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Abstract

In this work we present Publication Access Through Tiered Interaction & Exploration

(PATTIE) – an information foraging, sense-making, and exploratory spatial-semantic

information retrieval (IR) system (http://pattie.unc.edu/plos). Non-spatial,

spatial IR systems, and some recent studies focused on their principal functions are

discussed and compared. To interactively work through a use-case from the biomedical

domain, instructions are provided for readers to conduct exploratory searches directly

on the PLOS archive based on the software embedded in the online version of this paper

(http://vzlib.unc.edu/software/). To carefully evaluate some of the critical

parameters of the PATTIE algorithm, and the core functions of the implemented

system, a set of experiments were conducted. Along with details on the experimental

methods and their rationale, key findings from the experiments are analyzed and

presented. Finally, with an eye toward the future of software-embedded scientific papers,

their potential benefits for supporting direct engagement with scientific content,

replication, and validation are discussed.

Introduction 1

Information retrieval (IR) systems are essential tools for finding relevant documents. 2

Current IR systems dominantly adopt the ranking-based retrieval model, which returns 3

a list of documents ranked in descending order of predicted relevance for a user query 4

(i.e., search keywords). Such an architecture and information access point rely on the 5

user having and understanding on how and what to search for. The evidence base 6

suggests that this is often an incorrect assumption to make [1, 2]. Despite a user 7

overcoming these assumptions by searching appropriately, a Search Engine Result Page 8

(SERP) can retrieve an extraordinarily large set of documents which makes it difficult 9

to locate and comprehend all the relevant information. This is especially true for the 10

biomedical domain given the ever-growing body of the literature; a position that IR 11

researchers have been discussing for decades now. 12

For instance, consider a scenario where a researcher unfamiliar with the PLOS 13

digital archive is curious to understand the topical structure. Without issuing a query, a 14
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dynamic spatial-semantic table-of-contents can be generated as shown in Fig 1. The 15

PATTIE Map presents the most recently published topical content within the PLOS 16

digital archive. We will demonstrate the access point, mechanism of navigation, and 17

information acquisition in the System design and implementation details and Discussion 18

sections. 19

Fig 1. A screenshot of PLOS digital archive PATTIE Map, no query issued.

Alternative modes of access or metaphors for representing and presenting 20

information spaces in IR that incorporate spatial-semantic context may prove beneficial, 21

and have been discussed with works on exploratory search, sense-making, information 22

foraging [3–9], and visualization of concept spaces [10]. Moreover, when we consider 23

individual differences in verbal and spatial reasoning abilities, direct manipulation of 24

sequential, 2D, and 3D interfaces, retrieval performance, and user satisfaction, it 25

becomes apparent that the sequential list of relevant documents for a state-of-the-art IR 26

system is no longer the state-of-the-art in cases where users are not engaged in look-up 27

or transactional retrieval [11–22]. Such kind of information-seeking behavior, and 28

systems to support it, do not require a specific query and typically have some 29

mechanism to substantiate user intent by, for example, providing spatially-encoded 30

keywords, categories, or clusters. Therefore, users can interact with what they believe to 31

be pertinent instead of formulating a potentially ambiguous or improperly scoped query 32

that results in a filter bubble. For an in-depth review on work related to these 33

mechanisms and the differences between information visualization and information 34

navigation enabled by visualization, please see [23]. 35

Researchers intimately understand the rapidly accelerating growth and diversity of 36
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scholarly content, and according to Heap’s Law [24], as more research text is gathered, 37

the discovery of the full vocabulary becomes insurmountable and thus proper query 38

formulation becomes somewhat of a linguistical arm’s race as we will see in a use-case 39

involving a researcher developing an outline for a review article in the Discussion and 40

Use-Case section. 41

This paper tackles these problems and introduces a dynamic cluster-based browsing 42

system adopting the Scatter/Gather paradigm [25–27], named Publication Access 43

Through Tiered Interaction & Exploration (PATTIE). Scatter/Gather was developed 44

with information foraging theory in mind [8,9]. The theory sought to mathematically 45

formalize the trade-offs between information acquisition and cognitive load. Thus, by 46

topically organizing information, cognitive load could theoretically be reduced while 47

maximizing information gain. 48

With/without an initial query, PATTIE dynamically generates topical clusters on 49

the fly and visualizes the results for intuitive navigation via a spatial-semantic 50

table-of-contents metaphor for scholarly digital archives. In the remaining sections, we 51

will describe system architecture, evaluation of the unsupervised machine learning 52

pipeline, and a use-case demonstrating the power of PATTIE. 53

System design and implementation details 54

Our dynamic cluster-based document browsing system, PATTIE, for the PLOS archive 55

was built on our prototype [23]. The main architecture is retained but the interface was 56

given a few updates for better presentation and usability, including a function to 57

maintain user’s selection of clusters throughout a session, which is critical in terms of 58

accessibility and for users who may have low spatial memory [12,14,28]. For 59

completeness, the following describes not only the differences from the prototype but 60

the complete details of design and implementation of PATTIE. 61

Architecture 62

Fig 2 depicts PATTIE’s design. The server side system is implemented by the Flask 63

web framework [29]. The document collection (PLOS) is directly served through PLOS 64

API [30], which eliminates the need to update the database at the server side and 65
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assures that the users can explore the most updated data. The client side is built on a 66

JavaScript visualization library D3.js [31]. Ajax is implemented on the client side to 67

asynchronously communicate with the server while content is dynamically explored, 68

maintaining user work space without reloading the web page. 69

Python (Flask) JavaScript (D3)

Client

scatter

gather

 query (optional)

Server

scatter

gather

topical

clusters

retrieve

cluster

recluster

PLOS 
archive

API

Fig 2. Design of PATTIE architecture.

Server-side: Data Retrieval and Initial Clustering 70

As with the standard of the modern search systems, PATTIE presents a text box for a 71

user to type in a query (Fig 3) although it can also initiate a process of information 72

exploration without a query. When a search terms are provided, PATTIE retrieves N 73

latest articles that map to the search terms. in any textual fields including titles, 74

abstracts, and body texts. When no search terms are provided, PATTIE retrieves N 75

latest articles indexed in the PLOS archive in order to provide the user a mechanism for 76

archive sense-making. N is fixed to a constant in order to dynamically cluster archival 77

content in constant time which facilitates real-time processing. 78

To some extent, this is similar to the idea of mini-batch k-means [32] which has been 79

observed to perform significantly faster than k-means while still converging on a similar 80

clustering solution. Instead of complete randomness, however, PATTIE focuses on index 81

recency as biomedical researchers are generally concerned with emerging concepts in 82

their field. Limiting the number of documents by N may have an impact on the the 83

resulting cluster structure and its quality. However, we assume that the effect is limited 84

when N is set to a sufficiently large value. We will empirically investigate the validity of 85

this assumption in the Discussion section. 86

As for query language, PATTIE accepts a wide range of query syntax understood by 87
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Fig 3. Screenshot of the PATTIE search page.

the underlying PLOS API. Currently, the system retrieves concatenated titles and 88

abstracts, but other indexed fields are available and we plan to study their use in future 89

work. 90

After mapping the query to the archive and retrieving a document set, PATTIE 91

executes a unsupervised machine learning pipeline that is in sequential order below. 92

The pipeline was evaluated and it was concluded that PATTIE can partition 93

information spaces into coherent clusters [33]. For a more detailed description of the 94

pipeline, please see [23]. 95

1. Keyword discovery: The system first analyzes prominent terms or features for 96

document representation via Vector Space Modeling (VSM) and statistical term 97

weighting to generate a matrix M . 98

2. Latent semantic analysis (LSA) [34]: The previous keyword discovery step 99

decreases the vocabulary size and thus the dimensionality of document vectors. In 100

order to further reduce the dimensionality and to discover latent associations 101

among keywords, LSA is applied to M . 102

3. Clustering: logical partitions are predicted by the k-means++ algorithm [32]. 103

Then, PATTIE generates a set of keywords to describe each cluster for the next 104

visualization stage as follows. First, the centroid of each cluster in the LSA-reduced 105

space is transformed back to the original term-document space, which can be thought of 106
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as a pseudo document vector. From the vector, a fixed number of keywords with values 107

meeting the threshold are selected as cluster labels. 108

In addition, the centroids in the LSA-reduced space are transformed to 2D 109

coordinate space by t-Distributed Stochastic Neighbor Embedding (t-SNE) [35] for 110

presentation. Only the cluster membership, cluster descriptors (keyword set), 2D 111

coordinates of the clusters, and basic bibliographic information (author names, article 112

titles, publication dates, and journal titles) of the search results are sent to the client to 113

keep the data traffic minimal, and other information, such as the term-document matrix 114

M , is retained as session data on the server. 115

Client-side: Visualization 116

To create an intuitive, user-friendly interface, we rely on Shneiderman’s mantra [36] for 117

visual information seeking—overview first, zoom and filter, then details on 118

demand—while designing the PATTIE interface. According to the mantra, the PATTIE 119

system provides overviews of clusters first and shows details according to users’ interests. 120

There are two panels and buttons for Scatter/Gather (Fig 4) on the interface. The left 121

panel (“PATTIE Map”) displays the partitioned information space and the right panel 122

(“document panel”) displays the corresponding documents. Color encoding is used for 123

clusters as well as the document panel to provide a cue for more efficient navigation. 124

Fig 4. PATTIE Map with selected cluster within the PLOS digital archive, no query
issued.

For effective Scatter/Gather visualization, it is crucial how to place and present 125
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clusters on the PATTIE Map, as it can have a huge influence on how users perceive and 126

interpret clusters. Thus, we locate the cluster centroids based on virtual coordinates in 127

semantic space constructed by t-SNE, which reflects their relative semantic 128

relationships. In other words, clusters that are closer to each other are semantically 129

more similar than clusters that are farther apart. In addition, in order to expose the 130

sense of spatial encoding to users, clusters are first placed in the center of the PATTIE 131

Map and immediately “scattered” to their coordinates. 132

In the PATTIE Map, a circle represents a cluster, and the area of the cluster is 133

proportional to the number of documents that belong to the cluster. The color of a 134

cluster also indicates the virtual semantic coordinates of the cluster. Clusters are 135

initially shown in gray but their color changes to the one determined by the coordinates 136

of their centroid when clicked. Specifically, we used the HSV (hue, saturation, and 137

value) color model and considered the center of the PATTIE Map as the origin. Hue 138

and saturation are determined by the angle and the `2-norm of the vector from the 139

origin to the centroid of a corresponding cluster, whereas value is fixed to a constant. 140

Five representative keywords (cluster descriptors) are presented within each cluster 141

along with the number of documents belonging to that cluster in parentheses. When a 142

user hovers the mouse pointer over a cluster, 15 descriptors including the five are shown 143

as a tooltip to help him/her assess the relevance of the cluster. Also, the corresponding 144

bibliographies with a hyperlink to the original article registered in the PLOS digital 145

archive temporarily appear in the document panel as a user hovers their mouse over the 146

cluster. If a user clicks a cluster(s) of interest (Gather), the bibliographies remain in the 147

document panel until the cluster is deselected. If a user selects multiple clusters, the 148

cluster tabs located at the top of the document panel help the user navigate the 149

documents belonging to each cluster. The cluster on the PATTIE Map and its 150

corresponding tab in the document panel has the same color to facilitate intuitive 151

navigation. 152

After a user decides which clusters to choose for the re-clustering using the above 153

features, he/she can start the re-clustering by clicking the “Scatter” button. The chosen 154

clusters are first moved to the center of the PATTIE Map shown as an animation, 155

computationally re-clustered on the server-side as described in the next section, and 156

then scattered to the coordinates of new clusters. This animation should be able to help 157

October 14, 2019 8/22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2019. ; https://doi.org/10.1101/807404doi: bioRxiv preprint 

https://doi.org/10.1101/807404
http://creativecommons.org/licenses/by/4.0/


users conceptualize the Scatter/Gather process, although they are new to the idea. 158

Users can iterate and/or restart this Scatter/Gather process until their information 159

needs are satisfied. 160

The user can also choose to go back to the previous state by clicking the “Back” 161

button. When clicked, the scattered clusters move back to the center of the PATTIE 162

Map and then the previously presented clusters are scattered again, where the 163

previously chosen clusters are kept selected and are shown in the document panel. In 164

other words, their previous “mental map” is conserved so that the user can focus on 165

exploration and comprehension of the information space instead of re-selecting clusters. 166

Server-side: Re-clustering 167

After PATTIE receives a set of selected clusters, the system retrieves the IDs of 168

documents belonging to the clusters from the session data stored on the server and 169

carries out the unsupervised machine learning pipeline previously described above. 170

These processes may appear redundant and unnecessary. However, we must emphasize 171

that PATTIE relies not on an information visualization per se, but an information 172

visualization that enables iterative navigation. We believe such a mechanism affords 173

user(s) to comprehend research concepts, logical connections, relevance, and scope, as 174

the user(s) narrows down toward a latent information target. 175

This mechanism is crucial for PATTIE to identify a new set of keywords, which 176

would be more narrowly focused from the previously identified keywords and, 177

consequently, yielding more scoped sub-clusters. Sub-cluster information is then 178

computed via the pipeline and sent to the client side for visualization and iterative 179

navigation. 180

Discussion 181

Sampling-based Clustering 182

For cluster-based document browsing, such as Scatter/Gather, it is vital that clustering 183

is completed in real time irrespective of the size of the archive or search result. There 184

are existing approaches running in a constant time [26,37], which however rely on a 185
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pre-computed, static hierarchy of categories. Dynamicity is the core of PATTIE and the 186

result of re-clustering should dynamically change upon users’ selection of clusters or the 187

underlying document collection. That is, as the PLOS archive evolves, so too should the 188

PATTIE Map, effectively providing users an evolving spatial-semantic table-of-content 189

metaphor for the life of the archive. 190

We proposed a simple strategy to retrieve only the N latest articles for a given query 191

such that clustering completes approximately in a constant time for fixed N [23]. The 192

relation between the size of N and the quality of clusters was informally studied in 193

order to find the value of N which could produce as good clusters as those produced 194

from the entire search results. Here, we repeated the same experiment to reexamine the 195

relation more rigorously with significance tests. Also, we compared standard k-means 196

and mini-batch k-means to examine if further speed-up could be achieved. For these 197

experiments, we use the same data set and an evaluation criterion (Adjusted Mutual 198

Information (AMI) [38]) as the previous work [23]. 199

Results 200

Fig 5 displays the relationship between the number of sampled (latest) documents N 201

and cluster quality, while N was gradually increased from 200 to 12,530. For each N , 202

we repeated clustering for 20 times and plotted the mean AMI with the standard 203

deviation as an error bar. In the figure, “Title”, “Abstract”, and “Full text” indicate the 204

results produced by titles, titles and abstracts, and titles and abstracts and body text, 205

respectively. The observations are similar to what was reported before [23]; AMI 206

sharply improved as the sample size increased up to 2,000 for Title and Abstract and 207

then stabilized while full-text data was not as effective. 208

The result indicates that more information does not necessarily translate to greater 209

performance in clustering documents potentially due to more irrelevant words brought 210

in with full text. A difference from our previous work [23] is that using titles only did 211

not yield as good clusters as using abstracts. In fact, the difference between Abstract 212

and Title was found statistically significant at the significance level of 0.01 for N ≥ 500 213

by Welch’s unequal variances t-test. 214

We also examined the processing time for Title, Abstract, and Full text in Fig 6, 215

which was measured as the total time required for constructing a tf-idf matrix, applying 216
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Fig 5. Cluster quality against increasing dataset size and type of data.

VCGS and SVD, and clustering excluding the time to load data into memory. Using 217

Full text has a clear disadvantage in processing time as well as cluster quality. Based on 218

these observations, our current system retrieves 500 latest articles (i.e., N = 500) and 219

uses titles and abstracts for discovering topical clusters. 220
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Fig 6. Relation between the number of documents and processing time.

Here, it should be noted that the above experiment only examined cluster quality, 221

not the accessibility of information. That is, if relevant articles were not among the 222
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latest N articles, one can never find the relevant articles. Also, while we chose to 223

retrieve N latest articles, one could use N random articles instead, which may work 224

better depending on user information need. To avoid such issues, N should be ideally 225

equal to the size of the document collection or search result, which is however difficult 226

to process in real time depending on the data size as observed in Fig 6. N is currently 227

limited to a manageable size balancing cluster quality and processing time, but we plan 228

to increase it by employing more efficient data structure and distributed processing in 229

future work. 230

Comparison with mini-batch k-means 231

Mini-batch k-means [32] uses a mini-batch optimization for k-means clustering, which 232

has been reported to greatly reduce computation time but still achieve a solution close 233

to the standard k-means algorithm. The algorithm first takes b random samples as a 234

mini-batch and each sample in the mini-batch is assigned with the nearest centroid and 235

then each centroid is updated per-sample basis. The assignment and update steps are 236

repeated for predetermined times or until convergence. 237

As a real-time spatial-semantic system, it is vital for PATTIE to have a minimal 238

turnaround time with a balance between accuracy and latency in mind. To this end, we 239

investigated mini-batch k-means as an alternative. Specifically, we performed the same 240

experiment as the previous section changing the number of sample documents N to 241

measure the clustering performance in AMI using mini-batch k-means in order to 242

compare it to the standard k-means. Only titles and abstracts were used for this 243

experiment. Figs 7 and 8 show the results. 244

Although k-means achieves slightly higher AMI, the difference was found to be not 245

statistically significant and mini-batch k-means runs slightly faster (approximately 0.5 246

seconds) irrespective of N . Their processing times did not differ greater because a large 247

portion of the processing time (64~90% for N = 2, 000) is accounted for constructing a 248

tf-idf matrix and applying VCGS and SVD. 249

Overall, mini-batch k-means algorithm brings a slight increase in speed with 250

insignificant difference in clustering performance. While it is a valid alternative, more 251

work needs to be done on the processes including tf-idf matrix construction for further 252

improvement. Therefore, our current system adopts the standard k-means. 253
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Use Case 254

In the following, we will demonstrate how PATTIE can be used to explore the PLOS 255

digital archive with respect to a use-case involving a university student's workflow for 256

creating an outline for a review article on the latest advancements in modulating 257

CRISPR guided gene editing by using a PATTIE Map for navigating and foraging on 258

the PLOS digital archive. 259
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There are a few essential steps required for the student to accomplish the task of 260

creating an outline for a review article on the latest advancements in modulating 261

CRISPR guided gene editing. The following items are logically ordered thought processes 262

of the student while anticipating, and engaging in, this information-seeking task. 263

1. What search terms do I use? 264

2. Am I being comprehensive enough? 265

3. Should I re-formulate my search terms to make sure? 266

4. I think I have covered all the potential queries. 267

5. How many articles have I gathered? 268

6. Which articles are precisely relevant to my research question? 269

7. I am going to focus only on this subset as they are pertinent. 270

8. How best can I logically organize the outline in terms of the biological concepts 271

that are thematic? 272

The student ponders on the subject matter and realizes that the potential 273

vocabulary needed for proper query formulation will take much time and likely exceeds 274

their level of current knowledge according to Heap’s Law [24]. However, upon issuing 275

the simplistic query “crispr” to PATTIE, much of this uncertainty is mitigated by 276

allowing PATTIE's unsupervised machine learning pipeline to analyze the vocabulary 277

and generate a map as shown in Fig 9 278

A PATTIE Map eliminates much of the cognitive load associated with the workflow 279

above. To access the information space, only a simple query is needed. After reflecting 280

for a moment on the information space, the student is cued in on the keywords Cas9, 281

editing, crispr, genome and grna as shown in Fig 10. At a very high-level, the student 282

understands that CRISPR associated protein 9 (Cas9) is the essential mechanism for 283

cutting DNA, and is more precisely an endonuclease enzyme [39]. Moreover, editing, 284

crispr and genome are of course self-explanatory with respect to the original research 285

question regarding modulation of CRISPR. Lastly, the student recalls that Guide RNAs 286

(grna) are responsible for the insertion and deletion of nucleotide bases associated with 287

the engineering involved in CRISPR technology [40]. 288
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Fig 9. CRISPR PATTIE Map within the PLOS digital archive.

Fig 10. User-scoped PATTIE Map for the query crispr with cluster
selection color encoded.

The student hovers their mouse over the cluster and is even more certain on the 289

selection with respect to the details on demand keywords that include efficiency and 290

engineering. A scatter phase is initiated for further inspection. The student examines 291

the more scoped information space and begins selecting clusters with the following 292

thought processes itemized below, and as shown in Fig 11: 293

• crrna, tracrrna – CRISPR Associated RNA (crrna) and Tran-activating CRISPR 294

associated RNA (tracrrna) form complexes for defense and immunity within 295

bacteria. This may be useful for my outline in understanding how innate 296

biological modulation is being studied for CRISPR-guided therapy and its 297

modulation in synthetic systems. 298
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Fig 11. Student narrowing the information targets and reasoning through
potential connections for developing the outline.

• primers, vectors – Primers and vectors are used to amplify genomic sequences 299

that are then delivered to the molecular target via a bacterial vector. If these are 300

being engineered in novel ways then I would like to understand what the 301

implications are in terms of modulating CRISPR-guided therapy. 302

• sgrna, optimization – As I recall, insertion and deletion of nucleotide bases is an 303

essential function of Guide RNAs, also referred to as Single-Guide RNAs, which 304

are synthetic complexes that incorporate both crRNA and TracrRNA. This area 305

of research may be examining the optimization of synthetic design. This feels 306

important for understanding modulation of CRISPR-guided therapy. 307

• off-target, gene-edited – If CRISPR-guided therapy can result in off-target effects 308

with unintended gene-edits then these studies are crucial to understanding how 309

modulation of CRISPR activity will need to be further investigated. 310

The student has now scoped the information space by iterating through 311

Scatter/Gather phases while focused only on the concepts and their logical connections 312

as opposed to search mechanics. In other words, the student shifts attention to 313

information processing and retrieval instead of search and access points. Moreover, 314

while interacting with PATTIE, focus naturally gravitates toward learning about the 315

information space and not at all about search parameters, query re-formulations, page 316

numbers, or number of articles, because PATTIE cues the student on spatial-semantics 317
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that serve as a dynamic table-of-contents metaphor which partitions the space 318

automatically and intelligently. Although, it must be noted that previous evidence 319

indicates that direct manipulation such as operating spatial systems with non-spatial 320

input devices (computer mouse) can cause issues for some users who have no experience 321

with such systems in the past. However, this same evidence-base also demonstrated that 322

individuals with varying levels of spatial reasoning ability can acquire this direct 323

manipulation skill rather quickly [13,28]. Thus, as with all information systems, a 324

learning phase would be beneficial for certain users to process PATTIE Maps as 325

demonstrated in this use-case. 326

Conclusion 327

Spatial-semantic information retrieval is not a new concept. However, the tools for 328

navigation and exploration of higher-dimensional (2D & 3D) information retrieval 329

systems are difficult to find and/or non-existent that support researchers in what we 330

would refer to as Research Support or Research Analytics. The earliest example of such 331

a system was developed by Zhang et al. [10]. Essentially the authors argued that digital 332

archives would eventually outpace the rate of human processing ability. Therefore, 333

navigation tools that were directly hooked in to a live archive would provide users the 334

spatial-semantic table-of-contents metaphor. The system was demonstrated as an 335

interactive paper/executable article where the content and organizational separation of 336

theory, method, and findings, from the actual data, was now one electronic entity. This 337

early work motivated the vision of Documents and (as) Machines [41]. As a humble 338

extension of this no longer available early work, we have built PATTIE in the same 339

tradition. We hope to provide a tool to support Research Analytics that will enable 340

insightful exploration of the PLOS Digital Archive. For more information on the 341

concept of an executable article see S1 Appendix. 342
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Supporting information 343

S1 Appendix: PATTIE Executable Article 344

A demonstration of a machine document is available at 345

http://vzlib.unc.edu/software/. 346
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