-mode network (DMN)15-17. Concurrent fMRI and 

electrophysiology studies have shown a correlation of the fMRI signal fluctuation with the EEG 

signal power profile and SCP low-frequency oscillations, which are candidates for neural 

correlates of the rs-fMRI signal18-23. In addition, the slow oscillation of rs-fMRI and hemodynamic 

signals from vessels are highly correlated to simultaneously acquired intracellular Ca2+ signal 

fluctuations in rodents24-26, which are higher-resolution correlates of the hemodynamic rs-fMRI 

signal. 

Efforts have been made to interpret functional indications of the rs-fMRI spatial correlation 

patterns, including the dynamic correlation mapping scheme27-29, and arousal state-dependent 

global fMRI signal fluctuation studies30-32. Because of the high variability in different dynamic 

states, physiological and non-physiological confounding factors also contribute to the rs-fMRI low-

frequency oscillation33-35. In particular, global fMRI signal fluctuations are one of the most 

controversial oscillatory features to be linked to dynamic brain signals36-44. For example, the rs-

fMRI signal from the white-matter tract has been used as a nuisance regressor to remove the 

global noise contribution45, 46. Interestingly, simultaneous fMRI and EEG studies in the monkey 

brain demonstrate a strong linkage of brain state changes to the global rs-fMRI signal fluctuations.  

This phenomenon has been observed at the level of single-vessel fMRI dynamic mapping with 

concurrent calcium recordings, which show stronger neural correlation with the fMRI signal 

detected from individual penetrating vessels than the rest of voxels through the whole rodent 

cortex24. This highly coherent vessel-specific fMRI signal fluctuation is a direct signal source that 

is closely linked to global brain state changes. Here, we applied the artificial state-encoding neural 

network system in a prediction scheme to better model the brain state-specific coherent oscillatory 

features from the vessel voxels.  

The echo state network47 (ESN), a recurrent neural network (RNN) based on reservoir 

computing48, 49, provides a computational framework for temporally predicting dynamic brain 

signals. The ESN’s main component is a dynamic reservoir consisting of recurrently connected 
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computational nodes (neurons) that encode temporal patterns of input signals, i.e. the vessel-

specific rs-fMRI signal, into a state matrix. The second element of an ESN is a linear decoder, 

which generates predictions based on reservoir’s internal states. ESNs have been successfully 

used for time series prediction50, estimating directed connectivity51 modeling nonlinear systems52 

and superimposed oscillators53, and local cortical dynamics54. Other artificial neural networks 

have been applied to fMRI data to encode brain dynamics with the goal of characterizing 

psychiatric diseases55, 56, modeling task or sensory-evoked activation57-59 and decoding task or 

stimuli properties from fMRI activity60, 61. Artificial neural networks can depict dynamic brain 

signals over a range of time scales and contexts62-66. 

In the present study, ESNs were trained to predict dynamic changes of single-vessel rs-

fMRI signal fluctuations from the brains of rats and humans. fMRI recordings from single blood 

vessels24, 67 were used to extract highly correlated vessel-specific fMRI signals from venules or 

veins, which have been shown to be directly correlated to the underlying intracellular Ca2+ signal 

fluctuation from neurons in rat brains24. Vessel-specific fMRI signals were used as training data 

to extract highly correlated slow oscillation features with varied noise profiles and extract brain 

state-dependent global fMRI signals. The ESN reservoirs and decoders predicted the temporal 

evolution of slow oscillations of the fMRI signal 10 seconds into the future. The trained network 

differentiated the global fMRI signal fluctuation from the DMN-specific temporal dynamic patterns 

in the Human Connectome Project (HCP) data68. 

 

RESULTS 

Two datasets were used in our study, one from rodents and another from humans.  In the 

first part of the study, we trained an ESN to encode temporal dynamics of BOLD-fMRI signals 

from individual vessels in anesthetized rat brains to estimate the prediction efficiency. In the 

second part of the study, we trained an ESN to predict the slow oscillation of fMRI signals from 

occipital lobe sulcus veins of awake human subjects and applied the ESN trained on human data 

to classify the brain-state changes from rs-fMRI data acquired by the Human Connectome Project. 
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Extracting slow oscillatory features of the single-vessel fMRI signal from rat brains 

We used recordings obtained from a balanced steady-state free precession (bSSFP) 

sequence69 on single-vessel fMRI data from anesthetized rats24. Arteriole-venule (A-V) maps 

based on the multi-gradient-echo (MGE) sequence were acquired to localize individual venules 

penetrating the cortex, which were shown as dark dots due to the fast T2* decay of the 

deoxygenated blood (Fig. 1a)67. After registering functional data with the A-V map, fMRI time 

courses from individual venules were extracted and analyzed using independent component 

analysis (ICA)70-72. Fig. 1b shows the time series of the largest ICA component, which is 

dominated by the low frequency fluctuation (<0.1 Hz). The superposition of this ICA component 

with the single-vessel fMRI signal fluctuation on the A-V map overlapped with venule-dominated 

patterns (Fig. 1c). Fig. 1d shows the raw bSSFP-fMRI signal fluctuation from three venules, as 

Fig. 1 | Extraction of signals from single venules exhibiting strong slow fluctuations – rat. a, The A-V 
map enables localization of single venules (dark dots) in the rat somatosensory cortex (red – 3 vessel 
masks; plotted in d.). b, Time course of the slowly changing ICA component shaping vascular dynamics 
and its power spectral density estimate (PSD). c, The corresponding ICA spatial map highlights the 
presence of slow fluctuations predominantly in veins. d, Examples of extracted vascular time courses 
selected for further processing (marked as red dots on the A-V map in a) along with their PSDs. The 
ICA component is present in the signals, but the noise level is much higher and individual differences 
are clearly visible. 
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well as their power spectral density (PSD) plots. These data presented highly coherent oscillatory 

features of single-vessel fMRI signals, which can be used as a training set. 

 

Supervised training of the ESN-based prediction of the fMRI slow oscillation  

Fig. 2 illustrates the basic schematic of the ESN-based prediction.  The single-vessel fMRI 

signals showing a strong slow oscillatory correlation (Fig. 1) were used as input time series for 

the supervised training. As described in the Methods section, a recurrent network-based reservoir 

was predefined to encode the state of the input signal’s temporal dynamics. As the key component 

of the reservoir, the state-weighting vector was optimized to produce output predictions based on 

supervised training. The targets of the output were bandpass-filtered fMRI signals from the voxels 

of the same vessel with a 10 s time shift. Pearson correlation analysis was performed to estimate 

the correlation coefficient (CC) between ESN’s output predictions and the filtered target signals, 

to measure of the ESN’s performance. We used random search73 and cross validation to find the 

set of hyperparameter values that produced the best performing echo state network (ESN) (Fig. 

S1, see details in the Methods section).  

Fig. 2 | Prediction system operation pipeline. Raw vascular data are extracted from fMRI data using 
venule and ICA masks. These temporal signals are inputs to the ESN; they are also bandpass filtered 
and shifted by 10 seconds to become target outputs of the network. The reservoir encodes the 
temporal dynamics of input signals into state vectors. The decoder interprets these states and 
generates a prediction of the slow fluctuation’s value 10 seconds ahead. After generating the full 
predicted time series, the prediction is compared with the target output using Pearson’s correlation 
coefficient.  
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ESN-based single-vessel fMRI slow oscillation prediction in anesthetized rats  

We first illustrate the predictive capacity of the trained ESN by analyzing the correlation 

coefficients across all cross-validation tests.  Fig. 3a demonstrates the CC of the slow oscillation 

prediction of all vessels from a representative rat. For each vessel, we generated a surrogate 

control time course that mimicked the frequency power profile of the fMRI signal. To differentiate 

the control dataset from true brain dynamic signals, we randomized the phase distribution of its 

Fig. 3 | ESN prediction of the spontaneous slow fluctuation of rat vascular dynamics. a, Prediction scores of 

all the signals extracted from a single rat (blue dots) ordered by trials. Real data are matched with controls 

(red dots) for every vessel. Black dots show mean scores across trials and bars are SD values. b, Significantly 

higher mean of training rat real data prediction scores (CC=0.34 ± 0.01 s.e.m.) compared to controls (CC = 0.24 

± 0.01 s.e.m.; paired-sample t-test, p=1.7*10
-20

). c, The signal from a single vessel with the best prediction 

score (CC = 0.53, t
lag

=-2 s; black – raw data, green – target signal, blue – network prediction). d, Surrogate 

signal created to match the real vascular signal shown in c (CC = 0.32, t
lag

=-1 s; black – raw data, green – target, 

red – network prediction). e, Mean prediction scores for trials extracted from five rats (blue) and their 

corresponding controls (red). f, Significantly higher mean of different rats’ real data prediction scores (CC=0.29 

± 0.01 s.e.m.) than controls (CC = 0.24 ± 0.01 s.e.m.; paired-sample t-test, p=9.5*10
-26

). g, Predictions of single-

vessel signals from two different rats (v1, CC = 0.55, t
lag

=-3 s ; v2, CC = 0.55, t
lag

= 0 s). 
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frequency components74, 75 (Fig. S2, see Methods). The ESN prediction performance showed 

significantly higher mean CC for fMRI data (CC = 0.34 ± 0.01 s.e.m.) than surrogate controls (CC 

= 0.24 ± 0.01 s.e.m.) (Fig. 3b). Fig. 3c shows the predicted ESN time course from the vessel with 

the highest prediction score (CC = 0.53, tlag = -2 s) in contrast to the surrogate control signal 

corresponding to the same vessel (CC = 0.32, tlag= -1 s). This shows that the trained ESN was 

better at predicting the fMRI signal fluctuations.  

In addition, the ESN trained on one rat was used to predict the fMRI fluctuation of five 

different rats. Fig. 3e demonstrates trial-specific plots of mean CCs from all vessels in comparison 

to their surrogate controls (380 vessels from 5 rats), showing significantly higher CC of the fMRI 

signal than that of surrogate controls (Fig. 3f). Fig. 3g shows predicted slow oscillatory time 

courses of two vessels from different rats based on the trained ESN (v1, CC= 0.55, tlag = -3 s; v2, 

CC=0.55, tlag = 0 s). These results indicate that the fMRI signal fluctuation can be predicted by the 

trained ESN. 

 

ESN-based single-vessel fMRI slow oscillation prediction in awake human subjects 

As previously reported24, 76, the fMRI signal from sulcus veins of the occipital lobe 

demonstrated highly correlated slow-oscillatory features (Fig. 4). The vein-specific rs-fMRI signal 

fluctuations were recorded with high-resolution EPI-fMRI with 840 x 840 µm in-plane resolution 

and 1.5 mm thickness (Fig. 4a, veins are dark dots) and analyzed with ICA. The largest vascular 

ICA component exhibited slow oscillatory fluctuations in the 0.01 - 0.1 Hz frequency range (Fig. 

4b) and its correlation map primarily highlighted the individual sulcus veins in the EPI image (Fig. 

4c). Fig. 4d shows raw fMRI time courses from a few sulcus veins, demonstrating the vessel-

specific time courses and PSDs with varied noise contributions to different veins. A difference in 

power distribution between species is visible in the PSDs. A significantly wider range of 

frequencies contribute strongly to time courses extracted from human vessels compared to rat 

data (Fig. S3, humansFWHM: 0.031±0.01Hz; ratsFWHM: 0.008±0.001Hz, p=0.001). These results 

also enable the use of the ESN to encode the slow oscillation based on the vessel-specific fMRI 

signals from human brains.  

In contrast to the multi-trial single-vessel rat fMRI studies, only one trial (15 min) was 

acquired from each human subject (159 veins from 6 subjects). To perform the supervised 

training, we designed the 5+1 cross-subject validation process (trials from 5 subjects were used 

for training, and the sixth trial was used for test validation). Specific surrogate control time courses 

were created based on PSD profiles of fMRI signals acquired from individual veins in the human 

brain. Using the trained ESN, higher CC values were obtained by predicting slow oscillatory fMRI 
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signals of individual veins compared to their surrogate controls (Fig. 5a), demonstrating a 

significantly higher mean CC value for brain dynamic signals (CC = 0.33 ± 0.01 s.e.m.) than for 

control datasets (CC = 0.27 ± 0.01 s.e.m.) (Fig. 5b). Also, the histogram of the cross-correlation 

lag times of the predicted and reference time courses showed the median of the lag time equal 

to 0, demonstrating the effective prediction. Figure 5d shows an example of a predicted slow 

oscillatory time course from a human subject based on the trained ESN (CC = 0.54, tlag = -2 s). 

Fig. 5e shows the less accurate performance of the matching surrogate control (CC = 0.30, tlag = 

2 s). These results demonstrate the ESN-based cross-subject prediction of slow oscillatory fMRI 

signals.  

Fig. 4 | Extraction of signals from single veins exhibiting strong slow fluctuations in humans. a, The mean 

of a human single-vessel EPI time series enables the localization of single veins (black dots) in the occipital 

cortex (red – 3 vessel masks; plotted in d.). b, Time course of the slowly changing ICA component shaping 

vascular dynamics and its power spectral density estimate (PSD). c, An ICA spatial map highlights the presence 

of slow fluctuations predominantly in sulcus veins. d, Three single vessel time courses selected for further 

processing (marked as red dots in a) along with their PSDs. The ICA component is present in the signals, along 

with individual variations.  
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The trained ESNs predicted artificial time courses with a range of peak frequencies and 

spectral widths (Fig. S4a,b). The predicted spread of the signal spectra preference for the 

ESNhuman was greater than for ESNrat as shown in the two-dimensional graphs of peak vs. width 

of the CC distribution (Fig. S4c,d). These species differences may reflect the difference in their 

rs-fMRI. Interestingly, the harmonic patterns had negative correlations for the preferred frequency, 

which could be a consequence of the trained ESNs favoring the dominating frequency ranges 

with the 10 s prediction interval. 

Fig. 5 | ESN prediction of the spontaneous slow fluctuation of human vascular dynamics. a, Prediction 

scores of all the signals extracted from 6 human subjects (blue dots). Real data are matched with controls 

for every subject (red dots). b, Significantly higher mean prediction score of real data (CC=0.33 ± 0.01 

s.e.m.) as compared to controls (CC=0.27 ± 0.01 s.e.m.; paired-sample t-test, p=4.2*10
-14

). c, Histogram 

of lags at which the correlation between target outputs and network prediction was the highest. 

Distribution centered on 0 s (median = 0 s) indicates that the prediction wasn’t simply the filtered input. 

d, Prediction plot of the signal that obtained the highest score among all training human vessels 

(CC=0.54, t
lag

=-2 s; black – raw data, green – target, blue – network prediction). e, Prediction plot of the 

surrogate control signal created based on the real vascular signal shown in d (CC=0.30, t
lag

=-2 s; black – 

raw data, green – target prediction, red – network output). 
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Fig. 6 | ESN categorization of V1 temporal patterns. a, Histogram of prediction scores obtained by 

predicting slow fluctuations of 6558 single-hemisphere V1 ROI signals extracted from HCP data. The 

used ESN was trained on occipital cortex single-vessel signals of 6 in-house subjects. Green and violet 

dashed lines mark the bottom and top 5% of correlation coefficients. b, Mean PSDs of time courses 

whose predictions obtained the bottom 5% (green) and top 5% (violet) scores. Shaded areas show s.d. 

c, Histogram of lags at which the correlation between targets and network outputs was the highest. 

The spread of values and a high number of large lags indicates a poor overall quality of prediction. 

However, the lags of top 5% of the predictions (violet) are concentrated around 0. The lags of bottom 

5% (green) are spread across the highest and lowest lag values. Right: Enlarged region marked on the 

left plot. d, Predictions of signals with the three best  correlations (CC
1 

=  0.65, t
lag,1 

= -1 s; CC
2 

= 0.61, 

t
lag, 2

= 2 s; CC
3 

=  0.61, t
lag,3

=2 s; black – raw data, green – target, blue – network prediction).  
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ESN-based prediction of the fMRI slow oscillation in the visual cortex (V1) of HCP data  

Previously, we showed that smoothed single-vessel rs-fMRI correlation maps mimic 

conventional correlation maps in the human occipital area24. As shown in the PSD plots (Fig. 4), 

the vessel-specific fMRI slow oscillation dominates the 0.01-0.1 Hz frequency range. To examine 

whether the ESN trained by the single-vessel fMRI scheme can be used to predict the fMRI slow 

oscillation of a broader range of datasets, we applied the trained ESN to predict the rs-fMRI 

signals from the V1 of HCP data (a total of 3,279 rs-fMRI sessions; V1 signal extracted from left 

and right hemispheres separately, yielding 6,558 time courses resampled at 1 s TR, details in the 

Methods section). To examine the predictive capacity of the ESN on each trial of the HCP dataset, 

the CC of all prediction trials were plotted in a histogram. The CC distribution resembled a normal 

distribution centered on 0.28 (median) (Fig. 6a).  

Next, we selected two clusters of the HCP dataset based on their CC (top 5%, bottom 

5%), showing the top 5% trials with high power levels and the bottom 5% trials with low power 

levels at the 0.01 - 0.1 Hz frequency range (Fig. 6b). The lag time distribution of the top 5% group 

is centered at zero, unlike the bottom 5% group covering the whole range of lag values (Fig. 6c). 

In particular, many lag values of the poorly predicted sessions show a delay of more than the full 

wavelength of ESN’s preferred frequency. Fig. 6d shows three predicted slow oscillatory time 

courses from the HCP rs-fMRI sessions (top 5% group) (CC1 = 0.54, tlag,1= -2; CC2 = 0.61, tlag,2 =2; 

CC3 = 0.61, tlag, 3= 2). The predictions of the ESN were dominated by the low-frequency power in 

the rs-fMRI signals from individual trials. 

 

ESN-based brain state classification from HCP data 

Here, we analyzed whole-brain correlation patterns of the HCP dataset, mainly focusing 

on the top and bottom 5% datasets from ESN predictions. Fig. 7 shows flattened cortical 

difference maps of seed-based correlations calculated for the two groups of HCP datasets. First, 

rs-fMRI time courses from the V1 ROI, the whole cortex (global mean), and the DMN were used 

to calculate voxel-wise correlation maps for all trials in the top and bottom 5% groups. These were 

then group-averaged and subtracted to create the correlation difference maps (Fig. 7a-f, the 

representative time courses from 4 subjects in each group were shown in Fig. S5). Similar 

differential patterns were detected for V1 ROI and global mean time courses, showing significantly 

stronger correlation pattern for the top 5% group covering most of the cortical regions (Fig. 7a-d). 

Although there is higher correlation to other cortical regions in the maps with the DMN-specific 

seed, no significant correlation differences were detected among DMN areas between the top 

and bottom 5% groups (Fig. 7e, f).  
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We used DMN and visual ICA component time courses to compare their seed-based 

difference maps in order to better characterize the brain-state specific differences among resting-

state networks classified by ESN predictions. The visual ICA-based map resembled the V1 ROI 

seed-based result (Fig. 8a-c). The DMN ICA signals are free of global signal contributions and 

represent intrinsic DMN activity. Using them enables the characterization of DMN-specific 

Fig. 7 | Difference maps for ROI seed-based correlations between well and poorly predicted fMRI sessions.  
a, The V1 seed region is marked with a blue border. Visual, sensorimotor and auditory areas display high 
increases in correlation. Nodes in which the difference was insignificant are masked. b, Same as a but 
without the mask. 
c, The average time course of the whole cortex served as the seed. The map resembles the result generated 
using V1 seeds (shown in a), suggesting that V1 signals extracted from the “top” group were mostly driven 
by the global signal. Nodes in which the differences were insignificant are masked. d, Same as c but without 
the mask. 
e, The average time course of the DMN ROIs served as the seed (marked with white borders). Nodes in 
which the difference was insignificant are masked. Despite showing increased synchrony with the areas 
dominated by the global signal, ROIs constituting the DMN don’t show significant differences between the 
groups. f, Same as e but without the mask. 
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correlation patterns independent of the increase in global synchrony. The DMN ICA-based 

correlation maps of the top 5% subjects had reduced correlation, in particular showing significantly 

lower correlation features inside the DMN nodes compared to the bottom 5% sessions (Fig. 8d-

f). The distinction of DMN-specific inter-network correlation was also presented in the correlation 

matrices based on the 360 ROIs predefined from the brain atlas77 (Fig. S6a). Correlation matrices 

computed for subcortical ROIs show increased correlation between the hippocampus and the 

brainstem with the global signal (Fig. S6b). These results indicate that the ESN-based 

classification can be used to differentiate the brain-state dependent rs-fMRI signal fluctuations in 

the HCP datasets. 

The classification scheme is not simply based on the variance of the rs-fMRI signal 

fluctuation. In contrast to the CCESN-based classification (top vs. bottom 5%) of the HCP datasets, 

we also identified two groups of sessions with top vs. bottom 5% V1 variance in the same dataset 

a b 

DMN - ICA 

V1 - ICA 

d e 

CC 

CC 

c 

f 

Fig. 8 | Difference maps for ICA seed-based correlation between well and poorly predicted fMRI sessions.  
a, V1 ICA component spatial map. V1 ROIs are marked by blue borders. b, Flattened cortical map showing the 
difference between the mean seed-based correlation maps of the “top” and “bottom” groups. The time 
course of the ICA component shown in a served as the seed. V1 ROIs are marked by blue borders. The 
connectivity pattern of the V1 ICA component resembles the pattern obtained by using the V1 ROI as the 
seed. Nodes in which the difference was insignificant are masked. c, Same as b but without the mask. 
d, DMN ICA component spatial map. DMN ROIs are marked by white borders. e, Flattened cortical map 
showing the difference between the mean seed-based correlation maps of the “top” and “bottom” groups. 
The time course of the ICA component shown in c served as the seed. DMN ROIs are marked by white borders. 
Nodes in which the differences were insignificant are masked. The intrinsic DMN signals show significantly 
reduced connectivity with DMN areas. f, Same as e but without the mask. 
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(Fig. S7a-c). The CC values of the rs-fMRI variance-dependent groups for ESN-based predictions 

cover the total distribution range. In particular, the top and bottom 5% variance groups had much 

broader CCESN values and largely overlapped each other in the histogram plot (Fig. S7a). 

Similarly, the variance values of trials with the top and bottom 5% of ESN-predicted CC scores 

overlap and cover the whole range of the variance distribution (Fig. S7c). Also, no significant 

reduction of the internal DMN correlations were observed between the two variance-based groups 

(Fig. S7d-f). These results indicate that the ESN trained with vessel-specific rs-fMRI signals 

encodes specific brain state dynamic changes, which is less dependent on the variance of the rs-

fMRI signal fluctuation.  

In addition, we compared the ESN-based predictions with two other prediction schemes, 

the autoregressive moving average with exogenous input (ARMAX) modeling78, 79 and RNNs 

trained with the backpropagation algorithm80, 81. The best ARMAX models were found using an 

exhaustive grid search. The architectures and hyperparameters of the backpropagation-RNNs, 

the gated recurrent unit (GRU)82 and the long short-term memory (LSTM)83, 84 networks, were 

obtained using Bayesian optimization85, 86 (see Methods). The ESN obtained better prediction 

scores than ARMAX and showed very similar prediction performance to the other RNNs on our 

in-house datasets (Human: CCESN = 0.328 ± 0.01, CCGRU = 0.324 ± 0.01, CCARMAX = 0.299 ± 0.01; 

Rat: CCESN = 0.304 ± 0.01, CCLSTM = 0.305 ± 0.01, CCARMAX = 0.263 ± 0.01; mean ± s.e.m.) (Fig. 

S8a), as well as on the HCP datasets (Fig.S8b). We further compared the classification 

performance on the HCP datasets among the three different methods. The ESN and the 

backpropagation-RNN (i.e. the GRU) presented consistent group classification outcomes, 

showing similar distributions of the correlation coefficients of the top and bottom 5%, which was 

not the case with the ARMAX method (Fig. S8c,d). Also, the DMN ICA-based correlation 

differential maps from ESN and GRU methods showed a similar spatial pattern with significantly 

reduced correlation inside the DMN nodes of top 5% in comparison to the bottom 5% sessions, 

which was not detected by the ARMAX method (Fig. S8e). These results further confirmed the 

reliability of the RNN methods (both ESN and the backpropagation based RNNs) to classify the 

brain state-specific rs-fMRI signal fluctuations.  

  

DISCUSSION 

We used the time courses of single-vessel rs-fMRI signals as inputs to train ESN networks 

to predict the rs-fMRI signal 10 s ahead in both rodents and humans. We also showed that the 

single-vessel fMRI-based training leads to ESN encoding specific to global fMRI signal 

fluctuations. The trained network was used to analyze HCP datasets with diverse brain states. 
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For example, it allowed us to identify sessions with strong global synchrony and to decouple the 

global signal fluctuations from internal DMN correlations. 

We selected the input fMRI time series from individual vessel voxels based on a previously 

established single-vessel fMRI mapping method24, 67. The BOLD fMRI signal has a direct vascular 

origin based on the oxy/deoxy-hemoglobin ratio changes87-89. The high-resolution single-vessel 

mapping method allows us to directly extract the venule-dominated BOLD signals with a much 

higher contrast-to-noise ratio (CNR) than the conventional EPI-fMRI integrating the BOLD signal 

from both tissue and vessels in large voxels24, 67, 90, 91. Although different vessel voxels may 

present cardiorespiratory noises, e.g. the respiratory volume change33, 92 or the heartbeat 

variability93, 94, a recent simultaneous fMRI and fiber-optic calcium recording study showed strong 

correlation of the major ICA vascular component of the rs-fMRI signal fluctuation (Fig. 1) with the 

calcium signal oscillation24. Also, these global hemodynamic signal changes are directly 

correlated with the calcium signal fluctuation through the whole cortex based on optical imaging25, 

26. Thus, the global fMRI signal fluctuation detected from individual vessels represents changing 

brain states, and not the non-physiological confounding artifacts uniformly distributed through the 

brain, e.g. the respiration-induced B0 offset95 or other sources34, 96. In comparison to the voxel-

wise or ROI-based time courses from low-resolution EPI images, the single-vessel rs-fMRI signal 

provides highly selective datasets for the supervised ESN training to encode brain-state 

dependent global fMRI signal fluctuations. 

The predictions from the trained ESN’s vary across vessels as well as across trials. To 

validate this measurement, we used surrogate controls designed using the IAAFT method75. For 

every vessel, we generated an artificial signal showing a similar frequency power profile (Fig. S2) 

to its corresponding single-vessel rs-fMRI time course, but with randomized phases of complex 

Fourier components. It has been shown that high-frequency EEG power profiles are highly 

correlated to the low-frequency EEG signal fluctuation, i.e. phase-amplitude coupling (PAC), in 

both cortical and subcortical regions for a variety of brain states97-102. This feature has also been 

used for the correlation analysis of the concurrent EEG and rs-fMRI signal recordings from 

animals and humans18, 19, 21, 23, 103-105. Our analysis confirms that the phases of the slow oscillatory 

rs-fMRI signal carry critical dynamic brain state features3. By randomizing the phases, the 

surrogate control excludes dynamic brain features but preserves a high similarity in terms of the 

signal amplitude/power spectral distribution and autocorrelation structure for the verification of the 

ESN encoding. Also, the spectral characteristics of the ESNs demonstrate different preference 

maps in terms of the center frequency and the bandwidth depending on the training data from 
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either rat or human data (Fig. S4). These training data showed differences in frequency power 

profiles given the inter-species diversity106 and the presence of anesthetics24-26, 107-109.  

The global rs-fMRI signal is a critical confound of correlation analysis with many 

contributing factors from both physiological and non-physiological sources. In particular, whether 

the global mean fMRI signal should be removed before the analysis, which can create spurious 

correlation features, has been debated 36-42, 44. Also, the global rs-fMRI signal can over-shadow 

specific intrinsic RSN features, e.g. the anti-correlation of the DMN and task-positive RSNs110-112. 

One intriguing observation based on ESN-predicted results shows that the internal DMN 

correlations of the top 5% ESN performance group are reduced compared to the bottom 5% group 

(Fig. 8d-f), which is opposite to changes in the global correlation through the whole brain (Fig. 7, 

8). It is noteworthy that the decreased internal DMN correlations are not visible through variance-

based approaches (Fig. S7d-f). Thus, independent of the variance analysis method, the ESN-

based approach reveals brain-state specific rs-fMRI signal fluctuations in the HCP datasets.  

The contrast between internal DMN correlations and whole brain correlation patterns 

supports other sources of evidence that the global signals are dissociated from intrinsic brain 

network correlations32. Turchi et al. showed that the global rs-fMRI signal fluctuation can be 

directly modulated by inhibiting the activity of the basal forebrain nuclei, indicating that arousal 

leads to global rs-fMRI signals32. Global rs-fMRI signal fluctuations are also correlated with 

whether the eyes are open or closed113-116 and pupil dilation117, 118, and dynamic brain state 

changes that occur during different sleep stages11, 63, 119-122. A recent concurrent fMRI and calcium 

recording study has shown that the rs-fMRI fluctuation can be regulated by the arousal ascending 

pathway through the central thalamic nuclei and midbrain reticular formation31, implicating the 

subcortical regulation of the rs-fMRI signal fluctuation as previously reported from both non-

human primate and human rs-fMRI studies30, 32, 43. Importantly, we also observed that the single-

vessel rs-fMRI signal is specifically coupled to the global neuronal signal fluctuation24, which 

supports our single-vessel ESN training scheme to encode the brain-state specific global rs-fMRI 

signal fluctuations.  

Thus, the ESN-based approach provides a variance-independent scheme to differentiate 

the global rs-fMRI fluctuation of the dynamic brain states. A promising direction for future work 

involves applying the proposed method to study the predictability of slow fluctuations in brain 

regions other than sensory cortices and to investigate which factors, besides arousal-related brain 

state changes, drive the predictions. Extending the platform to process whole-brain signals would 

provide a more synoptic view of the regularities present in brain dynamics in different states. 
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Finally, the method could be integrated into a real-time fMRI platform to provide feedback stimuli 

and close the loop. 

 

METHODS 

Echo state network 

To encode the dynamics of spontaneous slow fluctuations we used the echo state network 

(ESN)47, a recurrent artificial neural network belonging to the class of reservoir computing 

methods48, 49. It is trained by supervision. Its two main components are a dynamical reservoir 

encoding temporal patterns of input signals and a linear readout which decodes the reservoir’s 

state to generate the network’s output. A toolbox (http://minds.jacobs-

university.de/research/esnresearch) providing basic ESN functionality was used and further 

developed for the sake of this work. 

ESN – state 

The reservoir is a network of recurrently connected computational units called neurons. A state 

value is associated with each neuron. The states of reservoir neurons are driven by an external 

input as well as previous state values. This is illustrated by the equation: 

𝒉(𝑡) = 𝑓(𝒉(𝑡 − 1), 𝑥(𝑡)), (1) 

where 𝒉(𝑡) is the vector of reservoir states, 𝑥(𝑡) is the input to the network and 𝑓 is the activation 

function of each model neuron. This formulation leads to the network having a memory capacity 

spanning over multiple past inputs and allowing the reservoir to be described as a temporal kernel 

projecting the input time series into a high-dimensional feature space, whose dimensionality is 

equal to the number of reservoir’s neurons. Data transformed into this space are then decoded 

by the readout component of the ESN, which generates output predictions. 

The reservoir is characterized by its weighting matrices 𝑾, 𝑾𝒊𝒏, 𝑾𝒇𝒃 and by the activation function 

𝑓. Here, 𝑓 was the hyperbolic tangent function. The matrices specify internal connections between 

reservoir elements (𝑾), connections between the inputs and the reservoir (𝑾𝒊𝒏) and feedback 

connections from the readout into the reservoir (𝑾𝒇𝒃). These parameters allow to formulate the 

basic update rule of ESN’s state:  

𝒉(𝑡) = 𝑓(𝑾𝑖𝑛𝑥(𝑡) + 𝑾𝒉(𝑡 − 1) + 𝑾𝑓𝑏𝑦(𝑡 − 1)), (2) 
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where 𝒚 is the output of the network. The state update equation was further extended by 

incorporating leaky integrator neurons123 to enhance the network’s memory capacity. In this case, 

an additional parameter called the leaking rate 𝑎 controls the fraction of the state which is 

preserved in the subsequent state and 𝛾 is a gain parameter brought about by discretizing 

continuous-time dynamics of leaky-integrator ESN equations: 

𝒉(𝑡) = (1 − 𝑎𝛾)𝒉(𝑡 − 1) + 𝛾𝑓 (𝑾𝑖𝑛𝑥(𝑡) + 𝑾𝒉(𝑡 − 1) + 𝑾𝑓𝑏𝑦(𝑡 − 1)). (3) 

It is important to note that the input 𝑥 might be extended by a constant input bias so that besides 

the vascular input, every neuron is also driven by a constant at every time step. 

ESN – readout  

To generate the prediction, the decoder processes the ESN’s state. In the case of employing a 

linear readout, the output of the network is computed as: 

𝑦(𝑡) = 𝒘𝑜𝑢𝑡𝒉(𝑡), (4) 

where 𝒘𝑜𝑢𝑡 is the output vector weighting the ESN’s state, which is learned by supervision. Once 

the reservoir has been fixed, input data are fed in it to generate the states matrix 𝑯 according to 

eq. (4). The output vector is then computed using the target outputs 𝒀𝑡𝑟 and the matrix 𝑯 

containing reservoir states generated using all the training inputs: 

𝒘𝑜𝑢𝑡 = 𝑯+𝒀𝑡𝑟, 

where 𝑯+ is the Moore-Penrose pseudoinverse of the states matrix 𝑯. 

Random search optimization 

For a given ESN, the weight matrices 𝑾, 𝑾𝒊𝒏, 𝑾𝒇𝒃 defining its reservoir remain fixed after being 

initialized. They are not changed through training. To initialize the reservoir, a few 

hyperparameters need to be specified124. The performance of a single ESN instance is largely 

dependent on the choice of these hyperparameters and the randomness involved in weight 

initialization. There is no set of parameter values that would lead to good ESN performance on all 

problems posed. As the process of training a single ESN is not computationally expensive 

compared to other methods like e.g. network training using backpropagation, many reservoirs 

might be evaluated. Random search is a simple yet effective way of exploring the hyperparameter 

space for a given task73. For every parameter whose value isn’t fixed, a range of possible values 

is specified and every time an ESN is generated, the parameter values are selected at random 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/807966doi: bioRxiv preprint 

https://doi.org/10.1101/807966
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

from the specified ranges. Then, for the defined reservoir, the readout 𝒘𝑜𝑢𝑡 is optimized. Lastly, 

the trained ESN is evaluated, its performance is compared with other ESN instances and the best 

performing network is selected. The optimized hyperparameters are described in Table 1. 

Parameter 

name 
Description 

Random 

search 

range 

Final value 

(rat | human) 

Reservoir size 

The number of reservoir neurons controls the possible complexity of the 

performed encoding. Along with the increase in neuron count, the computational 

costs grow. 

[30; 1000] 343 | 621 

Spectral 

radius 

A key parameter of the network is its spectral radius - the highest absolute 

eigenvalue of the internal connectivity matrix. The magnitude of this parameter 

influences the temporal length of the reservoir’s memory property125. It needs to 

be set in a way that grants the reservoir the echo state property (ESP), meaning 

that the ESN’s state will become independent of its initial conditions. It has been 

empirically observed that setting a value lower than 1 usually guarantees that the 

reservoir will possess the ESP124. 

[0.6; 1] 0.74025 | 0.8741 

Connection 

weights 

The choice of a specific spectral radius directly influences the scaling of internal 

connection weights, however selecting minimal and maximal values for the range 

from which the weights will be drawn gives control over the ratio and relative 

strengths of negative and positive links in the network. The same applies to the 

generation of connections between the input and the reservoir. 

Input min:  

[-1; 0] 

Input max:  

[0; 1] 

Internal min:  

[-0.5; 0] 

Internal max:  

[0; 0.5] 

Input min:  

-0.064538 | -0.86968 

Input max:  

0.37786 | 0.90886 

Internal min:  

-0.15024 | -0.0045633 

Internal max: 

0.20568 | 0.35022 

Network 

topology 

Instead of using a purely random adjacency matrix, a more specific pattern of 

connections might be preferred. Here, three network topologies were tested: 

Small-world – most links between elements are local, while a small fraction of 

connections is long-ranged and couples separated clusters of neurons, thus 

greatly reducing the average path length in the network. The Watts & Strogatz126 

model was used to generate undirected adjacency matrices. These were then 

converted to directed matrices and the connection weights were drawn from 

specified ranges. The process was parametrized by: 

o The initial number of every neuron’s neighbors. 

Topology: 

[small-world, 

scale-free, 

random] 

 

Topology: 

small-world | small-

world 

 Init. neighbors:  

56 | 82 

Change prob.: 

0.38912 | 0.074823 
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o Probability of a connection being changed to random (source 

of long-range connections). 

o Probability of keeping a bidirectional connection. 

Scale-free – networks characterized by the power law decay of the probability 

P(k) that a given node is connected to k other elements. Directed adjacency 

matrices created using the Barabasi & Albert algorithm127, 128 have been 

generated and connection weights have been drawn from specified ranges. 

Scale-free network parameters: 

o The initial number of vertices. 

o The number of connections added with every new node. 

Random – no structure is imposed on the connectivity pattern. The only 

parameter of the adjacency matrix is its connection density. 

Bidirectional prob.: 

0.070388 | 0.54819 

Leakage 
This parameter controls the fraction of a neuron’s activation that will be utilized in 

the computation of its following state. 
[0.01; 1] 0.31577 | 0.074823 

Time constant 
A gain parameter brought about by discretizing continuous time dynamics of 

leaky-integrator ESN equations123. Was fixed to 1 in the human ESN. 
[0.1; 1] 0.080229 | 1 

Bias presence 
The input signal might be expanded by an additional bias dimension, providing 

constant input to all connected units at every time point. 
[0; 1] 1 | 0 

Feedback 

The decoded output of the network might be fed back into the network to influence 

the next state of the reservoir. Feedback presence and the scaling of feedback 

weights were found using RS. The scaling was drawn from a discrete set of 

logarithmically spaced values. Initial weights were drawn from the [-1; 1] range. 

Presence: 

[0; 1] 

Scaling: 

[10-14; 1] 

Presence: 

0 | 1 

Scaling: 

0 | 10-10 

Washout time 

The number of input signals’ time points used to drive the reservoir into a 

dynamical state that is specific to a given input and independent of the initial state 

(due to the echo state property). The states generated for these points are not 

used for readout training and prediction. The necessary washout time might be 

reduced by using an appropriate initial state. 

fixed, RS not 

used 
250 | 250 

Initial state 

The initial internal states of all reservoirs’ neurons can be set to 0 or to a state 

resembling the states generated by the data of interest. To generate a state 

similar to the ones produced by single-vessel signals a part of the training data 

was fed into the ESN before the training. The mean of all the generated states 

(distinct for each neuron) was then used as the initial state value. 

[0; based on 

training data] 

based on training data | 

based on training data 

Table 1. Optimized ESN hyperparameters. 
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GRU and LSTM 

The predictions of two other RNN models were compared with ESN’s predictions. Gated recurrent 

unit (GRU)82 and long short-term memory (LSTM)83, 84 networks are recurrent neural network 

architectures designed to tackle the vanishing and exploding gradient problems, which prevented 

effective learning in networks trained using backpropagation. Both introduce gating mechanisms 

that control the flow of information into and out of the GRU or LSTM units and allow the networks 

to capture dependencies at different time scales in the processed data. Like the ESN, both the 

GRU and LSTM encode each element of the input single-vessel sequence 𝒙 into a hidden state 

vector 𝒉(𝑡). The GRU computes the following function: 

𝒓(𝑡) = 𝜎(𝑾𝑖𝑟𝑥(𝑡) + 𝒃𝑖𝑟 + 𝑾ℎ𝑟𝒉(𝑡 − 1) + 𝒃ℎ𝑟) 

𝒛(𝑡) = 𝜎(𝑾𝑖𝑧𝑥(𝑡) + 𝒃𝑖𝑧 + 𝑾ℎ𝑧𝒉(𝑡 − 1) + 𝒃ℎ𝑧) 

𝒏(𝑡) = tanh(𝑾𝑖𝑛𝑥(𝑡) + 𝒃𝑖𝑛 + 𝒓(𝑡)⨀(𝑾ℎ𝑛𝒉(𝑡 − 1) + 𝒃ℎ𝑛)) 

                             𝒉(𝑡) = (1 − 𝒛(𝑡)⨀𝒏(𝑡) + 𝒛(𝑡)⨀𝒉(𝑡 − 1)  

where 𝜎( ), 𝑡𝑎𝑛ℎ ( ) are the sigmoid and hyperbolic tangent functions, 𝒓, 𝒛, 𝒏 are the reset, update 

and new gates, 𝑾𝑠 are matrices connecting the gates and ⨀ is the elementwise product. LSTM’s 

encoding looks as follows: 

𝒊(𝑡) = 𝜎(𝑾𝑖𝑖𝑥(𝑡) + 𝒃𝑖𝑖 + 𝑾ℎ𝑖𝒉(𝑡 − 1) + 𝒃ℎ𝑖)  

𝒇(𝑡) = 𝜎(𝑾𝑖𝑓𝑥(𝑡) + 𝒃𝑖𝑓 + 𝑾ℎ𝑓𝒉(𝑡 − 1) + 𝒃ℎ𝑓)  

𝒈(𝑡) = 𝑡𝑎𝑛ℎ(𝑾𝑖𝑔𝑥(𝑡) + 𝒃𝑖𝑔 + 𝑾ℎ𝑔𝒉(𝑡 − 1) + 𝒃ℎ𝑔)  

𝒐(𝑡) = 𝜎(𝑾𝑖𝑜𝑥(𝑡) + 𝒃𝑖𝑜 + 𝑾ℎ𝑜𝒉(𝑡 − 1) + 𝒃ℎ𝑜)  

𝒄(𝑡) = 𝒇(𝑡)⨀𝒄(𝑡 − 1) + 𝒊(𝑡)⨀𝒈(𝑡)  

𝒉(𝑡) = 𝒐(𝑡)⨀tanh (𝒄(𝑡))  

where 𝒄 is the cell state, 𝒊, 𝒇, 𝒈, 𝒐 are the input, forget, cell and output gates. As in the ESN, in 

both GRU and LSTM networks, a linear readout was used to generate the prediction based on 

the state vector: 

𝑦(𝑡) = 𝒘𝑜𝑢𝑡𝒉(𝑡). 
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The networks were trained in PyTorch129. The same data and cross-validation procedure as 

during the ESN’s training were used. The hyperparameters were found with Bayesian optimization 

using the tree of Parzen estimators algorithm (Hyperopt toolbox, n=600)85, 86. The optimized 

hyperparameters have been described in Table 2. 

 

Parameter name Description Range 

Final value 

(rat | human) 

Network type Both network architectures were tested for the rat and human data. [LSTM, GRU] LSTM | GRU 

Number of layers 
Multiple layers of each of the recurrent units could be stacked on top of 

each other. 
[1; 5] 1 | 1 

Hidden size Size of the hidden state vector. [10; 500] 136 | 88 

Loss function 

As CC was the final evaluation metric of networks’ performance, it could 

be used as the cost function instead of the mean squared error (MSE) 

loss. 

[MSE, CC, MSE 

and CC] 
CC | CC 

Learning rate 
A parameter defining the rate at which network weights were updated 

during training. 
[0.01; 1] 0.31577 | 0.074823 

L2 Strength of the L2 weight regularization. [0; 10] 0.0025 | 0.0167 

Gradient clipping 
Gradient clipping130 limits the magnitude of the gradient to a specified 

value. 
[yes; no] yes | no 

Dropout 

In the case of using a multi-layer RNN, dropout131 could be set. As in both 

rat and human datasets 1-layer networks were found, dropout wasn’t 

used. 

[0; 0.2] - | -  

Residual 

connection 

Employing a residual connection i.e. feeding the input directly to the linear 

readout alongside the RNN’s hidden state. 
[yes; no] yes | no 

Batch size 
The number of single-vessel time courses processed by the network in the 

training stage before each weight update. 
[3; 32] 4 | 27 

Number of epochs 
How many times the network processed the whole training dataset during 

training.  
[1; 100] 67 | 51 

Table 2. Optimized backpropagation-RNN hyperparameters. 
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ARMAX 

The autoregressive-moving-average model with exogenous inputs (ARMAX)79 was used as a 

comparative prediction method. ARMAX aims to model a time series using autoregressive, 

moving-average and exogenous input terms. This is depicted in the equation: 

𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + ⋯ + 𝑎𝑛𝑎
𝑦(𝑡 − 𝑛𝑎) =      

𝑏1𝑢(𝑡 − 𝑛𝑘) + ⋯ + 𝑏𝑛𝑏
𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑏 + 1) + 

𝑐1𝑒(𝑡 − 1)+. . . +𝑐𝑛𝑐
𝑒(𝑡 − 𝑛𝑐) + 𝑒(𝑡),                

where 𝑦(𝑡) is the model’s output at time 𝑡; 𝑢(𝑡) is the exogenous input at time 𝑡; 𝑒(𝑡) is the noise 

term at time 𝑡; 𝑛𝑎, 𝑛𝑏 , 𝑛𝑐 are the numbers of model’s past outputs, inputs and error terms that 

influence the current output; 𝑛𝑘 is the delay after which the inputs influence the output; 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 

are estimated model coefficients. To match the 10 s prediction scheme 𝑛𝑘 was set to 10 and the 

raw inputs and slow oscillation outputs were not shifted. An extensive grid search was performed 

to find the 𝑛𝑎 , 𝑛𝑏 , 𝑛𝑐 values that led to the best predictions. All combinations of 𝑛𝑎, 𝑛𝑏 , 𝑛𝑐 values 

ranging from 1 to 50 with a step of 1 and from 1 to 150 with a step of 5 were evaluated to estimate 

the model’s coefficients 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖. Exactly the same data as in ESN’s case were used for training 

and evaluation and the best set of 𝑛𝑎 , 𝑛𝑏 , 𝑛𝑐 values was also found through cross-validation. 

MATLAB armax and forecast functions were used to find the coefficient values and evaluate the 

models. ARX and ARIMAX models were also tested but yielded worse performances, hence are 

not reported. 

Experimental procedures 

Single-vessel fMRI data acquired from 6 rats and 6 human subjects have been previously 

published24. The rats were imaged under alpha-chloralose anesthesia. For details related to the 

experimental procedures refer to24, 132. 

Rat MRI data acquisition 

The measurements have been performed using a 14.1 T/26 cm horizontal bore magnet (Magnex) 

interfaced with an Avance III console (Bruker). To acquire the images a 6 mm (diameter) 

transceiver surface coil was used. 
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bSSFP rs-fMRI 

The balanced steady-state free precession (bSSFP) sequence was used to acquire 2-5 trials of 

BOLD rs-fMRI for every rat. Each run had a length of 15 minutes with a one slice repetition time 

of 1 s. The bSSFP parameters were: TE, 3.9 ms; TR, 7.8 ms; flip angle (FA), 12ᵒ; matrix, 96 × 

128; FOV, 9.6 × 12.8 mm; slice thickness = 400 µm; in-plane resolution = 100 × 100 µm2. 

MGE A-V map acquisition in rats 

To detect individual blood vessels a 2D Multiple Gradient-Echo (MGE) sequence was used. The 

sequence parameters were: TR = 50 ms; TE = 2.5, 5, 7.5, 10, 12.5 and 15 ms; flip angle = 40ᵒ; 

matrix = 192 × 192; in-plane resolution = 50 × 50 µm2; slice thickness = 500 µm. The second up 

to the fifth echoes of the MGE images were averaged to create arteriole-venule (A-V) maps67. 

The A-V maps enable identifying venule voxels as dark dots due to the fast T2* decay and 

arteriole voxels as bright dots because of the in-flow effect. 

Human MRI data acquisition 

Data from six healthy adult subjects (male, n = 3; female, n = 3; age: 20 - 35 years) were acquired 

using a 3-T Siemens Prisma with a 20-channel receive head coil. BOLD rs-fMRI measurements 

were performed using an EPI sequence with: TR = 1,000 ms; TE = 29 ms; FA = 60ᵒ; matrix = 121 

× 119; in-plane resolution = 840 µm × 840 µm; 9 slices with thicknesses of 1.5 mm. Image 

acquisition was accelerated with parallel imaging (GRAPPA factor: 3) and partial Fourier (6/8). 

Subjects had their eyes closed during each 15 minute trial. Respiration and pulse oximetry were 

simultaneously monitored using the Siemens physiologic Monitoring Unit (PMU). 

Data preprocessing 

All data preprocessing was done using MATLAB and the Analysis of Functional Neuro Images 

(AFNI) software package133. The functional data were aligned with the A-V map using the mean 

bSSFP template and the 3dTagAlign AFNI function with 10 tags located in the venule voxels. 

Other details of the preprocessing procedure are reported in a previous study90. No spatial 

smoothing was done at any point. 

Localization of individual veins 

To localize venule voxels in A-V maps, local statistics analysis and thresholding were performed 

using AFNI. First, for each voxel, the minimum value in a 1 voxel-wide rectangular neighborhood 

was found. Then, the resulting image was filtered with a 10 voxel rectangular rank filter and 
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divided by the size of the filter. Finally, the image was thresholded to create a mask with vein 

locations. For human data, the mean of EPI time series was used instead of the A-V map. 

ICA identification of vascular slow oscillations 

To extract signals only from vessels exhibiting strong slow oscillations an additional independent 

components analysis (ICA)-based mask was combined with the described above vessel 

localization method. The functional rs-fMRI data were processed using the Group ICA of fMRI 

Toolbox (GIFT, http://mialab.mrn.org/software/gift) in MATLAB. First, principal component 

analysis (PCA) was employed to reduce the dimensionality of the data. PCA output was used to 

find 10 independent components and their spatial maps using Infomax ICA70. If a component 

exhibiting slow oscillations predominantly in individual vessels had been found, it was thresholded 

and used together with the vascular mask to identify vessels of interest and extract their signals. 

Frequency normalization 

To normalize the data, power density estimates of signals’ high-frequency components were 

used. Every time course had its mean removed and was divided by the mean PSD of its frequency 

components higher than 0.2 Hz. The 0.2 Hz point was chosen, as above this value spectra of 

extracted signals were centered on a horizontal, non-decaying line. Performing the division 

brought the mean PSD of high-frequency components to a common unit baseline for all signals. 

This allowed to better compensate for different signal strengths across trials than when scaling 

the data using minimal and maximal values. Additionally, the relative strength of flatter signals 

and those exhibiting stronger low-frequency oscillations was better preserved when compared to 

variance normalization. Ultimately it also improved prediction performance. 

Power spectrum analysis 

The spectral analysis was performed in MATLAB. To compute the power spectral density 

estimates (PSDs) of utilized signals we employed Welch’s method with the following parameters: 

1024 discrete Fourier transform points; Hann window of length 128; 50% overlap. 
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Filtering 

To obtain target signals, single-vessel time courses were bandpass filtered in MATLAB using 

butter and filtfilt functions. The frequency bands (0.01-0.1 for human and 0.01-0.05 for rat data) 

were chosen based on the PSD curves of single-vessel and ICA time courses. 

Surrogate data generation 

Surrogate data methods are primarily used to measure the degree of nonlinearity of a time 

series74. They allow creating artificial time courses that preserve basic statistics of original data 

like the mean, variance and autocorrelation structure. In this study, Fourier based surrogate 

signals were generated for each single-vessel time course using the iterative amplitude adjusted 

Fourier transform (IAAFT) algorithm75.  

To create a surrogate control, a list of a signal’s amplitude-sorted values and the complex 

magnitudes of its Fourier frequency decomposition need to be saved. First, the original signal is 

randomly reordered. The complex magnitudes of the shuffled signal are replaced by the stored 

values of the original signal with the new phases being kept. This changes the amplitude 

distribution. To compensate for this, the new signal’s sorted values are assigned values from the 

stored ordered amplitude distribution of the source signal (the new signal is only sorted for the 

assignment, its order is restored afterwards). In turn, matching the amplitudes modifies the 

spectrum, so the complex magnitude and amplitude matching steps are repeated and the 

modified phases of the resulting signal are kept through iterations. 

The iteratively generated signals had the same amplitude distribution as the source data and 

extremely similar amplitudes of the power spectrum. However, the phases of their complex 

Fourier components were randomized. 

HCP data – preprocessing 

Data from 3279 15-minute sessions of rs-fMRI acquired by the Human Connectome Project 

(HCP)68 were used to extract V1 signals and compute whole-brain correlation maps. The data set 

was preprocessed134, 135, had artifacts removed via ICA+FIX136, 137 and was registered to a 

common space77, 138 by the HCP. The data were resampled from the original 0.72 s sampling rate 

to match the 1 s TR of our in-house datasets. 
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HCP data – ROI signal extraction 

The multi-modal cortical parcellation77 was used to extract 180 ROI signals per hemisphere. The 

DMN ROI was based on the DMN ROI specified in Yeo et al.139. Task-positive regions were 

labeled according to Glasser et al.77. Subcortical structures were extracted using the Connectome 

Workbench140. 

HCP data –ICA parcellations 

ICA spatial maps and their corresponding time courses for each rs-fMRI session were obtained 

from the S1200 Extensively Processed fMRI Data released by HCP. The spatial maps are based 

on group-PCA results generated using MIGP (MELODIC’s Incremental Group-PCA)141. Spatial 

ICA was applied to the group-PCA output using FSL’s MELODIC tool142, 143. To derive component-

specific time courses for each session, the spatial maps were regressed against the rs-fMRI 

data144. In this work, we used results from the 15-component decomposition. Not all used rs-fMRI 

sessions had an ICA time course available (initial group sizes in the seed-based analysis were 

ntop=202 and nbottom=207; for ICA seed-based analysis the sizes were ntop=195 and nbottom=203). 

Cross-correlation 

MATLAB xcorr and zscore functions were used to compute cross-correlation. Lag times were 

computed between predictions and desired outputs. Positive lags correspond to delayed 

predictions and negative lags to too early predictions. The input signal has an additional 10 s shift. 

Statistical tests 

The statistical significance of the difference between real/surrogate and ESN/ARMAX prediction 

scores was verified using a paired t-test (MATLAB ttest function). To determine differences 

between seed-based correlation maps and PSDs two-sample t-tests were applied (MATLAB 

ttest2 function). The results have been controlled for false discovery rate with adjustment145, 146. 

Fisher’s z-transform has been applied to all correlation values before conducting statistical tests. 

P values <0.05 were considered statistically significant. 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/807966doi: bioRxiv preprint 

https://doi.org/10.1101/807966
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

ACKNOWLEDGMENTS 

This research was supported by NIH Brain Initiative funding (RF1NS113278-01), German 

Research Foundation (DFG) SPP-1655 and Yu215/3-1, BMBF 01GQ1702, internal funding from 

Max Planck Society. We thank Dr. R. Pohmann and Dr. K. Buckenmaier for technical support; Dr. 

E. Weiler, Dr. P. Douay, Mrs. R. König, Ms. S. Fischer, and Ms. H. Schulz for animal/lab 

maintenance and support; the Analysis of Functional NeuroImages (AFNI) team for software 

support. 

AUTHOR CONTRIBUTIONS 

X.Y., F.S. designed the research; X.Y., Y.H., F.S. acquired the data; F. S., X.Y. developed the 

methods and performed data analysis; T.S. provided conceptual and methodological support, 

F.S., X.Y., T.S. wrote the paper. 

Competing interests 

The authors declare no competing interests. 

 

 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/807966doi: bioRxiv preprint 

https://doi.org/10.1101/807966
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

Reference 
1. Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. science 304, 1926–1929 

(2004). 
2. Steriade, M. Impact of Network Activities on Neuronal Properties in Corticothalamic Systems. 

Journal of Neurophysiology 86, 1-39 (2001). 
3. Muller, L., Chavane, F., Reynolds, J. & Sejnowski, T.J. Cortical travelling waves: mechanisms and 

computational principles. Nat Rev Neurosci 19, 255-268 (2018). 
4. Masimore, B., Kakalios, J. & Redish, A.D. Measuring fundamental frequencies in local field 

potentials. Journal of neuroscience methods 138, 97-105 (2004). 
5. Birbaumer, N., Elbert, T., Canavan, A.G. & Rockstroh, B. Slow potentials of the cerebral cortex 

and behavior. Physiol. Rev. (1990). 
6. Elbert, T. in Slow Potential Changes in the Human Brain. (ed. W.C. McCallum) (Springer, New 

York; 1993). 
7. He, B.J. & Raichle, M.E. The fMRI signal, slow cortical potential and consciousness. Trends Cogn 

Sci 13, 302-309 (2009). 
8. Biswal, B., Yetkin, F.Z., Haughton, V.M. & Hyde, J.S. Functional connectivity in the motor cortex 

of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537--541 (1995). 
9. Biswal, B., Hudetz, A.G., Yetkin, F.Z., Haughton, V.M. & Hyde, J.S. Hypercapnia reversibly 

suppresses low-frequency fluctuations in the human motor cortex during rest using echo-planar 
MRI. J Cereb Blood Flow Metab 17, 301-308 (1997). 

10. Cordes, D. et al. Frequencies Contributing to Functional Connectivity in the Cerebral Cortex in 
“Resting-state” Data. American Journal of Neuroradiology 22, 1326--1333 (2001). 

11. Fukunaga, M. et al. Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals 
during extended rest and early sleep stages. Magn Reson Imaging 24, 979-992 (2006). 

12. Kleinfeld, D., Mitra, P.P., Helmchen, F. & Denk, W. Fluctuations and stimulus-induced changes in 
blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proceedings 
of the National Academy of Sciences of the United States of America 95, 15741-15746 (1998). 

13. Golanov, E.V., Yamamoto, S. & Reis, D.J. Spontaneous waves of cerebral blood flow associated 
with a pattern of electrocortical activity. The American journal of physiology 266, R204-214 
(1994). 

14. Obrig, H. et al. Spontaneous low frequency oscillations of cerebral hemodynamics and 
metabolism in human adults. Neuroimage 12, 623-639 (2000). 

15. Raichle, M.E. et al. A default mode of brain function. Proceedings of the National Academy of 
Sciences of the United States of America 98, 676-682 (2001). 

16. Greicius, M.D., Krasnow, B., Reiss, A.L. & Menon, V. Functional connectivity in the resting brain: 
a network analysis of the default mode hypothesis. Proceedings of the National Academy of 
Sciences of the United States of America 100, 253-258 (2003). 

17. Hampson, M., Driesen, N.R., Skudlarski, P., Gore, J.C. & Constable, R.T. Brain connectivity related 
to working memory performance. The Journal of neuroscience : the official journal of the Society 
for Neuroscience 26, 13338-13343 (2006). 

18. Shmuel, A. & Leopold, D.A. Neuronal correlates of spontaneous fluctuations in fMRI signals in 
monkey visual cortex: Implications for functional connectivity at rest. Hum Brain Mapp 29, 751-
761 (2008). 

19. Scholvinck, M.L., Maier, A., Ye, F.Q., Duyn, J.H. & Leopold, D.A. Neural basis of global resting-
state fMRI activity. Proceedings of the National Academy of Sciences of the United States of 
America 107, 10238-10243 (2010). 

20. Pan, W.J., Thompson, G.J., Magnuson, M.E., Jaeger, D. & Keilholz, S. Infraslow LFP correlates to 
resting-state fMRI BOLD signals. Neuroimage 74, 288-297 (2013). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/807966doi: bioRxiv preprint 

https://doi.org/10.1101/807966
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

21. He, B.J., Snyder, A.Z., Zempel, J.M., Smyth, M.D. & Raichle, M.E. Electrophysiological correlates 
of the brain's intrinsic large-scale functional architecture. Proceedings of the National Academy 
of Sciences of the United States of America 105, 16039-16044 (2008). 

22. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological 
investigation of the basis of the fMRI signal. Nature 412, 150--157 (2001). 

23. Goldman, R.I., Stern, J.M., Engel, J., Jr. & Cohen, M.S. Simultaneous EEG and fMRI of the alpha 
rhythm. Neuroreport 13, 2487-2492 (2002). 

24. He, Y. et al. Ultra-Slow Single-Vessel BOLD and CBV-Based fMRI Spatiotemporal Dynamics and 
Their Correlation with Neuronal Intracellular Calcium Signals. Neuron 97, 925-939 e925 (2018). 

25. Ma, Y. et al. Resting-state hemodynamics are spatiotemporally coupled to synchronized and 
symmetric neural activity in excitatory neurons. Proceedings of the National Academy of 
Sciences of the United States of America 113, E8463-E8471 (2016). 

26. Du, C., Volkow, N.D., Koretsky, A.P. & Pan, Y. Low-frequency calcium oscillations accompany 
deoxyhemoglobin oscillations in rat somatosensory cortex. Proceedings of the National 
Academy of Sciences of the United States of America 111, E4677-4686 (2014). 

27. Handwerker, D.A., Roopchansingh, V., Gonzalez-Castillo, J. & Bandettini, P.A. Periodic changes in 
fMRI connectivity. Neuroimage 63, 1712-1719 (2012). 

28. Hutchison, R.M. et al. Dynamic functional connectivity: promise, issues, and interpretations. 
Neuroimage 80, 360-378 (2013). 

29. Chang, C. & Glover, G.H. Time-frequency dynamics of resting-state brain connectivity measured 
with fMRI. Neuroimage 50, 81-98 (2010). 

30. Chang, C. et al. Tracking brain arousal fluctuations with fMRI. Proceedings of the National 
Academy of Sciences of the United States of America 113, 4518-4523 (2016). 

31. Wang, M., He, Y., Sejnowski, T.J. & Yu, X. Brain-state dependent astrocytic Ca(2+) signals are 
coupled to both positive and negative BOLD-fMRI signals. Proceedings of the National Academy 
of Sciences of the United States of America 115, E1647-E1656 (2018). 

32. Turchi, J. et al. The Basal Forebrain Regulates Global Resting-State fMRI Fluctuations. Neuron 97, 
940-952.e944 (2018). 

33. Birn, R.M., Diamond, J.B., Smith, M.A. & Bandettini, P.A. Separating respiratory-variation-related 
fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 31, 1536-1548 
(2006). 

34. Caballero-Gaudes, C. & Reynolds, R.C. Methods for cleaning the BOLD fMRI signal. Neuroimage 
154, 128-149 (2017). 

35. Pais-Roldán, P., Biswal, B., Scheffler, K. & Yu, X. Identifying Respiration-Related Aliasing Artifacts 
in the Rodent Resting-State fMRI. Frontiers in Neuroscience 12 (2018). 

36. Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B. & Bandettini, P.A. The impact of global 
signal regression on resting state correlations: are anti-correlated networks introduced? 
Neuroimage 44, 893-905 (2009). 

37. Hahamy, A. et al. Save the global: global signal connectivity as a tool for studying clinical 
populations with functional magnetic resonance imaging. Brain connectivity 4, 395-403 (2014). 

38. Billings, J. & Keilholz, S. The Not-So-Global Blood Oxygen Level-Dependent Signal. Brain 
connectivity 8, 121-128 (2018). 

39. Xu, H. et al. Impact of global signal regression on characterizing dynamic functional connectivity 
and brain states. Neuroimage 173, 127-145 (2018). 

40. Fox, M.D., Zhang, D., Snyder, A.Z. & Raichle, M.E. The global signal and observed anticorrelated 
resting state brain networks. J Neurophysiol 101, 3270-3283 (2009). 

41. Murphy, K. & Fox, M.D. Towards a consensus regarding global signal regression for resting state 
functional connectivity MRI. Neuroimage 154, 169-173 (2017). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/807966doi: bioRxiv preprint 

https://doi.org/10.1101/807966
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

42. Power, J.D., Plitt, M., Laumann, T.O. & Martin, A. Sources and implications of whole-brain fMRI 
signals in humans. Neuroimage 146, 609-625 (2017). 

43. Liu, X. et al. Subcortical evidence for a contribution of arousal to fMRI studies of brain activity. 
Nat Commun 9, 395 (2018). 

44. Colenbier, N. et al. Disambiguating the role of blood flow and global signal with Partial 
Information Decomposition. bioRxiv, 596247 (2019). 

45. Chang, C. & Glover, G.H. Effects of model-based physiological noise correction on default mode 
network anti-correlations and correlations. Neuroimage 47, 1448-1459 (2009). 

46. Behzadi, Y., Restom, K., Liau, J. & Liu, T.T. A component based noise correction method 
(CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90-101 (2007). 

47. Jaeger, H.  (2001). 
48. Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network 

training. Computer Science Review 3, 127--149 (2009). 
49. Maass, W., Natschläger, T. & Markram, H. Real-Time Computing Without Stable States: A New 

Framework for Neural Computation Based on Perturbations. Neural Computation 14, 2531-2560 
(2002). 

50. Jaeger, H. & Haas, H. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in 
Wireless Communication. Science 304, 78--80 (2004). 

51. Duggento, A., Guerrisi, M. & Toschi, N. Echo State Network models for nonlinear Granger 
causality. bioRxiv, 651679 (2019). 

52. Jaeger, H. in Proceedings of the 15th International Conference on Neural Information Processing 
Systems 609-616 (MIT Press, 2002). 

53. Koryakin, D., Lohmann, J. & Butz, M.V. Balanced echo state networks. Neural Netw 36, 35-45 
(2012). 

54. Enel, P., Procyk, E., Quilodran, R. & Dominey, P.F. Reservoir Computing Properties of Neural 
Dynamics in Prefrontal Cortex. PLoS Comput Biol 12, e1004967 (2016). 

55. Suk, H.I., Wee, C.Y., Lee, S.W. & Shen, D. State-space model with deep learning for functional 
dynamics estimation in resting-state fMRI. Neuroimage 129, 292-307 (2016). 

56. Vieira, S., Pinaya, W.H. & Mechelli, A. Using deep learning to investigate the neuroimaging 
correlates of psychiatric and neurological disorders: Methods and applications. Neuroscience 
and biobehavioral reviews 74, 58-75 (2017). 

57. Guclu, U. & van Gerven, M.A. Deep Neural Networks Reveal a Gradient in the Complexity of 
Neural Representations across the Ventral Stream. The Journal of neuroscience : the official 
journal of the Society for Neuroscience 35, 10005-10014 (2015). 

58. Güçlü, U. & van Gerven, M.A.J. Modeling the Dynamics of Human Brain Activity with Recurrent 
Neural Networks. Frontiers in computational neuroscience 11, 7-7 (2017). 

59. Lee, J.H., Wong, E.C. & Bandettini, P.A. in ISMRM (Honolulu, USA; 2017). 
60. Hatakeyama, Y., Yoshida, S., Kataoka, H. & Okuhara, Y.  29-38 (Springer International Publishing, 

Cham; 2014). 
61. Wen, H. et al. Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision. 

Cerebral cortex (New York, N.Y. : 1991) 28, 4136-4160 (2018). 
62. Plis, S.M. et al. Deep learning for neuroimaging: a validation study. Frontiers in Neuroscience 8 

(2014). 
63. Hjelm, R.D. et al. Spatio-Temporal Dynamics of Intrinsic Networks in Functional Magnetic 

Imaging Data Using Recurrent Neural Networks. Front Neurosci 12, 600 (2018). 
64. Yamins, D.L. et al. Performance-optimized hierarchical models predict neural responses in higher 

visual cortex. Proceedings of the National Academy of Sciences of the United States of America 
111, 8619-8624 (2014). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/807966doi: bioRxiv preprint 

https://doi.org/10.1101/807966
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

65. Barrett, D.G.T., Morcos, A.S. & Macke, J.H. in arXiv e-prints (2018). 
66. Wen, D. et al. Deep Learning Methods to Process fMRI Data and Their Application in the 

Diagnosis of Cognitive Impairment: A Brief Overview and Our Opinion. Frontiers in 
neuroinformatics 12, 23 (2018). 

67. Yu, X. et al. Sensory and optogenetically driven single-vessel fMRI. Nat Methods 13, 337-340 
(2016). 

68. Van Essen, D.C. et al. The Human Connectome Project: a data acquisition perspective. 
Neuroimage 62, 2222-2231 (2012). 

69. Scheffler, K. & Lehnhardt, S. Principles and applications of balanced SSFP techniques. Eur Radiol 
13, 2409-2418 (2003). 

70. Bell, A.J. & Sejnowski, T.J. An information-maximization approach to blind separation and blind 
deconvolution. Neural Comput 7, 1129-1159 (1995). 

71. Mckeown, M.J. et al. Analysis of fMRI data by blind separation into independent spatial 
components. Hum. Brain Mapp. 6, 160--188 (1998). 

72. Calhoun, V.D., Liu, J. & Adali, T. A review of group ICA for fMRI data and ICA for joint inference of 
imaging, genetic, and ERP data. Neuroimage 45, S163-172 (2009). 

73. Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 
13, 281-305 (2012). 

74. Theiler, J. et al. Testing for nonlinearity in time series: the method of surrogate data. Phys. D 58, 
77-94 (1992). 

75. Schreiber, T. & Schmitz, A. Improved Surrogate Data for Nonlinearity Tests. Physical review 
letters 77, 635-638 (1996). 

76. Barth, M. & Norris, D.G. Very high-resolution three-dimensional functional MRI of the human 
visual cortex with elimination of large venous vessels. NMR Biomed 20, 477-484 (2007). 

77. Glasser, M.F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171-178 
(2016). 

78. Box, G.E.P., Edn. Rev. ed. (ed. G.M. Jenkins) (Holden-Day, San Francisco :; 1976). 
79. Whittle, P. Hypothesis testing in time series analysis. (Almqvist & Wiksells boktr., Uppsala; 

1951). 
80. Linnainmaa, S. Taylor expansion of the accumulated rounding error. BIT Numerical Mathematics 

16, 146-160 (1976). 
81. Rumelhart, D.E., Hinton, G.E. & Williams, R.J. in Neurocomputing: foundations of research. (eds. 

A.A. James & R. Edward) 696-699 (MIT Press, 1988). 
82. Cho, K. et al.  1724-1734 (Association for Computational Linguistics, Doha, Qatar; 2014). 
83. Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. Neural Computation 9, 1735-1780 

(1997). 
84. Gers, F.A., Schraudolph, N.N., #252 & Schmidhuber, r. Learning precise timing with lstm 

recurrent networks. J. Mach. Learn. Res. 3, 115-143 (2003). 
85. Bergstra, J. et al. in Proceedings of the 24th International Conference on Neural Information 

Processing Systems 2546-2554 (Curran Associates Inc., Granada, Spain; 2011). 
86. Bergstra, J., Yamins, D. & Cox, D.D. in Proceedings of the 30th International Conference on 

International Conference on Machine Learning - Volume 28 I-115-I-123 (JMLR.org, Atlanta, GA, 
USA; 2013). 

87. Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain 
mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of 
the United States of America 89, 5951-5955 (1992). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/807966doi: bioRxiv preprint 

https://doi.org/10.1101/807966
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

88. Kwong, K.K. et al. Dynamic magnetic resonance imaging of human brain activity during primary 
sensory stimulation. Proceedings of the National Academy of Sciences of the United States of 
America 89, 5675-5679 (1992). 

89. Bandettini, P.A., Wong, E.C., Hinks, R.S., Tikofsky, R.S. & Hyde, J.S. Time course EPI of human 
brain function during task activation. Magn Reson Med 25, 390-397 (1992). 

90. Yu, X. et al. Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in 
layers IV-V of the rat whisker-barrel cortex. Neuroimage 59, 1451-1460 (2012). 

91. Menon, R.S., Ogawa, S., Tank, D.W. & Ugurbil, K. Tesla gradient recalled echo characteristics of 
photic stimulation-induced signal changes in the human primary visual cortex. Magn Reson Med 
30, 380-386 (1993). 

92. Birn, R.M., Smith, M.A., Jones, T.B. & Bandettini, P.A. The respiration response function: the 
temporal dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage 40, 
644-654 (2008). 

93. Shmueli, K. et al. Low-frequency fluctuations in the cardiac rate as a source of variance in the 
resting-state fMRI BOLD signal. Neuroimage 38, 306-320 (2007). 

94. Napadow, V. et al. Brain correlates of autonomic modulation: combining heart rate variability 
with fMRI. Neuroimage 42, 169-177 (2008). 

95. Van de Moortele, P.F., Pfeuffer, J., Glover, G.H., Ugurbil, K. & Hu, X. Respiration-induced B0 
fluctuations and their spatial distribution in the human brain at 7 Tesla. Magn Reson Med 47, 
888-895 (2002). 

96. Murphy, K., Birn, R.M. & Bandettini, P.A. Resting-state fMRI confounds and cleanup. 
Neuroimage 80, 349-359 (2013). 

97. Bragin, A. et al. Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. The 
Journal of neuroscience : the official journal of the Society for Neuroscience 15, 47-60 (1995). 

98. Canolty, R.T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. 
Science 313, 1626-1628 (2006). 

99. Fell, J. & Axmacher, N. The role of phase synchronization in memory processes. Nat Rev Neurosci 
12, 105-118 (2011). 

100. Pais-Roldan, P. et al. Multimodal assessment of recovery from coma in a rat model of diffuse 
brainstem tegmentum injury. Neuroimage (2019). 

101. Vanhatalo, S. et al. Infraslow oscillations modulate excitability and interictal epileptic activity in 
the human cortex during sleep. Proceedings of the National Academy of Sciences of the United 
States of America 101, 5053-5057 (2004). 

102. Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside 
neocortical neurons. J Neurophysiol 85, 1969-1985 (2001). 

103. Goense, J.B. & Logothetis, N.K. Neurophysiology of the BOLD fMRI signal in awake monkeys. 
Current biology : CB 18, 631-640 (2008). 

104. Murta, T. et al. Phase-amplitude coupling and the BOLD signal: A simultaneous intracranial EEG 
(icEEG) - fMRI study in humans performing a finger-tapping task. Neuroimage 146, 438-451 
(2017). 

105. Magri, C., Schridde, U., Murayama, Y., Panzeri, S. & Logothetis, N.K. The amplitude and timing of 
the BOLD signal reflects the relationship between local field potential power at different 
frequencies. The Journal of neuroscience : the official journal of the Society for Neuroscience 32, 
1395-1407 (2012). 

106. de Zwart, J.A. et al. Temporal dynamics of the BOLD fMRI impulse response. Neuroimage 24, 
667-677 (2005). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/807966doi: bioRxiv preprint 

https://doi.org/10.1101/807966
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

107. Mateo, C., Knutsen, P.M., Tsai, P.S., Shih, A.Y. & Kleinfeld, D. Entrainment of Arteriole 
Vasomotor Fluctuations by Neural Activity Is a Basis of Blood-Oxygenation-Level-Dependent 
"Resting-State" Connectivity. Neuron 96, 936-948 e933 (2017). 

108. Akeju, O. & Brown, E.N. Neural oscillations demonstrate that general anesthesia and sedative 
states are neurophysiologically distinct from sleep. Current opinion in neurobiology 44, 178-185 
(2017). 

109. Wu, G.-R. et al. Modulation of the spontaneous hemodynamic response function across levels of 
consciousness. NeuroImage 200, 450-459 (2019). 

110. Fox, M.D. et al. The human brain is intrinsically organized into dynamic, anticorrelated 
functional networks. Proceedings of the National Academy of Sciences of the United States of 
America 102, 9673 (2005). 

111. Chen, J.E., Glover, G.H., Greicius, M.D. & Chang, C. Dissociated patterns of anti-correlations with 
dorsal and ventral default-mode networks at rest. Hum Brain Mapp 38, 2454-2465 (2017). 

112. Hampson, M., Driesen, N., Roth, J.K., Gore, J.C. & Constable, R.T. Functional connectivity 
between task-positive and task-negative brain areas and its relation to working memory 
performance. Magn Reson Imaging 28, 1051-1057 (2010). 

113. Wong, C.W., DeYoung, P.N. & Liu, T.T. Differences in the resting-state fMRI global signal 
amplitude between the eyes open and eyes closed states are related to changes in EEG 
vigilance. Neuroimage 124, 24-31 (2016). 

114. Yang, H. et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-
state functional MRI. Neuroimage 36, 144-152 (2007). 

115. McAvoy, M. et al. Resting states affect spontaneous BOLD oscillations in sensory and paralimbic 
cortex. J Neurophysiol 100, 922-931 (2008). 

116. Bianciardi, M. et al. Modulation of spontaneous fMRI activity in human visual cortex by 
behavioral state. Neuroimage 45, 160-168 (2009). 

117. Yellin, D., Berkovich-Ohana, A. & Malach, R. Coupling between pupil fluctuations and resting-
state fMRI uncovers a slow build-up of antagonistic responses in the human cortex. Neuroimage 
106, 414-427 (2015). 

118. Schneider, M. et al. Spontaneous pupil dilations during the resting state are associated with 
activation of the salience network. Neuroimage 139, 189-201 (2016). 

119. Schabus, M. et al. Hemodynamic cerebral correlates of sleep spindles during human non-rapid 
eye movement sleep. Proceedings of the National Academy of Sciences 104, 13164-13169 
(2007). 

120. Horovitz, S.G. et al. Low frequency BOLD fluctuations during resting wakefulness and light sleep: 
a simultaneous EEG-fMRI study. Hum Brain Mapp 29, 671-682 (2008). 

121. Spoormaker, V.I., Czisch, M., Maquet, P. & Jancke, L. Large-scale functional brain networks in 
human non-rapid eye movement sleep: insights from combined 
electroencephalographic/functional magnetic resonance imaging studies. Philosophical 
transactions. Series A, Mathematical, physical, and engineering sciences 369, 3708-3729 (2011). 

122. Tagliazucchi, E. et al. Automatic sleep staging using fMRI functional connectivity data. 
Neuroimage 63, 63-72 (2012). 

123. Jaeger, H., Lukosevicius, M., Popovici, D. & Siewert, U. Optimization and applications of echo 
state networks with leaky-integrator neurons. Neural Netw 20, 335-352 (2007). 

124. Lukoševičius, M. A Practical Guide to Applying Echo State Networks. SpringerLink, 659--686 
(2012). 

125. Ganguli, S., Huh, D. & Sompolinsky, H. Memory traces in dynamical systems. Proceedings of the 
National Academy of Sciences 105, 18970-18975 (2008). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/807966doi: bioRxiv preprint 

https://doi.org/10.1101/807966
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

126. Watts, D.J. & Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 393, 440--442 
(1998). 

127. Barabási, A.-L. & Albert, R. Emergence of Scaling in Random Networks. Science 286, 509--512 
(1999). 

128. Prettejohn, B.J., Berryman, M.J. & McDonnell, M.D. Methods for generating complex networks 
with selected structural properties for simulations: a review and tutorial for neuroscientists. 
Front Comput Neurosci 5, 11 (2011). 

129. Paszke, A. et al.  (2017). 
130. Pascanu, R., Mikolov, T. & Bengio, Y. in Proceedings of the 30th International Conference on 

International Conference on Machine Learning - Volume 28 III-1310-III-1318 (JMLR.org, Atlanta, 
GA, USA; 2013). 

131. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way 
to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929-1958 (2014). 

132. Yu, X. et al. 3D mapping of somatotopic reorganization with small animal functional MRI. 
Neuroimage 49, 1667-1676 (2010). 

133. Cox, R.W. AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance 
Neuroimages. Comput. Biomed. Res. 29, 162--173 (1996). 

134. Smith, S.M. et al. Resting-state fMRI in the Human Connectome Project. Neuroimage 80, 144-
168 (2013). 

135. Glasser, M.F. et al. The minimal preprocessing pipelines for the Human Connectome Project. 
Neuroimage 80, 105-124 (2013). 

136. Salimi-Khorshidi, G. et al. Automatic denoising of functional MRI data: combining independent 
component analysis and hierarchical fusion of classifiers. Neuroimage 90, 449-468 (2014). 

137. Griffanti, L. et al. ICA-based artefact removal and accelerated fMRI acquisition for improved 
resting state network imaging. Neuroimage 95, 232-247 (2014). 

138. Robinson, E.C. et al. MSM: a new flexible framework for Multimodal Surface Matching. 
Neuroimage 100, 414-426 (2014). 

139. Yeo, B.T. et al. The organization of the human cerebral cortex estimated by intrinsic functional 
connectivity. J Neurophysiol 106, 1125-1165 (2011). 

140. Marcus, D.S. et al. Informatics and data mining tools and strategies for the human connectome 
project. Frontiers in neuroinformatics 5, 4 (2011). 

141. Smith, S.M., Hyvärinen, A., Varoquaux, G., Miller, K.L. & Beckmann, C.F. Group-PCA for very 
large fMRI datasets. Neuroimage 101, 738-749 (2014). 

142. Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE 
transactions on neural networks 10, 626-634 (1999). 

143. Beckmann, C.F. & Smith, S.M. Probabilistic independent component analysis for functional 
magnetic resonance imaging. IEEE transactions on medical imaging 23, 137-152 (2004). 

144. Filippini, N. et al. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. 
Proceedings of the National Academy of Sciences of the United States of America 106, 7209-
7214 (2009). 

145. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful 
Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 
57, 289-300 (1995). 

146. Yekutieli, D. & Benjamini, Y.  (1997). 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/807966doi: bioRxiv preprint 

https://doi.org/10.1101/807966
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

 

  

Supplementary fig. 1 | ESN hyper-parameter optimization using random search. For each possible 

3+1 trial division (3 training trials + 1 test trial) network parameter values are drawn randomly from 

pre-specified ranges 5000 times. For each drawn parameter set a reservoir is generated and an ESN is 

trained and evaluated. For each 3+1 division the 100 best performing ESNs are cross-validated to select 

a single ESN for predicting other rats’ data. 
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Supplementary fig. 2 | Surrogate data generation. a, Mean PSD of all human vessel time courses used in 

the analysis (shaded area – s.d.). b, Mean PSD of all surrogate control time courses generated for 

comparison with human signals (shaded area – s.d.). c, A real human signal and its PSD (top) matched with 

the generated surrogate control and its PSD (bottom). d, Same as c. e, Mean PSD of all rat vessel time 

courses used in the analysis (shaded area – s.d.). f, Mean PSD of all surrogate control time courses generated 

for comparison with rat signals (shaded area – s.d.). g, A real rat signal and its PSD (top) matched with the 

generated surrogate control and its PSD (bottom). h, Same as g. 
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Supplementary fig. 3 | Interspecies PSD difference. a, Mean PSDs of all human and rat vessel time 
courses used in the analysis (shaded areas – s.d.). b, Difference of full width at half maximum 
(FWHM) means of six human subjects‘ mean PSDs (0.031 ± 0.01 s.e.m.) and of six rats’ mean PSDs 
(0.008 ± 0.001 s.e.m.; two sample t-test, p= 0.001). 
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Supplementary fig. 4 | Trained ESN input feature specificity. ab, Examples of different artificial PSDs with a 

fixed peak location and varying peak width (a) or fixed peak width and varying peak location (b) used to 

generate synthetic time courses with specified spectral features. cd, Grid displaying the mean prediction 

scores of time courses generated for each center location – width pair. Values for both the peak width and 

location were ranging from 0.005-0.2 Hz and were evenly spaced by 0.002 Hz. For each pair 100 signals were 

generated. Every point on the grid represents their mean prediction score (c – rat ESN; d – human ESN). e, 

Prediction plot of a signal generated from the width (0.021 Hz) and peak location (0.025 Hz) pair best 

predicted by the human ESN (CC=0.72, t
lag

=0; black – raw data, green – target prediction, blue – network 

output). f, Prediction plot of a signal generated from the width (0.041 Hz) and peak location (0.068 Hz) pair 

worst predicted by the human ESN (CC=-0.33, t
lag

=7; black – raw data, green – target prediction, blue – 

network output). 
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Supplementary fig. 5 | Representative seed ROI signals. Time courses extracted from ROIs used as seeds 

in the connectivity analysis. Signals from the same ROI have been normalized together. 4 sessions from 

the “top” and “bottom” groups are shown. a, V1 signals. b, DMN signals. c, Global cortical signals. d, DMN 

ICA signals. 
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Supplementary fig. 6 | HCP whole brain functional connectivity. a, Correlations matrices of 360 cortical 

ROIs. The matrices have been rearranged based on the order resulting from spectral reordering of the 

difference matrix. Most of the cortex displays an increased synchrony in the well predicted sessions. 

Exceptions are the DMN (black markers) ROIs, which despite being more synchronized with the global signal, 

don’t show an increase in internal connectivity. The values on the diagonal have been set to 0. b, Correlation 

matrices of 19 subcortical ROIs and the cortex. Brainstem (blue arrow) and hippocampus (green arrow) show 

increased synchrony with the global signal. The rightmost part of the matrices shows internal subcortical 

connectivity. 
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Supplementary fig. 7 | Variance based classification. a, Prediction score histograms of the 5% best (light 

gray) and worst (dark gray) predicted sessions contrasted with prediction scores of signals with top 5% 

highest (blue) and lowest (red) variance. Variance levels aren’t conclusive of ESNs performance. Top right: 

same data with groups merged. b, Mean PSDs of signals with the top 5% highest (blue) and lowest (red) 

variance. Shaded areas show standard deviations. c, Histogram of variance-based (red and blue) and ESN-

based (gray) group variance values. Predictions scores of signals having a high or low variance are distributed 

across the whole range of CC values. d, The spatial ICA component (white borders highlighting the DMN), 

whose time courses have been used to generate the variance-based difference connectivity map. e, The 

variance based differential (“top”-”bottom”) connectivity pattern. It doesn’t resemble the ESN-based DMN 

internal connectivity reduction. Nodes in which the difference was insignificant are masked. f, Same as e 

but without the mask. 
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Supplementary fig. 8 | Comparison of different methods’ prediction results. a, Mean prediction scores of 

all in-house human and rat vessel signals obtained using the best ESN, GRU (human data), LSTM (rat data) 

and ARMAX models. Significantly higher scores (paired-sample t-test, p
H-ESN

=2.84*10
-9

, p
R-ESN

=1.39*10
-23

, 

p
H-GRU

=8.94*10
-9

, p
R-LSTM

=2.68*10
-27

) obtained by recurrent neural networks than ARMAX in both human 

(CC
ESN

 = 0.328 ± 0.01; CC
GRU

 = 0.324 ± 0.01; CC
ARMAX

 = 0.299 ± 0.01; mean ± s.e.m.) and rat cases (CC
ESN

 = 

0.304 ± 0.01; CC
LSTM

 = 0.305 ± 0.01; CC
ARMAX

 = 0.263 ± 0.01; mean ± s.e.m.). b, GRU and ARMAX histograms 

of prediction scores of 6558 single-hemisphere V1 ROI signals extracted from HCP data. ARMAX predictions 

are much worse those of the ESN. GRU and ESN prediction score distributions largely overlap.  c, Histograms 

showing how much the 5% of best and worst ESN-predicted sessions overlap with the 5% best and worst 

ARMAX and GRU predictions. ESN and ARMAX predictions show little correspondence. The same sessions 

were well and poorly predicted by both recurrent networks. d, Mean PSDs of time courses whose 

predictions obtained the bottom 5% (green) and top 5% (violet) scores (left – ESN; middle – GRU; right – 

ARMAX). Shaded areas show s.d. ARMAX shows less sensitivity to low-frequency oscillatory power 

compared to the recurrent neural networks. e, Flattened cortical maps showing the difference between 

the mean DMN-ICA-seed-based correlation maps of the “top” and “bottom” groups obtained using the 

three prediction methods. DMN ROIs are marked by white borders. Nodes in which the difference was 

insignificant are masked. GRU spatial patterns show significant group differences in the same areas as ESN 

maps. ARMAX maps don’t show any significant differences. These results suggest that ARMAX prediction 

accuracy isn’t brain state dependent and that ESN and GRU are tuned to the same features of brain 

dynamics. 
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