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Abstract	

Traditional	group	fMRI	(functional	magnetic	resonance	imaging)	analyses	are	not	

designed	to	detect	individual	differences	that	may	be	crucial	to	better	understanding	

speech	disorders.	Single-subject	research	could	therefore	provide	a	richer	characterization	

of	the	neural	substrates	of	speech	production	in	development	and	disease.	Before	this	line	

of	research	can	be	tackled,	however,	it	is	necessary	to	evaluate	whether	healthy	individuals	

exhibit	reproducible	brain	activation	across	multiple	sessions	during	speech	production	

tasks.	In	the	present	study,	we	evaluated	the	reliability	and	discriminability	of	cortical	

functional	magnetic	resonance	imaging	data	from	twenty	neuro-typical	subjects	who	

participated	in	two	experiments	involving	reading	aloud	mono-	or	bisyllabic	speech	

stimuli.	Using	traditional	methods	like	the	Dice	and	intraclass	correlation	coefficients,	we	

found	that	most	individuals	displayed	moderate	to	high	reliability,	with	exceptions	likely	

due	to	increased	head	motion	in	the	scanner.	Further,	this	level	of	reliability	for	speech	

production	was	not	directly	correlated	with	reliable	patterns	in	the	underlying	average	

blood	oxygenation	level	dependent	signal	across	the	brain.	Finally,	we	found	that	a	novel	

machine-learning	subject	classifier	could	identify	these	individuals	by	their	speech	

activation	patterns	with	97%	accuracy	from	among	a	dataset	of	seventy-five	subjects.	

These	results	suggest	that	single-subject	speech	research	would	yield	valid	results	and	that	

investigations	into	the	reliability	of	speech	activation	in	people	with	speech	disorders	are	

warranted.	
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1.	Introduction	

Our	understanding	of	 the	neural	mechanisms	responsible	 for	speech	and	 language	

has	 dramatically	 improved	 in	 recent	 decades	 due	 to	 the	 development	 of	 non-invasive	

techniques	for	measuring	whole-brain	activity.	Perhaps	the	most	widely	used	technique	of	

this	 type	 is	 functional	 magnetic	 resonance	 imaging	 (fMRI);	 at	 least	 49,000	 papers	 have	

been	 published	 on	 this	 topic	 in	 pubmed	 since	 20001.	 To	 date,	 the	 vast	majority	 of	 fMRI	

studies	of	speech	and	language	have	involved	analyzing	group	average	results	from	cohorts	

of	10	or	more	neurologically	normal	participants,	in	many	cases	compared	to	similar-sized	

cohorts	of	patients	with	neurological	conditions	 that	 impact	speech	or	 language	 function.	

However,	many	speech	disorders	result	from	heterogeneous	neural	disturbances	not	easily	

identified	 in	 traditional	group	analyses	 (Moser,	Basilakos,	Fillmore,	&	Fridriksson,	2016).	

For	example,	 in	 the	case	of	acquired	apraxia	of	 speech	 (AOS),	a	neurogenic	disorder	 that	

affects	speech	motor	planning	and	prosody	(Duffy,	2013),	there	is	considerable	variability	

in	the	literature	regarding	the	crucial	location	of	neural	damage	(Dronkers,	1996;	Hillis	et	

al.,	2004;	Moser	et	al.,	2016).	More	broadly,	there	is	tremendous	variability	in	the	location	

and	 extent	 of	 stroke-related	 damage	 to	 neural	 tissue	 across	 individuals,	 which	 severely	

limits	our	ability	 to	 characterize	brain	 function	 in	 stroke-based	disorders	using	 standard	

group-based	fMRI	analyses.	

An	alternative	approach	 to	 studying	stroke-based	disorders	 is	 to	 investigate	brain	

activity	in	individual	disordered	subjects.	A	number	of	studies	covering	a	range	of	potential	

purposes	have	demonstrated	or	encouraged	the	use	of	single-subject	fMRI.	These	include:	

																																																								
1	Derived	from	a	search	of	articles	on	pubmed.com	on	April	27,	2019	containing	the	terms	
“fMRI”	or	“functional	magnetic	resonance	imaging”	in	their	title	or	abstract.	
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studies	 of	 healthy	 variability	 and	 changes	 over	 the	 lifespan	 (Dosenbach	 et	 al.,	 2010),	

mapping	of	language	areas	prior	to	resective	surgery	for	patients	with	epilepsy	or	gliomas	

(Babajani-Feremi	et	al.,	2016;	Bizzi	et	al.,	2008;	Chen	&	Small,	2007;	Gross	&	Binder,	2014)	

improved	diagnosis	of	disorders	(Raschle,	Zuk,	&	Gaab,	2012;	Sundermann,	Herr,	Schwindt,	

&	Pfleiderer,	2014),	 and	whether	neural	plasticity	 following	stroke	can	predict	outcomes	

(Chen	&	Small,	2007;	Kiran	et	al.,	2013;	Meltzer,	Postman-Caucheteux,	McArdle,	&	Braun,	

2009).		

These	 individual-subject	 approaches	 depend	 heavily	 on	 the	 assumption	 that	 fMRI	

data	from	a	single	scanning	session	is	reliable.	The	main	purpose	of	the	current	study	is	to	

test	 this	 assumption	 by	 assessing	 the	 reliability	 of	 single-subject	 fMRI	measured	 during	

speech	 production	 tasks	 across	 scanning	 sessions.	 Although	 several	 prior	 studies	 have	

examined	within-subject	 reliability	 of	 BOLD	 responses	 during	 language	 production	 tasks	

(e.g.	Mayer,	Xu,	Paré-Blagoev,	&	Posse,	2006;	Otzenberger,	Gounot,	Marrer,	Namer,	&	Metz-

Lutz,	 2005;	Wilson,	 Bautista,	 Yen,	 Lauderdale,	 &	 Eriksson,	 2017),	 many	 of	 these	 used	 a	

covert	speech	task	(Brannen	et	al.,	2001;	Harrington,	Buonocore,	&	Farias,	2006;	Maldjian,	

Laurienti,	Driskill,	&	Burdette,	2002;	Mayer	et	al.,	2006;	Otzenberger	et	al.,	2005;	Rutten,	

Ramsey,	van	Rijen,	&	van	Veelen,	2002)	or	have	only	looked	at	reliability	within	language	

regions	of	interest	(ROIs)	like	Broca’s	area	and	temporo-parietal	cortex	(e.g.,	Brannen	et	al.,	

2001;	Harrington	et	al.,	2006;	Mayer	et	al.,	2006;	Otzenberger	et	al.,	2005;	Rau	et	al.,	2007).	

However,	 speech	 requires	 overt	 motor	 actions	 and	 the	 integration	 of	 sensory	 feedback	

supported	 by	 large	 and	 often	 distant	 areas	 of	 the	 brain	 (Guenther,	 2016;	 Sato,	 Vilain,	

Lamalle,	 &	 Grabski,	 2015).	 Thus	 far,	 only	 two	 studies	 (Gorgolewski,	 Storkey,	 Bastin,	

Whittle,	 &	 Pernet,	 2013;	Wilson	 et	 al.,	 2017)	 have	 assessed	 reliability	 in	 larger	 areas	 of	
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cortex	during	overt	word	production,	but	these	suffered	from	low	sample	sizes,	narrow	age	

ranges,	and	limited	reliability	measures.	

The	present	study	assessed	the	reliability	of	speech	activation	 in	healthy	speakers	

across	multiple	 sessions	 and	 speech	 tasks.	We	 used	 the	 Dice	 coefficient	 to	measure	 the	

spatial	overlap	of	active	brain	regions	within	individuals	across	multiple	speech	production	

studies	 Though	 crude,	 it	 is	 an	 easily	 interpretable	 measure	 that	 can	 be	 compared	 to	

numerous	 previous	 studies	 of	 fMRI	 reliability	 (Bennett	 &	 Miller,	 2010).	 For	 a	 more	

thorough	measure	that	also	takes	into	account	the	relative	scale	of	activation	levels	across	

the	 brain,	 we	 calculated	 a	 single-subject	 intraclass	 correlation	 coefficient	 (ICC;	 as	 in	

Raemaekers	et	al.,	2007).	While	each	of	these	provides	an	estimate	of	similarity	that	can	be	

used	 in	 a	 single-subject	 context,	 further	 information	 can	 be	 gleaned	 from	measures	 that	

assess	reliability	in	relation	a	between-subjects	standard.	To	evaluate	the	relative	network-

wide	reliability	of	activations	levels	from	among	the	study	sample,	we	calculated	a	simple	

ratio	 of	 within-subject	 (across-session)	 variance	 compared	 to	 between-subject	 variance.	

We	 also	wanted	 to	 determine	which	 areas	 of	 the	 brain	 are	 not	 only	 reliable,	 but	 highly	

discriminable	 across	 individuals,	 so	we	 computed	 an	 ICC	 for	 each	 vertex	 on	 the	 cortical	

surface	 to	 yield	 a	 map	 of	 reliability	 (as	 in	 Aron,	 Gluck,	 &	 Poldrack,	 2006;	 Caceres,	 Hall,	

Zelaya,	 Williams,	 &	 Mehta,	 2009;	 Freyer	 et	 al.,	 2009;	 Meltzer	 et	 al.,	 2009).	 Finally,	 we	

directly	 tested	whether	 individual	 speakers’	 neural	 activation	 patterns	 during	 speech	 in	

one	study	could	predict	activation	in	the	second	study	using	a	machine	learning	classifier.	

As	our	aim	was	 to	assess	 reliability	of	neural	activity	 specific	 to	 speech	motor	 control	 in	

healthy	individuals	measured	by	fMRI,	we	included	studies	with	stimuli	that	removed	most	

higher	linguistic	processing.		 	
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We	also	investigated	whether	observed	response	reliability	was	associated	with	the	

speech	 task	 or	 with	 intrinsic	 anatomical	 and/or	 resting	 state	 functional	 properties	 of	

individual	brains.	For	example,	an	individual’s	brain	morphometry	is	largely	stable	across	

time,	 which	 would	 make	 it	 simple	 to	 distinguish	 individual	 brains	 using	 functional	

responses	if	they	are	highly	correlated	with	brain	anatomy.	Similarly,	it	is	conceivable	that	

reliability	seen	during	a	speech	task	using	fMRI	is	largely	established	by	unique	patterns	of	

the	 BOLD	 signal	 during	 rest	 (Jann	 et	 al.,	 2015;	 Shehzad	 et	 al.,	 2009)	 or	 consistent	

neurovascular	organization.	To	characterize	whether	within-subject	reliability	was	specific	

to	the	speaking	tasks	or	a	general	property	of	the	BOLD	signal	in	humans,	we	also	assessed	

the	reliability	of	brain	activation	not	associated	with	a	particular	task.	

	

2.	Materials	and	Methods	

2.1	Participants	

We	previously	collected	data	from	seventy-five	individuals	who	participated	in	fMRI	

studies	of	 speech	production	 in	 the	Speech	Lab	at	Boston	University.	Of	 these,	data	 from	

twenty	 individuals	 (mean	 age:	 28.95	 years,	 range:	 19-44,	 10	 female/10	 male)	 who	

participated	 in	 at	 least	 two	 fMRI	 studies	 (see	 Tables	 1	 and	 2)	 were	 used	 to	 evaluate	

reliability	 (median	number	of	days	between	studies:	13.5,	 range:	6	 -	196).	Data	 from	 the	

remaining	 fifty-five	 speakers	 (age	 range:	 18-51)	 from	 these	 and	 five	 other	 speech	

production	studies	(see	Table	2)	were	added	in	the	classifier	analysis	to	train	the	subject	

classifier	and	to	generalize	its	features	to	the	broader	population	of	healthy	speakers	(see	

section	 on	 the	 classifier	 analysis).	 All	 participants	were	 right-handed	 native	 speakers	 of	

American	English	and	reported	normal	or	corrected-to-normal	vision	as	well	as	no	history	
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of	 speech,	 language,	 hearing,	 or	 neurological	 disorders.	 Informed	 consent	 was	 obtained	

from	all	participants,	and	each	study	was	approved	by	the	Boston	University	Institutional	

Review	Board.		

	

2.2.	Speech	Tasks	

All	speech	tasks	included	in	the	present	study	were	overt	productions	of	either	real	

words	 or	 pseudowords	 with	 at	 least	 two	 consecutive	 phonemes.	 These	 characteristics	

ensure	 a	 distribution	 of	 tasks	 used	 in	 neuroimaging	 studies	 of	 speech,	 while	 limiting	

activation	 patterns	 to	 those	 associated	 with	 overt	 speech	 production	 that	 includes	

phonemic	transitions.	A	 list	of	speaking	tasks	and	their	visual	baseline	control	conditions	

from	each	study	is	included	in	Table	1.	

	
Table	1.	 Information	about	 the	 studies	 from	which	activation	maps	were	 included	 in	 the	
present	analyses.	C	=	consonant,	V	=	vowel.	
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Table	2.	Studies	in	which	each	test	subject	participated.	Study	identification	codes	refer	to	
abbreviations	in	the	‘Study’	column	of	Table	1.	
	

2.2.	Image	Acquisition	

MRI	data	were	acquired	at	the	Athinoula	A.	Martinos	Center	for	Biomedical	Imaging	

at	Massachusetts	 General	Hospital	 (APE,	 PBB,	OP,	 CCRS,	 FRS),	 the	Athinoula	A.	Martinos	

imaging	Center	at	the	McGovern	Institute	for	Brain	Research	at	the	Massachusetts	Institute	

of	 Technology	 (CAT),	 and	 the	 fMRI	 Centre	 of	Marseille	 (SylSeq).	 For	 each	 study,	 a	 high-

resolution	structural	 scan	was	acquired	 in	addition	 to	 the	 task	 fMRI	scans.	For	CCRS	and	

FRS,	data	were	acquired	using	a	3	Tesla	Siemens	Trio	Tim	scanner	with	a	32-channel	head	

coil.	For	each	subject,	a	high-resolution	T1-weighted	volume	was	acquired	(MPRAGE,	voxel	

size:	 1	 mm3,	 256	 sagittal	 images,	 TR:	 2530	 ms,	 TE:	 3.44	 ms,	 flip	 angle:	 7°).	 Functional	

gradient	echo	–	echo	planar	imaging	(EPI)	scans	(41	horizontal	slices,	in	plane	resolution:	

3.1	mm,	slice	thickness:	3	mm,	gap:	25%,	TR:	2.5	s,	TA:	2.5	s,	TE:	20	ms)	were	automatically	

Subject	 Studies	
1	 CCRS,	FRS	
2	 CCRS,	FRS	
3	 CCRS,	FRS	
4	 CCRS,	FRS	
5	 CCRS,	FRS	
6	 CCRS,	FRS	
7	 CCRS,	FRS	
8	 CCRS,	FRS	
9	 CCRS,	FRS	
10	 CCRS,	FRS	
11	 CCRS,	FRS	
12	 CCRS,	FRS	
13	 CCRS,	FRS	
14	 CCRS,	FRS	
15	 APE,	PBB	
16	 APE,	PBB	
17	 APE,	PBB	
18	 APE,	PBB	
19	 APE,	PBB	
20	 APE,	PBB	
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registered	 to	 the	 AC-PC	 line	 and	 were	 collected	 continuously.	 See	 Peeva	 et	 al.	 (2010),	

Tourville,	 Reilly,	 &	 Guenther	 (2008),	 Golfinopoulos	 et	 al.,	 (2011),	 Ghosh,	 Tourville,	 &	

Guenther	 (2008),	 and	 Niziolek	 &	 Guenther	 (2013)	 for	 acquisition	 parameters	 for	 the	

Sylseq,	APE,	PBB,	OP,	and	CAT	studies,	respectively	(refer	to	Table	1	for	study	codes).	

2.3.	Preprocessing	and	first-level	analysis	

Preprocessing	was	carried	out	using	SPM12	(http://www.fil.ion.ucl.ac.uk/spm)	and	

the	 CONN	 toolbox	 (Whitfield-Gabrieli	 &	 Nieto-Castanon,	 2012)	 preprocessing	 modules.	

Each	participant’s	 functional	data	were	motion	corrected	 to	 their	mean	 functional	 image,	

and	coregistered	to	their	structural	image.	For	CCRS	and	FRS,	BOLD	responses	were	high-

pass	filtered	with	a	128-second	cutoff	period	and	estimated	at	each	voxel	using	a	general	

linear	model	 (GLM).	 The	 hemodynamic	 response	 function	 (HRF)	 for	 each	 stimulus	 block	

was	modeled	using	a	canonical	HRF	convolved	with	the	trial	duration	from	each	study.	For	

each	 run,	 a	 linear	 regressor	was	 added	 to	 the	model	 to	 remove	 linear	 effects	 of	 time,	 as	

were	six	motion	covariates	and	a	‘constant’	effect	(the	intercept	for	that	run).	See	Peeva	et	

al.	 (2010),	 Tourville,	 Reilly,	 &	 Guenther	 (2008),	 Golfinopoulos	 et	 al.,	 (2011),	 Ghosh,	

Tourville,	&	Guenther	(2008),	and	Niziolek	&	Guenther	(2013)	for	first-level	design	details	

in	the	other	studies.	Regressors	were	added	for	all	studies	to	remove	the	effects	of	volumes	

with	excessive	motion	and	global	signal	change	using	ART	(https://www.nitrc.org/projects	

/artifact_detect/)	with	a	scan-to-scan	motion	threshold	of	0.9mm	and	a	scan-to-scan	signal	

intensity	threshold	of	at	least	5	standard	deviations	above	the	mean.	

In	all	studies	and	subjects,	first-level	model	estimates	for	each	speech	condition	and	

baseline	were	contrasted	at	each	voxel	and	averaged	across	all	study-specific	speech	

conditions	to	obtain	speech	activation	maps	(speech	maps).	To	obtain	maps	of	average	
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BOLD	signal	activity	not	explained	by	task	effects	(null	maps),	estimates	of	the	constant	

effect	of	each	run	were	averaged	for	each	subject	in	each	study.	These	maps	represent	the	

average	BOLD	signal	after	the	effects	of	speech,	baseline,	motion,	and	outliers	have	been	

removed.	Effect	size	maps	were	used	for	subsequent	analyses	rather	than	significance	(p-

value)	maps	because	a)	significance	maps	are	not	as	consistent	for	individual	subjects	as	

they	are	for	group	analyses	(Gross	&	Binder,	2014;	Voyvodic,	2012)	and	b)	previous	

research	has	demonstrated	greater	overlap	in	effect	size	maps	(Wilson	et	al.,	2017).		

T1	 volume	 segmentation	 and	 surface	 reconstruction	 were	 carried	 out	 using	 the	

FreeSurfer	 image	 analysis	 suite	 (freesurfer.net;	 Fischl,	 Sereno,	 &	 Dale,	 1999).	 Activation	

maps	were	then	projected	to	each	individual’s	inflated	structural	surface.	To	align	subject	

data,	 individual	 surfaces	were	 inflated	 to	 a	 sphere	 and	 coregistered	with	 the	 FreeSurfer	

mean	surface	 template	(fsaverage;	see	Figure	1).	Surface	maps	were	 then	smoothed	with	

40	 diffusion	 steps	 (equivalent	 to	 a	 10.8mm	 full-width	 half	maximum	 smoothing	 kernel).	

This	 level	of	 smoothing	has	previously	been	shown	 to	optimize	 reliability	of	 task-related	

BOLD	response	data	in	individuals	(Caceres	et	al.,	2009).	

Maps	of	random	activation	(random	maps)	were	created	by	independently	replacing	

effect	sizes	at	each	vertex	with	a	randomly	chosen	value	from	a	normal	distribution	with	a	

mean	of	0	and	a	standard	deviation	of	1.	These	maps	were	included	to	estimate	the	results	

for	each	analysis	under	the	assumption	that	no	systematic	relationship	exists	between	

maps	from	each	subject	and	session.	
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Figure	1.	Thresholding	pipeline	map	for	each	of	the	reliability	analyses.	After	preprocessing	
and	estimation	of	first-level	condition	effects,	the	speech	and	null	maps	were	calculated	and	
fed	into	the	vertex-wise	ICC	analysis.	A	speech	network	mask	is	applied,	so	that	only	
vertices	inside	this	mask	are	used	for	the	single-subject	ICC	and	variance	ratio	measures.	
Finally,	the	20%	of	vertices	with	the	highest	activation	levels	are	kept	for	the	Dice	
coefficient	and	classifier	analysis.	Prior	to	calculating	reliability	measures,	all	maps	were	
normalized	to	account	for	differences	in	effect	size	scaling	between	subjects	and	studies.	
Outlines	for	regions	of	interest	previously	described	in	Tourville	&	Guenther	(2012)	are	
included	for	reference,	and	appear	only	in	areas	of	cortex	on	which	a	given	analysis	was	
carried	out.		
	

2.4.	Reliability	Measures	

We	used	five	different	measures	to	quantify	individual-subject	activation	reliability	

across	different	sessions	(the	term	session	will	be	used	going	forward	to	refer	to	a	data	

collection	time	points):	the	Dice	coefficient,	a	single-subject	intraclass	correlation	

coefficient,	a	simple	variance	ratio,	a	vertex-wise	intraclass	correlation	coefficient,	and	a	

machine-learning	classifier.	Each	of	these	measures	was	applied	to	both	the	speech	and	null	

maps.	

	

2.4.1.	Single-subject	Spatial	Overlap	

Estimated 
Contrast 
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Network Mask 

20% 
Threshold 

Individual	Map	Unit	Normaliza3on	
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To	 measure	 the	 spatial	 overlap	 of	 supra-threshold	 vertices,	 we	 used	 the	 Dice	

coefficient,	a	metric	widely	used	in	fMRI	reliability	studies	(see	Bennett	&	Miller,	2010	for	a	

review).	It	is	the	ratio	between	the	extent	of	overlap	and	the	average	size	of	the	individual	

maps	and	yields	values	between	0	(no	overlap)	and	1	(complete	overlap).	A	strength	of	this	

measure	 is	 that	 it	 is	generally	 straightforward	 to	 interpret	and	provides	a	 simple	way	 to	

characterize	 the	 reproducibility	of	 thresholded	activation	maps	 (Bennett	&	Miller,	2013).	

On	the	other	hand,	the	Dice	coefficient	is	sensitive	to	how	this	map	is	thresholded	(Duncan,	

Pattamadilok,	 Knierim,	 &	Devlin,	 2009;	 Smith	 et	 al.,	 2005),	 and	 the	 area	 over	which	 the	

calculation	 is	made	 (Gorgolewski	 et	 al.,	 2013),	 where	 lower	 thresholds	 and	whole-brain	

analyses	will	 tend	 to	 increase	overlap.	Despite	 this,	 the	Dice	 coefficient	provides	a	 rough	

estimate	of	neural	response	reliability.	

The	Dice	coefficient	is	formally	given	by:	

!!"#$%!" =
2 ∗ !!"#$%&'
!! + !!

                        !". 1 ,	

where	A1	and	A2	are	defined	as	the	number	of	supra-threshold	vertices	for	individual	

sessions	and	Aoverlap	is	the	total	number	of	vertices	that	exceeds	the	threshold	in	both	

sessions(Bennett	&	Miller,	2010).	Because	we	were	only	interested	in	assessing	reliability	

in	brain	areas	commonly	activated	during	speech	production,	we	masked	each	map	to	only	

analyze	activation	within	a	predefined	speech	production	network	area	covering	about	

35%	of	cortex	(see	Figure	1;	J.A.	Tourville	&	Guenther,	2012).	Since	Dice	coefficients	

operate	on	binary	maps,	activation	maps	were	then	thresholded,	keeping	the	highest	20%	

of	all	surface	vertices	within	the	masked	area	(7%	of	total	cortex;	see	Figure	2	for	examples	

of	these	thresholded	maps).		
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2.4.2.	Single-subject	ICC	

To	assess	the	reliability	of	relative	activation	levels	in	the	speech	network	(as	

opposed	to	merely	measuring	the	overlap	of	suprathreshold	vertices),	we	calculated	a	

single-subject	ICC	(see	Raemaekers	et	al.,	2007)	for	each	subject	that	compares	variance	

between	sessions	to	within-session	(across-vertex)	variance.	Like	the	Dice	coefficient,	the	

ICC	is	relatively	straightforward	to	interpret:	a	value	of	0	means	that	relative	activation	

levels	are	entirely	unreliable,	while	a	value	of	1	signifies	complete	reliability.	Of	the	many	

types	of	ICCs	described	in	the	literature,	we	used	the	ICC(1)	as	defined	in	McGraw	and	

Wong	(1996).	This	type	of	ICC	is	based	on	an	analysis	of	variance	(ANOVA)	of	the	following	

one-way	random	effects	model:	

!!" = ! + !! + !!"                     !". 2 ,	

where	yij	is	the	value	for	the	ith	vertex	and	the	jth	session,	μ	is	the	mean	value	across	all	

vertices	and	session,	bi	is	the	between-vertices	effect	at	vertex	i,	and	sij	is	the	residual,	

representing	the	between-sessions	effect.	ICC(1)	estimates	the	degree	of	absolute	

agreement	across	multiple	repetitions	of	a	set	of	measurements.	Formally,	it	is	an	estimate	

of		

!"" 1 = !!!
!!! + !!!

                        !". 3 ,	

where	!!!	is	the	between-vertex	variance	and	!!!	is	the	between-sessions	variance.	Based	

on	McGraw	and	Wong	(1996),	the	sample	estimate,	!"" 1 ,	can	be	calculated	using	the	

following	formula:	
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!"" 1 = !!! −!!!
!!! + ! − 1 !!!

                     !". 4 ,	

	

where	MSb	is	the	mean	squares	across	vertices,	MSs	is	the	mean	squares	of	the	residuals,	

and	k	is	the	number	of	within-subjects	measurements	(in	this	case,	2	sessions).		

For	this	analysis,	we	used	the	same	speech	production	mask	as	in	the	overlap	

analysis.	No	threshold	was	applied,	however,	since,	unlike	Dice	coefficients,	ICC	does	not	

require	the	maps	to	be	binarized.	This	allows	us	to	characterize	the	reliability	not	only	in	

spatial	location	but	also	in	the	relative	scale	of	the	activation	responses.	To	account	for	any	

gross	scaling	differences	in	effect	sizes	across	contrasts	and	sessions	that	could	affect	the	

this	ICC	(McGraw	&	Wong,	1996),	effect	sizes	were	normalized	within	each	map	

immediately	prior	to	each	analysis	by	dividing	the	value	at	each	vertex	by	the	Euclidian	

norm	of	all	the	vertices	in	the	map.	

	

2.4.3.	Variance	Ratio	

	 To	quantify	how	reliable	the	average	vertex	activation	is	for	individual	subjects	

across	sessions	compared	to	across	subjects,	we	calculated	a	simple	ratio	of	within-subject	

variance	and	between-subject	variance,	averaged	across	all	masked	vertices.	The	within-

subject	variance	measure	for	each	subject	was	calculated	as:		

!"!! =
1
2! !1! − !2! !                  !". 5 ,

!

!!!
	

where	!1! 	and	!2! 	are	the	activation	levels	of	the	ith	vertex	in	each	session,	and	n	is	the	total	

number	of	vertices.	Thus,	!"!! 	was	the	mean	squared	difference	between	session	maps	
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from	each	subject	(similar	to	the	tdiff	measure	in	Gorgolewski	et	al.	(2013)	but	with	effect	

sizes	instead	of	t-statistics).	The	between-subject	variance	was	calculated	as:	

!"!! =
!

! ! − 1 !!" − !!
!

!

!!!

!

!!!
            !". 6 ,	

where	!!"	is	the	mean	activation	level	in	the	ith	vertex	from	the	jth	subject	across	sessions,	

!! is	the	mean	activation	level	of	the	ith	vertex	across	subjects	and	sessions,	k	is	the	number	

of	sessions,	n	is	the	total	number	of	vertices,	and	N	is	the	total	number	of	subjects.	In	other	

words,	!"!!	was	the	squared	difference	between	each	subject’s	mean	map	and	the	grand	

mean	map,	averaged	across	vertices.	Then,	the	variance	ratio	for	each	subject	was	defined	

by:	

!"!!"# =
!"!!
!"!!

                            !". 7 .	

Values	of	!"!!"#	below	1	would	indicate	that	activation	was	relatively	more	consistent	

across	sessions	for	a	given	subject	than	across	subjects.	We	calculated	this	ratio	for	the	

speech,	null,	and	random	maps.	To	capture	only	the	reliability	within	the	speech	network,	

these	measures	were	calculated	on	the	masked	activation	maps	that	were	unit	normalized.		

	

2.4.4.	Vertex-wise	Reliability	

As	in	previous	fMRI	reliability	studies	(Aron	et	al.,	2006;	Caceres	et	al.,	2009;	Freyer	

et	al.,	2009;	Meltzer	et	al.,	2009),	we	used	the	ICC	to	determine	the	vertex-wise	reliability	of	

individuals	across	sessions.	This	analysis	used	the	ICC(1)	as	in	2.4.2,	but	we	defined	MSb	in	

Eq.	4	as	the	mean	squares	between	subjects,	while	MSs	and	k	remained	the	same.	Then,	to	

focus	our	results	on	vertices	that	exhibited	‘good’	or	‘excellent’	reliability,	we	used	Koo	&	
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Li's	(2016)	convention	to	threshold	the	resulting	ICC	map,	keeping	only	those	vertices	with	

a	value	greater	than	or	equal	to	0.75.	We	applied	this	analysis	to	all	cortical	vertices	

(without	a	speech	network	mask)	in	order	to	compare	the	reliability	of	vertices	within	

speech-related	areas	to	those	not	usually	associated	with	speech.	Doing	so	would	reveal	

whether	high	reliability	was	specific	to	the	speech	network	or	whether	other	areas	not	

commonly	active	during	speech	production	also	demonstrate	high	reliability	during	speech	

tasks.	As	with	the	previously	described	analyses,	activation	values	in	each	map	were	unit	

normalized.	

	

2.4.5.	Subject	Classifier	

Machine-learning	tools	have	recently	been	applied	to	MRI	data	to	detect	whether	

subject	groups	(e.g.,	patient	and	control)	are	discriminable	by	their	neural	structure	and	

function	(see	Sundermann	et	al.,	2014	for	a	review).	Here,	we	implemented	a	nearest-

neighbor	subject	classifier	to	assess	both	the	reliability	and	discriminability	of	speech,	null,	

and	random	maps	(separately)	for	individual	subjects.	A	leave-one-out	cross-validation	

procedure	was	employed	to	ensure	maximum	training	data	for	the	classifier.	On	each	

iteration,	one	session	activation	map	from	among	the	20	subjects	who	were	scanned	twice	

was	used	as	the	test	dataset.	A	session	activation	map	from	all	75	subjects	was	then	used	

for	training;	the	classifier	was	always	trained	on	one	activation	map	from	each	subject	to	

avoid	biasing	effects	due	to	uneven	training	samples.	For	the	subjects	that	had	two	maps,	

one	training	map	was	chosen	at	random	(excepting	the	test	dataset).	The	entire	procedure	

was	repeated	for	both	session	activation	maps	from	each	subject	(a	total	of	40	times).	For	

this	analysis,	we	used	maps	that	were	masked,	thresholded,	and	unit	normalized	(see	
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Figure	2	for	examples).	This	meant	that	subjects	were	classified	by	the	spatial	extent	and	

relative	activation	values	of	the	most	active	vertices.	

Due	to	the	high	dimensionality	of	fMRI	activation	data,	we	used	singular-value	

decomposition	(SVD)	to	extract	a	small	number	of	features	that	account	for	the	most	

variance	across	all	subjects	and	sessions	in	the	training	set.	Before	computing	these	

features,	data	maps	were	de-meaned	by	subtracting	the	mean	vertex	value	in	each	subject	

map.	The	training	and	testing	activation	maps	were	then	projected	onto	this	low-

dimensional	space,	and	the	resulting	scores	were	divided	by	the	singular	values	

(characterizing	the	standard	deviation	of	the	original	data	across	each	dimension).	This	

ensured	that	all	components	were	weighted	equally,	independent	of	the	variance	explained	

by	each	component.	The	nearest-neighbor	classifier	then	selected	the	subject	within	the	

training	set	that	had	the	smallest	Euclidean	distance	to	the	test	map.	This	procedure	was	

repeated	for	all	activation	test	maps	in	the	dataset	and	a	percent	accuracy	score	was	

obtained	across	the	whole	dataset.		

The	number	of	features	used	to	train	this	classifier	was	varied	between	1	and	the	

maximum	number	extracted	from	the	SVD	(equal	to	the	total	number	of	subjects	used)	to	

determine	the	power	of	the	classifier	in	both	speech	and	null	conditions.	To	ensure	that	

high	accuracy	was	not	due	to	some	bias	of	the	thresholding	steps	or	type	of	classifier	we	

used,	random	maps	were	also	run	through	the	classifier.	Finally,	confidence	intervals	for	

each	number	of	features	were	estimated	by	repeating	each	analysis	20	times.	
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Figure	2.	A.	Masked	and	thresholded	speech	maps	for	three	subjects	in	both	sessions.	
Outlines	of	regions	of	interest	covering	the	masked	speech	network	previously	described	in	
Tourville	&	Guenther	(2012)	are	included	for	reference.	B.	Masked	and	thresholded	null	
maps	for	the	same	subjects.	In	both	cases,	the	activation	peaks	display	broad	visual	
similarity	between	sessions.	Note:	the	color	scale	indicates	the	rank	of	vertex	activation	
within	each	map,	where	lighter	colors	indicate	higher	activation.	
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2.5.	Group-level	Statistical	Analyses	

To	determine	whether	reliability	during	the	speech	task	was	greater	than	that	of	the	

brain	activity	not	related	to	speech,	we	directly	compared	the	Dice	coefficient	and	single-

subject	ICC	values	from	the	speech	and	null	conditions	across	subjects.	Because	these	

values	were	not	assumed	to	follow	a	normal	distribution,	repeated-measures	Wilcoxon	

Signed-Ranks	tests	were	run	to	test	for	these	differences.	For	the	single-subject	ICC	

analysis,	we	also	compared	individual	ICC	values	with	a	Between-Subjects	ICC	group	

measure.	This	measure	was	calculated	in	the	same	way	as	the	individual	ICC	values,	

substituting	in	subject	activation	maps	averaged	across	sessions	for	individual	session	

maps.	We	also	calculated	the	Spearman	correlations	between	the	speech	and	null	maps	in	

these	measures	to	determine	whether	reliability	in	these	two	conditions	was	related	(i.e.	

whether	high	reliability	in	the	speech	condition	also	meant	high	reliability	in	the	null	

condition).	For	the	variance	ratio	analysis,	we	used	a	Kruskal-Wallace	one-way	ANOVA	to	

compare	speech,	null,	and	randomized	data,	with	post-hoc	comparisons	between	each	pair	

of	conditions	using	Tukey’s	honestly	significant	difference	procedure.	

	

2.6.	Data	and	Code	Sharing	Statement	

All	anonymized	data	and	analysis	code	are	available	upon	reasonable	request	in	

accordance	with	the	requirements	of	the	institute,	the	funding	body,	and	the	institutional	

ethics	board.		

	

3.	Results	

3.1.	Single-subject	Spatial	Overlap	
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The	Dice	coefficient	for	each	subject’s	thresholded	speech	maps	compared	between	

scanning	sessions	can	be	found	in	Figure	3.	On	average,	their	Dice	coefficient	was	0.693	

(SD:	0.089),	demonstrating	approximately	69%	spatial	overlap	of	individual	activation	

maps.	For	individual	null	maps,	the	Dice	coefficient	between	the	activation	peaks	in	

Experiment	1	and	Experiment	2	are	also	shown	in	Figure	3.	On	average,	individuals	have	a	

Dice	coefficient	of	0.726	(SD:	0.110),	indicating	about	73%	spatial	overlap	across	sessions.	

To	understand	how	these	values	would	compare	to	subjects	with	completely	uncorrelated	

activation	maps,	random	maps	yielded	a	Dice	coefficient	of	0.2	(as	expected,	since	only	

voxels	with	the	highest	20%	of	effect	sizes	in	each	map	were	included).	For	the	group	

comparison,	although	speech	scores	were	lower	than	null	scores,	this	comparison	was	not	

significant	(z=-1.31,	p=0.191).	Further,	there	was	no	correlation	between	Dice	coefficients	

for	speech	and	null	maps	(Spearman’s	r	=	0.098,	p	=	0.681).		
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Figure	3.	Comparison	of	single-subject	Dice	coefficient	values	in	the	speech	and	null	
thresholded	activation	maps.	Values	for	individual	subjects	are	shown	as	circles	in	each	
condition,	and	dashed	lines	connect	results	from	individual	subjects	across	conditions.	For	
each	condition:	red	line	=	median;	blue	box	=	interquartile	range	(25th-75th	percentile);	
black	lines	=	boundary	of	values	for	data	points	that	fall	within	1.5	times	the	IQR	away	from	
the	edges	of	the	box;	red	crosses	signify	outliers	–	values	that	fall	outside	the	black	lines.	
n.s.:	non-significant	at	alpha	=	0.05.		
	
	
3.2.	Single-subject	ICC	

The	distribution	of	within-subject	speech	ICC	values	across	sessions	can	be	found	in	

Figure	4.	Individual	subjects	exhibited	poor	(0.196)	to	good	(0.868)	reliability	(Koo	&	Li,	

2016),	with	a	mean	ICC(1)	of	0.721	(SD:	0.172).	As	a	comparison,	the	between-subjects	

correlation,	calculated	on	the	averaged	individual	activation	maps	across	both	sessions,	

was	poor	with	a	value	of	0.475.	A	Wilcoxon	Signed-Ranks	test	shows	that	the	median	of	the	
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within-subject	ICCs	was	significantly	higher	than	the	between-subject	ICC	(z=3.51,	

p<0.001).	For	the	null	condition,	individuals	showed	moderate	(0.622)	to	excellent	(0.976)	

within-subject	reliability,	with	a	mean	ICC(1)	of	0.870	(SD:	0.092).	The	between-subjects	

correlation	for	this	condition	was	poor	at	0.345,	and	the	median	of	the	within-subject	

coefficients	was	significantly	greater	than	this	value	(z=3.92,	p<0.001).	The	within-subject	

ICCs	for	the	null	maps	were	significantly	greater	than	the	ICCs	for	the	speech	maps	(z=3.17,	

p=0.002),	and	random	maps	yielded	an	ICC	of	0	as	expected.	Similar	to	the	Dice	coefficient,	

there	was	no	significant	correlation	between	ICC	values	in	the	speech	and	null	conditions	

(Spearman’s	r	=	0.173,	p	=	0.464).		

	

Figure	4.	Comparison	of	single-subject	ICC	values	in	the	speech	and	null	activation	maps.	
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Values	for	individual	subjects	are	shown	as	circles	in	each	condition,	and	dashed	lines	
connect	results	from	individual	subjects	across	conditions.	Asterisks	in	line	with	each	
condition	show	comparison	between	the	distribution	of	individual	points	and	the	Between-
Subjects	ICC.	Red	crosses	signify	outliers	-	data	points	that	fall	at	least	1.5	times	the	IQR	
away	from	the	edges	of	the	box.	
	

3.3.	Variance	Ratio	

	 The	ratios	between	within-subject	variance	and	between-subject	variance	in	all	

conditions	are	found	in	Figure	5.	A	ratio	of	0.296	(SD:	0.212)	for	the	speech	activation	maps,	

0.096	(SD:	0.083)	for	the	null	maps,	and	1.000	(SD:	0.004)	for	the	randomized	maps	(as	

expected).	There	was	an	overall	significant	effect	of	condition	(χ2	=	47.95,	p	<	0.001),	and	

post-hoc	tests	showed	significant	differences	between	each	pair	of	conditions	(speech	vs.	

null:	p	=	0.009;	speech	vs.	random:	p	<	0.001;	null	vs.	random:	p	<	0.001).	
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Figure	5.	Variance	ratios	compared	across	speech,	null,	and	random	maps.	Values	for	
individual	subjects	are	shown	as	circles	in	each	condition,	and	dashed	lines	connect	results	
from	individual	subjects	across	conditions.	Red	crosses	signify	outliers	-	data	points	that	
fall	at	least	1.5	times	the	IQR	away	from	the	edges	of	the	box.	
	

3.4.	Vertex-wise	Reliability	

The	vertex-wise	ICC	map	for	the	speech	data	thresholded	at	0.75	can	be	found	in	

Figure	6.	While	much	of	cortex	was	found	to	have	ICC	values	greater	than	0.5	(see	

Supplementary	Figures	1	and	2	for	an	unthresholded	ICC	map	of	speech	and	null	data),	the	

highest	within-subject	reliability	(>0.75)	appeared	in	areas	commonly	activated	during	

speech	production	including	on	the	lateral	surface:	bilateral	motor	and	somatosensory	
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cortex,	bilateral	auditory	cortex,	bilateral	inferior	frontal	gyrus	(IFG)	pars	opercularis,	left	

anterior	insula,	and	bilateral	anterior	supramarginal	gyrus;	and	on	the	medial	surface,	

bilateral	supplementary	and	pre-supplementary	motor	areas,	and	bilateral	cingulate	motor	

area.	Some	additional	regions	showed	high	reliability	as	well:	bilateral	IFG	pars	orbitalis,	

right	anterior	insula,	bilateral	middle	temporal	gyrus,	and	bilateral	posterior	cingulate	

cortex.	Thus,	the	speech	production	network	accounts	for	most	of	the	regions	with	high	

within-subject	reliability.	

	

 	
Figure	6.	Vertex-wise	ICC	values	for	the	speech	activation	maps	thresholded	at	0.75.	
Regions	of	interest	previously	described	in	Tourville	&	Guenther	(2012)	are	included	for	
reference.	
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3.5.	Subject	Classifier	

Accuracy	of	the	subject	classifier	for	the	speech	and	null	maps	is	displayed	in	Figure	

7.	For	the	speech	maps,	classifier	accuracy	for	untrained	test	data	approached	97%	when	

75	features	were	used.	Similarly,	the	accuracy	of	this	classification	method	reached	95%	for	

the	null	activation	maps	when	all	principal	components	were	included.	In	addition,	both	

analyses	surpassed	75%	accuracy	with	as	few	as	23	features.	Thus,	subjects	were	highly	

distinct	in	that	they	could	be	discriminated	using	a	relatively	small	number	of	features.		

	
Figure	7.	Subject	classifier	accuracy	for	speech,	null,	and	random	data	across	75	dimensions.	
Solid	and	dashed	lines	show	the	mean	accuracy	and	95%	confidence	intervals,	respectively,	
across	20	repetitions	of	the	analysis.	
	

To	assess	whether	these	results	were	better	than	chance,	we	substituted	random	

maps	for	each	subject’s	speech	surface	maps	(while	maintaining	the	number	of	maps	that	
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each	subject	has).	These	results	show	that	random	data	performed	near	1%,	as	expected	

given	75	potential	classes.	

	

4.	Discussion	

Characterizing	individual	reliability	in	speech	activation	is	an	important	step	toward	

validating	single-subject	speech	research	in	persons	with	and	without	speech	disorders.	In	

this	study,	we	used	five	methods	to	assess	reliability	and	discriminability	in	a	group	of	20	

healthy	speakers.	

	

4.1.	Activation	Reliability	

The	Dice	coefficient	and	single-subject	ICC	results	in	this	study	demonstrated	that	

both	the	extent	and	degree	of	activation	patterns	during	speech	production	in	most	

individuals	showed	moderate	to	high	amounts	of	reliability.	The	Dice	values	found	in	this	

study	were	generally	larger	than	those	found	in	previous	overt	expressive	language	studies	

(Gorgolewski	et	al.,	2013;	Wilson	et	al.,	2017).	There	are	several	possibilities	as	to	why	this	

was	the	case.	First,	as	previously	discussed,	the	Dice	coefficient	is	inherently	tied	to	the	

thresholding	scheme	used.	Gorgolewski	et	al.	(2013)	used	statistically	thresholded	maps	

(although	with	an	advanced	thresholding	procedure;	Gorgolewski,	Storkey,	Bastin,	&	

Pernet,	2012)	as	opposed	to	effect	size	maps	with	a	percent	threshold;	statistically	

thresholded	maps	can	be	strongly	affected	by	multiple	factors	including	noise	from	head	

motion	and	total	scan	time	(Bennett	&	Miller,	2010;	Gross	&	Binder,	2014).	Indeed,	scan	

time	in	Gorgolewski	et	al.	(2013)	was	less	than	8	minutes	(36	speech	trials	and	36	baseline)	

compared	to	an	average	of	38	(range:	27	–	65)	minutes	in	the	present	analysis	(mean	of	
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114	speech	trials,	range:	72	–	240;	mean	of	28	baseline	trials,	range	18	–	64),	likely	leading	

to	differences	in	power	as	shown	previously	(Friedman	et	al.,	2008).	Second,	even	at	

similar	levels	of	thresholding	(Wilson	et	al.,	2017),	reducing	the	region	of	interest	to	pre-

defined	cortical	speech	areas	in	the	present	study	eliminates	extraneous	regions	that	show	

session-specific	activations	not	related	to	speech	per	se.	In	Wilson	et	al.	(2017),	Dice	values	

in	predefined	language	regions	were	notably	lower	than	when	they	looked	at	all	

supratentorial	voxels,	suggesting	that	higher-level	language	processing	may	lead	to	more	

variable	activation,	have	lower	signal	change,	and/or	contain	more	noise.	Gorgolewski	et	al.	

(2013)	reported	the	opposite	effect,	although	Dice	values	for	this	task	were	only	specified	

for	auditory	cortices.	Third,	Wilson	et	al.	(2017)	did	not	use	a	control	condition	because	

their	goal	was	to	test	language-mapping	paradigms	for	individuals	with	aphasia	who	may	

have	task-switching	difficulties.	This	may	have	led	to	activation	variability	in	brain	areas	

not	directly	related	to	the	task.	Finally,	the	older	age	cohorts	used	in	Gorgolewski	et	al.	

(2013;	age	range:	50-58	years)	and	Wilson	et	al.	(2017;	age	range:	70-76	years)	may	have	

had	reduced	reliability	due	to	various	factors	that	decrease	signal-to-noise	ratio	in	the	

BOLD	signal	in	older	adults	(D’Esposito,	Deouell,	&	Gazzaley,	2003)	.		

The	single-subject	ICC	measure	we	employed	in	this	study	measured	the	degree	of	

reliability	between	two	cortical	activation	maps.	While	it	relied	only	on	within-subject	

sources	of	variance,	it	was	highly	correlated	with	the	Dice	coefficient	(speech:	Spearman’s	r	

=	0.902,	p	<	0.001;	null:	r	=	0.949,	p	<	0.001)	thus	demonstrating	its	validity	as	a	measure	of	

test-retest	reliability.	One	major	difference	that	appeared	between	this	measure	and	the	

Dice	coefficient	was	that	the	null	condition	yielded	higher	ICC	values	than	the	speech	maps	

with	some	subjects	attaining	near	perfect	correspondence.	This	seems	to	demonstrate	that	
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once	all	task	and	motion	parameters	are	accounted	for,	the	underlying	BOLD	signal	

maintains	high	reliability	for	individuals	across	scanning	sessions.	Nonetheless,	both	

speech	and	null	maps	generally	demonstrated	greater	within-subject	reliability	than	a	

matched	between-subjects	measure.		

The	variance	ratio	we	calculated	was	a	simple	comparison	of	within-subject	

variance	to	between-subject	variance	where	values	below	1	demonstrate	greater	reliability	

within-subjects.	Because	the	within-subject	variance	component	is	the	same	as	in	the	

single-subject	ICC	measure	above	and	affects	the	outcome	in	inversely	proportional	ways,	

the	variance	ratio	largely	mirrored	those	results.	There	were,	however,	two	participants	

(Subject	6	and	Subject	7)	whose	ICC	scores	for	the	speech	maps	were	less	than	the	

between-subjects	score	and	whose	variance	ratio	scores	approached	1.	In	each	of	these	

cases,	the	median	beta	value	across	vertices	for	one	of	the	two	scanning	sessions	(the	CCRS	

study	session)	was	more	negative	for	these	two	subjects	than	for	any	other	subjects.	This	

might	imply	that	these	subjects	had	less	power	for	the	speech	contrasts	in	CCRS.	Although	

they	had	similar	numbers	of	speech	trials	as	the	other	subjects,	they	were	among	the	

subjects	with	the	highest	scan-to-scan	motion	and	global	signal	change	for	this	study.	They	

also	happened	to	have	the	two	highest	scan-to-scan	global	signal	change	values	for	the	

other	study	session	(FRS),	though	motion	was	more	average	for	this	study.	Changes	in	

global	signal	are	often	artifacts	associated	with	subject	motion,	although	other	

physiological	sources	contribute	to	this	measure	(see	Liu,	Nalci,	&	Falahpour,	2017).	

However,	their	motion	was	not	excessive	for	typical	neuroimaging	sessions	and	other	

subjects	with	similar	amounts	of	scan-to-scan	motion	and	signal	change	maintained	among	

the	highest	ICC	values.	Another	potential	reason	that	these	two	subjects	had	much	lower	
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ICC	scores	is	methodological:	since	the	ICC(1)	measures	absolute	agreement	rather	than	

consistency	(McGraw	&	Wong,	1996),	it	does	not	account	for	global	differences	in	effect	

sizes	across	studies.	We	attempted	to	correct	for	this	by	unit-normalizing	vertex	values	for	

each	subject	in	each	study,	but	this	is	not	a	perfect	method.	Indeed,	the	absolute	difference	

in	the	median	vertex	values	from	each	study	was	much	greater	for	these	subjects.	Thus,	

both	data	quality	and	methodological	choices	likely	drove	down	their	reliability	scores.	

In	sum,	we	found	high	within-subject	reliability	of	activation	in	the	speech	network,	

except	in	two	cases	where	motion	may	have	negatively	impacted	the	signal-to-noise	ratio.		

	

4.2.	Activation	Discriminability	

	 The	other	two	measures	we	used	assess	reliability	by	comparing	response	

variability	within	subjects	(across	sessions)	to	variability	between	subjects.	These	

measures	characterize	individual	reliability	relative	to	the	sample,	but	additionally	assess	

how	discriminable	individuals	are	from	one	another.	The	vertex-wise	speech	ICC	map	

paralleled	previous	studies	that	calculated	this	metric	–	many	of	the	areas	where	ICC	values	

were	high	corresponded	to	areas	commonly	activated	during	the	task	(Aron	et	al.,	2006;	

Caceres	et	al.,	2009;	Freyer	et	al.,	2009;	Meltzer	et	al.,	2009).	Thus,	for	speech	production,	

speech-related	areas	in	somato-motor	cortex,	medial	and	lateral	pre-motor	cortex	and	

extended	areas	of	auditory	cortex	were	consistent	for	individual	subjects	across	scanning	

sessions.	In	addition,	even	areas	of	cortex	inconsistently	active	during	speech	production	

like	IFG	pars	orbitalis,	middle	temporal	gyrus	(MTG),	and	posterior	cingulate	gyrus	(PCG)	

showed	high	reliability.	In	a	review	of	fMRI	studies	of	speech	and	language	processing	

(Price,	2012),	both	IFG	pars	orbitalis	and	MTG	were	associated	with	semantic	processing,	
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while	MTG	was	also	associated	with	translating	orthography	into	sound.	This	second	

explanation	would	be	relevant	because	all	tasks	involve	reading	aloud,	but	it	is	less	clear	

why	semantic	processing	centers	would	be	highly	reliable	for	pseudoword	speaking	tasks.	

The	PCG	is	part	of	the	default	mode	network	and	appears	to	help	modulate	attentional	

control	(Leech	&	Sharp,	2014).	Thus	individuals	may	consistently	activate	or	deactivate	this	

region	depending	on	their	level	of	attention	during	speaking	tasks.	Previous	studies	of	

higher-level	cognitive	tasks	have	found	reliable	activation	outside	of	areas	commonly	

associated	with	the	task,	but	this	usually	occurred	in	sensory	and	motor	regions	needed	to	

complete	the	task	(Aron	et	al.,	2006;	Freyer	et	al.,	2009).	Caceres	et	al.	(2009)	suggested	

that	areas	with	high	reliability	but	low	significance	values	have	time-series	that	are	reliable	

but	do	not	fit	the	task/HRF	model,	and	demonstrated	this	pattern	for	half	of	their	

participants	in	one	ROI.	This	may	also	be	the	case	in	the	present	study.		

It	may	be	worth	pointing	out	that	bilateral	primary	auditory	cortex	appears	less	

reliable	by	this	vertex-wise	ICC	measure.	While	it	is	counter-intuitive	that	a	low-level	

sensory	region	of	cortex	would	be	least	reliable,	this	may	be	an	example	of	one	of	the	

drawbacks	of	this	type	of	measure	–	since	between-subject	variance	is	an	important	

component	of	this	calculation,	areas	that	are	more	reliable	across	speakers	would	tend	to	

have	lower	ICC	values,	given	constant	within-subject	reliability.	Thus	it	may	be	more	

accurate	to	say	that	vertices	with	a	high	ICC	value	in	this	map	are	the	most	discriminable	

areas	among	a	group	of	subjects.	

	 The	final	and	most	direct	measure	of	discriminability	was	the	classifier	analysis.	

This	type	of	analysis	has	not	previously	been	applied	for	the	purpose	of	determining	the	

reliability	of	an	individual’s	neural	activation	patterns,	but	it	has	the	added	advantage	of	
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characterizing	the	distinctiveness	of	an	individual’s	brain	activation	maps.	From	the	near	

perfect	accuracy	in	identifying	a	subject	correctly	from	among	75	potential	classes	given	1	

training	sample,	it	is	clear	that	individuals	are	not	only	quite	reliable	but	also	have	distinct	

activation	patterns	during	speech	production	–	a	neural	“fingerprint”.	In	fact,	the	only	

subject	that	was	mis-classified	using	the	full	complement	of	extracted	features	is	Subject	7,	

who	also	had	the	lowest	within-subject	ICC	value	and	Dice	coefficient,	thus	demonstrating	

consistency	across	measures.	Even	with	only	23	features,	accuracy	reaches	75%.	The	null	

maps	also	demonstrated	clear	distinctness	based	on	the	accuracy	of	the	same	classifier	

trained	null	data	and	show	that	the	same	amount	of	accuracy	as	the	speech	maps	can	be	

obtained	using	the	reduced	feature	set.	It	is	also	important	to	mention	that	the	

classification	method	used	in	the	current	study	is	among	the	simplest	of	modern	machine	

learning	options,	and	that	using	only	one	training	map	per	subject	severely	reduces	the	

power	of	the	method.	Nonetheless,	classification	accuracy	was	very	high,	and		

we	interpret	the	current	result	as	a	lower	bound	of	discriminability	of	speech	activation	

maps	among	individuals	that	might	be	improved	with	more	sophisticated	machine	learning	

algorithms.	

	

4.3.	Speech	vs.	Null	Reliability		

Our	main	goal	for	including	maps	of	BOLD	signal	not	associated	with	a	particular	

task	was	to	assess	whether	reliability	found	for	speech	activation	could	be	explained	by	

differences	in	resting	BOLD	patterns	or	underlying	neurovasculature.	Indeed,	we	found	

that	the	null	maps	showed	similar	reliability	and	discriminability	than	speech	activation	

maps.	This	may	indicate	that	the	null	measure	corresponds	to	underlying	anatomical	or	
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physiological	features	for	individuals	that	are	reliable	(Jann	et	al.,	2015;	Shehzad	et	al.,	

2009).	However	the	lack	of	a	correlation	between	speech	and	null	maps	suggests	that	

unique	activation	patterns	during	the	speech	task	are	not	dependent	on	underlying	

individual	BOLD	patterns.	

	

4.4.	Reliability	for	Speech	Production	across	Tasks	

	 One	benefit	of	the	results	herein	is	that	the	speech	tasks	used	to	assess	reliability,	

despite	their	similarity,	differed	across	sessions.	This	has	two	important	consequences	for	

interpretation	of	the	results.	First,	the	present	results	do	not	account	for	activation	

variance	attributable	to	inter-task	reliability.	There	may	be	differences	in	activation	

between	the	studies	simply	because	the	speech	stimuli	were	different.	Thus	they	are	

potentially	conservative	compared	to	the	results	for	a	consistent	speaking	task	as	well	as		

other	published	fMRI	reliability	literature.	Second,	this	setup	means	that	the	reliability	and	

discriminability	discussed	applies	to	the	speech	production	network	rather	than	a	

particular	task.	Therefore,	the	results	are	more	generalizable	to	other	speech	production	

tasks	(at	least	of	the	same	characteristics	–	reading	orthographic	representations	of	mono	

and	bisyllabic	words	and	pseudowords).	This	is	important	for	assessing	the	validity	of	

future	work	mapping	individual	speech	networks	derived	from	speaking	tasks	that	depart	

from	those	in	the	present	study.		

	

5.	Conclusion	

	 Based	on	the	results	of	five	measures	of	reliability	and	discriminability,	we	conclude	

that	speech	activation	maps	for	most	neurologically-healthy	speakers	are	generally	highly	
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reliable,	providing	justification	for	single-subject	neuroimaging	research	for	speech	

production.	Exceptions	were	found	for	subjects	who	exhibited	higher	levels	of	scan-to-scan	

motion	and	signal	change,	reinforcing	the	widely-held	understanding	that	minimizing	

motion	is	crucial	for	trusting	neuroimaging	data.		Future	work	analyzing	activation	

patterns	from	patients	with	neurogenic	speech	disorders	will	be	needed	to	determine	

whether	these	individuals	are	similarly	reliable	(though	extant	work	examining	reliability	

in	patients	with	stroke	(Kimberley,	Khandekar,	&	Borich,	2008)	and	mild	cognitive	

impairment	(Zanto,	Pa,	&	Gazzaley,	2014)	are	promising),	and	ultimately	whether	it	is	

feasible	to	map	the	speech	production	network	in	individuals	and	track	changes	in	these	

patterns	across	time.	This	future	research	would	be	an	important	contribution	to	the	

growing	body	of	literature	characterizing	disease	progression	and	neurorehabilitation	

(Herbet,	Maheu,	Costi,	Lafargue,	&	Duffau,	2016;	Reinkensmeyer	et	al.,	2016),	especially	for	

people	with	speech	disorders.	
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