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ABSTRACT 

Systematic perturbation screens provided comprehensive resources for the 

elucidation of cancer driver genes. However, few algorithms have been developed to 

robustly interrogate such datasets, particularly with limited number of samples. Here 

we developed a computational tool called APSiC (Analysis of Perturbation Screens for 

identifying novel Cancer genes) and applied it to the large-scale deep shRNA screen 

DRIVE1 to unveil novel genetic and non-genetic driver genes. APSiC identified both 

well-known and novel drivers across all cancer types and within individual cancer 

types. The analysis of individual cancer types revealed that cancer drivers segregate 

by cell of origin and that genes involved in mRNA splicing may be oncogenic or tumor 

suppressive depending on the cancer type. We discovered and functionally 

demonstrated that LRRC4B is a novel putative tumor suppressor gene in breast cancer. 

The analysis of DRIVE using APSiC is provided as a web portal and represents a 

valuable resource for the discovery of novel cancer genes. 
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Advances in large-scale functional screening technologies have enabled the discovery of gene 

requirements across diverse cancer entities2,3. Systematic perturbation screens assess how 

genetic alterations or expression modulation of individual genes lead to phenotypic changes, 

revealing novel factors in carcinogenesis. McDonald et al. carried out the project DRIVE (deep 

RNAi interrogation of viability effects in cancer), a large perturbation screen targeting 7,837 

genes in 398 cancer cell lines across a variety of malignancies to generate a comprehensive 

atlas of cancer dependencies1. In DRIVE1, gene dependencies were evaluated using the raw 

cell viability readout of knockdown/out experiments (Fig. 1a, left) and tested using normality 

likelihood and correlation tests in a pan-cancer setting.  

 

We introduce APSiC (Analysis of Perturbation Screens for identifying novel Cancer genes), a 

novel tool for the systematic and robust interrogation of large-scale perturbation screens to 

discover gene dependencies for individual cancers even with limited number of samples. 

Instead of the raw cell viability readout, we compute a rank profile for each gene by first ranking 

all genes by their viabilities upon knockdown in a given sample to the range of [0, 1] then 

aggregating the normalized ranks for a given gene across all samples (Fig. 1a, Online 

Methods). Thus ranks close to zero represent reduced viability while the ranks close to one 

indicate cell growth upon knockdown.  

 

Incorporating mutation and copy number status of the samples, APSiC identifies potential 

genetic and non-genetic cancer genes by assessing deviation of the distribution of normalized 

ranks from what is expected by chance using the Bates and Irwin-Hall tests. The use of the 

rank-based statistics with the Bates and Irwin-Hall distributions provides enhanced statistical 

power when the number of cell lines is limited. We consider three classes of genetic drivers 

(mutation oncogenes, amplification oncogenes, and mutation tumor suppressor genes) and 

two classes of non-genetic drivers (non-genetic oncogenes and tumor suppressor genes; 

Online Methods). We define mutation and amplification oncogenes as genes for which 

reduced cell viabilities are preferentially observed in samples with missense mutations and 
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copy number amplifications, respectively, while mutation tumor suppressor genes are those 

for which increased viabilities are preferentially observed in samples with deleterious 

mutations. To identify such genetic drivers, we test, for a given gene, whether ranks of the 

samples with and without the specific class of genetic alteration are significantly different using 

a one-sided Bates test (Fig. 1b). For mutation and amplification oncogenes, we compute the 

lower-tailed P values (i.e. the ranks preferentially suggest reduced viability upon gene 

knockdown), while for mutation tumor suppressor genes, we compute the upper-tailed P 

values (i.e. the ranks preferentially suggest increased cell viability upon knockdown). For the 

non-genetic drivers, we test whether gene knockdown in samples without genetic alteration in 

the gene has any impact on cell viability by computing lower and upper-tailed Irwin-Hall test P 

values for oncogenes and tumor suppressor genes, respectively (Fig. 1c). Optionally, we 

further test whether the expression of candidate non-genetic oncogenes or tumor suppressor 

genes is respectively enhanced or repressed in human tumors compared to the corresponding 

normal tissue type.  

 

We applied APSiC to the DRIVE perturbation screens and the genetic data from the Cancer 

Cell Line Encyclopedia4 to identify genetic driver genes. The dataset consists of 383 cell lines 

across 26 cancer types (Fig. 2a). In a pan-cancer analysis, APSiC reassuringly identified the 

well-known mutation oncogenes BRAF, CTNNB1, KRAS, NRAS, PIK3CA and TP53 as the 

top candidates (Figs. 2b-c, Supplementary Table S1). Additionally, DDX27, DCAF8L2 and 

RBM39 were detected as mutation oncogenes (Supplementary Fig. S1 and Supplementary 

Table S1). The top amplification oncogene were KRAS, BRAF, CDK4, YAP1, IL6 and HAS2 

(Figs. 2b, d and Supplementary Table S1), while the only mutation tumor suppressor was 

ARID1A (Figs. 2b, e and Supplementary Table S1). However, the identification of mutation 

tumor suppressor genes in a knockdown screen is likely to have limited utility given that 

mutation tumor suppressor genes are frequently associated with loss of the wild-type allele. 
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One of the main strengths of APSiC is the identification of dependencies in small sample sets. 

We therefore applied APSiC to the DRIVE data to identify genetic driver genes for individual 

cancer types. Across the 26 cancer types, we found at least one mutation oncogene, mutation 

tumor suppressor gene and amplification oncogene in 15, 14 and 11 cancer types, 

respectively (Fig. 2f). KRAS, BRAF and TP53 were identified as a mutation oncogene in 4, 2 

and 2 cancer types, respectively. We identified MCL1 as the top amplification oncogene in the 

squamous subtype of non-small cell lung cancer and BRCA1 as the top mutation tumor 

suppressor in breast cancer, but no amplification oncogene or mutation tumor suppressor was 

identified in more than one cancer type. 

 

While whole-exome sequencing of 10,000+ cancers has revealed the global landscape of 

genetic driver genes5, a systematic analysis of non-genetic driver genes (i.e. driver genes for 

which the basis for oncogenicity is non-genetic) is lacking. By assessing the rank profiles of 

cell lines wild-type for a given gene using APSiC, we evaluated the non-genetic dependencies 

across cancer types in the DRIVE data. Consensus clustering of the most variable genes in 

terms of APSiC P values revealed that such non-genetic dependencies segregate by organ 

systems or cell-of-origin into four clusters (Fig. 3a). In particular, non-epithelial cancers 

including leukemias/lymphomas, sarcomas, gliomas and neuroblastomas form a cluster 

distinct from epithelial cancers including those of the lungs, the breasts and gastrointestinal 

tract. This is consistent with the observation that multi-omics cancer classification is primarily 

driven by cell-of-origin and anatomic regions6. Furthermore, the top-level segregation of the 

cancer types was largely driven by the context-dependency of mRNA-splicing genes. We 

observed that mRNA-splicing genes such as PRPF6 (Pre-MRNA Processing Factor 6) and 

SART3 (Spliceosome Associated Factor 3, U4/U6 Recycling Protein) were tumor suppressive 

in the cluster enriched for non-epithelial cancers while they were oncogenic in the epithelial 

cancer cluster (Fig. 3b). The context-dependency highlights the divergent role of mRNA-

splicing in carcinogenesis between cancer types. Our results also underscore the necessity 
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for an algorithm powerful enough to analyze perturbation screens for small numbers of 

samples in a cancer type-specific manner. 

 

Based on the DRIVE screen alone, we identified a median of 28 non-genetic oncogenes 

(range 6-557) and 35 non-genetic tumor suppressor genes (range 1-471) per cancer type. 

However, we reasoned that the many non-genetic onco- and tumor suppressor genes would 

also be over- and under-expressed, respectively, in the corresponding cancer types. For the 

12 cancer types for which gene expression data for the cancer and corresponding non-cancer 

counterparts were available from the TCGA (Supplementary Fig. S2), we further restricted 

the putative non-genetic onco- and tumor suppressor genes to those that were over- and 

under-expressed, respectively, relative to their non-cancer counterparts. After this filtering 

step, there were a median of 13 non-genetic oncogenes (range 2-117) and 3 non-genetic 

tumor suppressor genes (range 0-42, Fig. 4) per cancer type. We identified several well-

known oncogenes, including CDK1 (a master regulator of cell cycle) and SMC1A (a 

component of the cohesin complex involved in cell cycle checkpoint and genome stability)7, 

and some that have been shown to have oncogenic properties in some cancer types, such as 

MKI67IP (or NFIK)8. We also identified TEAD3, a lesser described member of the TEAD family 

involved in hippo signalling, as oncogenic in liver cancer9. Among the top candidate tumor 

suppressors were FOXP2 in endometrial cancer and XRCC5 in kidney carcinoma. FOXP2 

knockdown has been shown to promote tumor initiation and metastasis in breast cancer10 

while XRCC5, encoding the protein Ku80, is a key DNA damage repair protein. However, we 

also identified many genes that have not been associated with carcinogenesis. 

 

As a proof-of-concept to validate APSiC, we selected LRRC4B, one of the top putative non-

genetic tumor suppressor genes in breast cancer that has not been associated with 

carcinogenesis. Nearly all breast cancer cell lines displayed significantly increased cell viability 

upon LRRC4B knockdown and breast cancers in TCGA showed lower expression compared 

to normal breast tissue (Supplementary Fig. S3a). We selected the breast cancer cell lines 
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MDA-MB231, BT-549 and MCF-7 with high, moderate and low endogenous LRRC4B 

expression to investigate its role in breast carcinogenesis (Supplementary Fig. S3b). We 

silenced LRRC4B in MDA-MB231 and BT-549 using siRNA, reducing LRRC4B protein 

expression by 40% and 60%, respectively, 72 hours post-transfection (Figs. 5a, e). In both 

models, LRRC4B downregulation significantly increased the proliferation and migration rates 

(Figs. 5b-c, f-g). By contrast, LRRC4B overexpression significantly reduced proliferation and 

migration in MCF-7 (Figs. 5i-k).  

 

LRRC4, an important paralog of LRRC4B, has been shown to have an oncosuppressor role 

in glioma11,12,13,14, suppressing cell proliferation by delaying cell cycle in late G1 phase11,15. To 

test whether LRRC4B may play the same role in breast, we analyzed cells with LRRC4B 

overexpression or downregulation stained with DAPI by flow cytometry (FACS). LRRC4B 

knockdown in MDA-MB231 and BT-549 promoted cell transition into S phase (Figs. 5d, h), 

while LRRC4B overexpression in MCF-7 significantly retained cells in G1 phase (Fig. 5l), 

suggesting a similar mechanism.  

 

A common mechanism of oncogenicity is resistance to apoptosis16. To test whether 

modulation of apoptosis is a mechanism of action of LRRC4B as an oncosuppressor, we 

induced apoptosis with doxorubicin and measured it using Annexin V and propidium iodide 

co-staining followed by FACS analysis (Fig. 6a). Forty eight hours after treatment, LRRC4B-

overexpressing MCF-7 cells showed 10% more apoptotic and 10% fewer live cells, suggesting 

that LRRC4B overexpression could sensitize cells to doxorubicin-induced apoptosis (Fig. 6b). 

By contrast, LRRC4B-downregulating MDA-MB231 and BT-549 cells showed increased 

resistance to doxorubicin and had 25% and 10% fewer apoptotic and 25% and 10% more live 

cells, respectively (Fig. 6b). Our results provide compelling evidence that APSiC identified 

LRRC4B as a novel oncosuppressor gene in breast cancer. 
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Here we provide a powerful statistical analysis for the scientific community to explore and 

functionally characterize genes that may be involved in carcinogenic processes and may pave 

the way for the discovery of novel cancer-related biomarkers and drug targets.   
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Methods 

The APSiC algorithm 

We introduce a novel computational tool called APSiC for Analysis of Perturbation Screens 

for identifying novel Cancer genes. To begin, we briefly describe some necessary definitions 

and background material from ordered statistics.  

 

We consider the knockdown experiments of p genes across N cell lines. Let 𝑣"#be viability of 

cell line i∈{1,…,N} upon knocking down gene j∈{1,…, p} and 𝑚"# be a binary variable indicating 

whether a specific genetic alteration (i.e. mutation or copy number alteration) is present in 

gene j of cell line i. In this study, we only consider deleterious (e.g. nonsense, frameshift, splice 

site and mutations affecting start or stop codons) and missense mutations. Waterfall plots are 

often used to show viabilities of knockdown experiments for a single gene across different cell 

lines and are aimed to illustrate different gene dependencies. As an example, waterfall plot for 

gene TP53 is shown in Fig. 1a (left). Each vertical bar corresponds to a cell line and is colored 

by the pre-existing mutation types present in TP53. Fig. 1a indicates cell lines with the 

presence of deleterious or missense mutations in TP53 tend to have lower viabilities upon 

knockdown of this gene. While waterfall plot is a useful visualization tool for demonstrating 

gene dependencies, it lacks sufficient interpretability in certain cases, particularly when the 

number of cell lines is limited. In this paper, we introduce a new waterfall plot, named rank 

viability profile or simply rank profile, to address this issue. 

 

To make viability scores comparable across cell lines, we compute normalized rank values 

per cell lines denoted as 𝑟"#, representing the rank of viability for gene j among all knockdown 

experiments in cell line i. For mathematical convenience and without loss of generality, we 

normalized ranks to the range of [0, 1]. When the number of knockdown genes is high, 

normalized ranks have many distinct levels in the interval [0, 1] and we assume normalized 

ranks are continuous. Let 𝑅(,*, 𝑅+,*, . . . , 𝑅-,*denote random variables associated to ranks of a 
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gene A in N cell lines. We drop subscript A and denote ranks as 𝑅(, 𝑅+, . . . , 𝑅- for the simplicity 

of notation. By placing ranks, 𝑅", in ascending orders and renaming them, we obtain 𝑌( < 𝑌+	 <

. . . < 𝑌- where 𝑌" is called ith ordered statistic. It is easy to see that 𝑌( = 𝑚𝑖𝑛(𝑅(, . . . , 𝑅-) and 

𝑌- = 𝑚𝑎𝑥(𝑅(, . . . , 𝑅-). The probability density function of ordered statistic 𝑌" in general is given 

as 

 

where f(r) and F(r) denote probability density and cumulative distribution functions, 

respectively. If there is no dependency between knocking down of a gene and the viability of 

the cell, we can assume 𝑅" ∼ 𝑈(0, 1) for 𝑖 = 1, . . . , 𝑁, hence we have 𝑌" ∼ 𝐵𝑒𝑡𝑎(𝑖, 𝑁 − 𝑖 + 1)	. 

Using this result, we can construct a no-change viability band at statistical significance α using 

the quantiles of 𝑌" at the 𝛼/2 and 1 − 𝛼/2 for 𝑖 = 1, . . . , 𝑁. Now we define a new waterfall plot, 

called rank viability profile or simply rank profile, as a waterfall plot using normalized ranks, 

realizations of 𝑅" for a gene, overlaid with no-change viability band (Fig. 1a).  

 

The APSiC algorithm identifies potential cancer genes by assessing deviation of respective 

rank profiles from what is expected by chance. The algorithm can identify both genetic and 

non-genetic drivers (Fig. 1b-c). We consider three categories for genetic drivers. 

● Mutation oncogene: defined as genes for which reduced viabilities are observed 

preferentially in samples with missense mutation. 

● Amplification oncogene: defined as genes for which reduced viabilities are observed 

preferentially in samples with copy number amplification. 

● Mutation tumor suppressor: defined as genes for which increased viabilities are 

observed preferentially in samples with deleterious mutation.  

 

We consider two categories for non-genetic drivers, namely 

● Non-genetic oncogene: defined as genes for which reduced viabilities are observed in 

samples without a genetic alteration in the respective gene. 
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● Non-genetic tumor suppressor: defined as genes for which increased viabilities are 

observed preferentially in samples without a genetic alteration in the respective gene. 

 

For genetic drivers, the APSiC algorithm considers rank profiles of mutated and wild-type 

samples with respect to an input gene 𝑔 (Fig. 1b). Then, it performs a one-sided statistical 

test to determine whether rank scores of the two groups of samples are significantly different 

in the direction of interest, according to the genetic feature of interest. Suppose 

𝑅(FG, 𝑅+FG, . . . , 𝑅HFG and 𝑅(HI, 𝑅+HI, . . . , 𝑅JHI are random variables denoting rank scores upon 

knockdown of gene 𝑔 for 𝑚 wild-type and 𝑛 mutated samples, respectively. Let 𝑅FG and 𝑅HI 

denote the average of ranks for the wild-type and mutated samples, respectively. We define 

𝑆 = 𝑅HI − 𝑅FGas the test statistic and 𝑠MNO as the observed test statistic. We assume the null 

hypothesis is that the knockdown of gene 𝑔 does not have any impact on the viability of 

samples and therefore there is no difference in average of ranks for two groups, i.e. 𝑆 =0. The 

general formula for the distribution of any weighted sum of uniform random variables is given 

in Kamgar-Parsi, 199417. We simplify the general formula thereby and obtain the null 

distribution of the test statistic 𝑆as 

𝑃(𝑆 ≤ 	𝑠) =
(−1)H

𝑛J𝑚H(𝑛 +𝑚)!SS(−1)TUV
𝑛
𝑘
𝑚
𝑝 (𝑠 +

𝑘
𝑛 	−

𝑝
𝑚)

HUJ𝛩(𝑠 +
𝑘
𝑛 	−

𝑝
𝑚)

H

TZ[

J

VZ[

 

where  

 

For mutation and amplification oncogenes, we compute lower-tailed P values, 𝑃(𝑆 ≤ 𝑠MNO) 

while for mutation tumor suppressors, we compute upper-tailed P values, 𝑃(𝑆 ≥ 𝑠MNO). Due to 

numerical issues, it is impractical to use the exact null distribution formula for large values of 

m and n (m+n >20). In this case, we compute an approximation for the null distribution of S as 
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follows. Under the null hypothesis,  𝑅HI and 𝑅FG follow Bates distributions Bates(m) and 

Bates(n), respectively. The Bates distribution is a distribution that represents the mean of a 

number of independent uniform random variables on the unit interval. For large values of m 

and n, 𝑅HI and 𝑅FG are approximately distributed by 𝑁((
+
, (
(+H

) and 𝑁((
+
, (
(+J

). Hence, under 

the null hypothesis the test statistic S is approximately distributed as 𝑁(0, (
(+
( (
H
+ (

J
)).  

 

To identify non-genetic drivers, we only consider the wild-type (i.e. without non-synonymous 

mutations and without copy number amplification (GISTIC copy number state 2) or deep 

deletions (GISTIC copy number state -2)) samples with respect to an input gene 𝑔 (Fig. 1c). 

The null hypothesis is that the knockdown of a gene g does not have any impact on the viability 

of the samples. We define the test statistic as 𝑇 = 	𝑅( + 𝑅++. . . +𝑅H and 𝑡MNO as the observed 

test statistic. Under the null hypothesis, T follows an Irwin-Hall distribution 𝑇 ∼ 𝐼𝐻(𝑚), which 

represents the summation of 𝑚 independent uniform random variables on the unit interval. 

For large values of m, S is approximately distributed as 𝑁(𝑚/2,𝑚/12). To identify non-genetic 

oncogenes, we require significant lower-tailed P values, 𝑃(𝑇	 ≤ 𝑡MNO) for wild-type cell lines 

with respect to the input gene. Additionally, for the respective tissue type, the overall 

expression at the RNA level of a putative oncogene in tumor samples is required to be 

significantly higher than the one in normal tissue samples using the t test. On the contrary, for 

identifying non-genetic tumor suppressors, we require significant upper-tailed P values, 𝑃(𝑇 ≥

𝑡MNO), for wild-type cell lines with respect to the input gene as well as lower RNA expression 

of tumor samples in comparison to normal tissue samples using the t test. 

 

Downloading and preprocessing of DRIVE and TCGA data 

We considered the viability profiles of 383 cell lines in the project DRIVE1 for which their 

genetic profiles were available at the Cancer Cell Line Encyclopedia (Fig. 2a)4. We computed 

aggregated gene-level viability scores for each experiment by the RSA and ATARiS 

algorithms18,19. The RSA and ATARiS scores are available for 7726 and 6557 genes, 
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respectively. We used the same method as defined in the project DRIVE to remove essential 

genes, defined as genes with an RSA value of ≤ 3 in more than half of cell lines. After the 

removal of 184 essential genes by this method, for pan-cancer analysis, the ATARiS scores 

are available for 6373 genes in 383 cell lines in 39 cancer types over 17 primary tissues. For 

the genetic drivers, we considered only genes for which there are at least 2 samples harbored 

a genetic alteration of the corresponding class in individual cancer types. For the non-genetic 

drivers, we only considered genes for which there are at least 2 samples wild-type for the gene 

in individual cancer types. For pan-cancer analysis, the above threshold was at least 4 

samples for both genetic and non-genetic drivers. For the identification of mutation tumor 

suppressor genes, mutations annotated as In_Frame_Ins, In_Frame_Del, Frame_Shift_Ins, 

Frame_Shift_Del, Nonsense_Mutation, Splice_Site, Start_Codon_Del, Stop_Codon_Del,  

Stop_Codon_Ins,  Start_Codon_Ins were considered deleterious. For the analysis of 

individual cancer types, we considered the 26 cancer types for which more than four cell lines 

are available in the DRIVE data.  

 

TCGA gene expression data was obtained for 12 cancers for which data are available for 

tumor and normal tissues (Supplementary Fig. S2). The data were downloaded using the 

TCGAbiolinks package in R20. The normalized expression level of genes in CPM (counts per 

million) were used for the identification of non-genetic drivers.  

 

Multiple testing 

To address the multiple comparisons problem, we chose a significance level such that the 

expected number of false positives due to multiple testing for each cancer and feature is equal 

to one. To this end, we chose a significance level of 1/𝑛, or 0.05 if 1/𝑛>0.05,  where 𝑛 is the 

number of genes tested for identification of drivers. Using this approach, we were able to keep 

many interesting hits while keeping the number of false positive cases low. 

 
Clustering and pathway analysis  
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Clustering was performed using ConsensusClusterPlus21 using 1-Spearman correlation as the 

distance metric and the Ward hierarchical clustering algorithm. The number of clusters was 

determined based on the relative change in area under the consensus cumulative distribution 

function over the number of evaluated clusters. Pathway analysis was performed using 

g:Profiler22. 

 

Software and data availability  

A web portal using the Shiny framework in R has been developed to visualize rank profiles of 

the DRIVE shRNA screen and corresponding gene expression data from TCGA at 

https://apsic.shinyapps.io/APSiC/. The code for the APSiC algorithm is available at 

https://github.com/hesmon/APSiC/.The raw shRNA data has already published as a part of 

the project DRIVE (https://data.mendeley.com/datasets/y3ds55n88r/4) and copy number and 

mutation profiles of the cell lines are available at the Cancer Cell Line Encyclopedia portal 

(https://portals.broadinstitute.org/ccle/home). The gene expression data from the TCGA are 

available at the TCGA Genomics Data Commons data portal (https://portal.gdc.cancer.gov/).  

 

Cell lines  

Breast cancer derived cell lines (MCF-7, BT-549 and MDA-MB231) were maintained in a 5% 

CO2-humidified atmosphere at 37°C and cultured in DMEM supplemented with 10% FBS, 1% 

Pen/Strep (Bio-Concept) and 1% MEM-NEAA (MEM non-essential amino acids, 

ThermoFisher Scientific). All cell lines were confirmed negative for mycoplasma infection 

using the PCR-based Universal Mycoplasma Detection kit (American Type Culture Collection, 

Manassas, VA) as previously described23. 

 

Transient gene knockdown by siRNAs 

Transient gene knockdown was conducted using ON-TARGET plus siRNA transfection. ON-

TARGET plus SMARTpool siRNAs against human LRRC4B (Dharmacon, CO; #L-023786-
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01-0005), ON-TARGET plus SMARTpool non-targeting control and DharmaFECT 

transfection reagent  (Dharmacon, CO; #T-2001-03) were all purchased from GE Dharmacon. 

Transfection was performed according to the manufacturer’s protocol. Briefly, log-phase breast 

cancer cells were seeded at approximately 60% confluence. Because antibiotics affects the 

knockdown efficiency of ON-TARGET plus siRNAs, growth medium was removed as much as 

possible and replaced by antibiotic-free complete medium. siRNAs were added to a final 

concentration of 25 nM. Cells were incubated at 37°C in 5% CO2 for 24-48-72 hours for 48-72 

hours for protein analysis. To avoid cytotoxicity, transfection medium was replaced with 

complete medium after 8 hours. 

 

Protein extraction and western blot 

Proteins were extracted using Co-IP buffer (100 mmol/L NaCl, 50 mmol/L Tris pH 7.5, 1 

mmol/L EDTA, 0.1% Triton X-100)  supplemented with 1x protease inhibitors (cOmplete Mini, 

EDTA-free Protease Inhibitor Cocktail, Roche, CO, #4693159001) and 1x phosphatase 

inhibitors (PhosSTOP #4906837001, Merck). Cell lysates were then treated with 10x reducing 

agent (NuPAGE Sample Reducing Agent, Invitrogen, #NP0009), 4x loading buffer (NuPAGE 

LDS Sample Buffer, Invitrogen, #NP0007), boiled and loaded into neutral pH, pre-cast, 

discontinuous SDS-PAGE mini-gel system (NuPAGE 10% Bis-Tris Protein Gels, 

ThermoFisher). The proteins were then transferred to nitrocellulose membranes using Trans-

Blot Turbo Transfer System (Bio-Rad). The membranes were blocked for 1 hr with Sure Block 

(Lubio Science) and then probed with primary antibodies overnight at 4°C. Next day, the 

membranes were incubated for 1 hr at RT with fluorescent secondary goat anti-mouse (IRDye 

680) or anti-rabbit (IRDye 800) antibodies (both from LI-COR Biosciences). Blots were 

scanned using the Odyssey Infrared Imaging System (LI-COR Biosciences) and band 

intensity was quantified using ImageJ software. The ratio of proteins of interest/loading control 

in treated samples were normalized to their counterparts in control cells. Antibodies against 
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LRRC4B (PA5-23529, Thermofisher) and B-actin (A5441, Sigma) were used at dilution 1:1000 

and 1:5000, respectively. 

 

Proliferation assay 

Cell proliferation was assayed using the xCELLigence system (RTCA, ACEA Biosciences, 

San Diego, CA, USA) as previously described.24 Cells were first seeded and transfected in 6 

well plates and 24 h after transfection 5x103 cells were resuspended in 100 μl of medium and 

plated in each well of an E-plate 16. Background impedance of the xCELLigence system was 

measured for 12 s using 50 μl of room temperature cell culture media in each well of E-plate 

16. The final volume in each well was then 150 μl. The impedance signals were recorded 

every 15 minutes until 96/120 h and expressed as cell index values, calculated automatically 

and normalized by the RTCA Software Package v1.2. The values were defined as mean ± 

standard deviation. Mann-Whitney test was used for statistical analysis with GraphPad 

software. 

 

Migration assay 

Migration assays were performed using the CIM-plate of the xCELLigence Real-Time Cell 

Analysis (RTCA, ACEA Biosciences, San Diego, CA, USA) system. Cells were first transfected 

in 6-well plates and 24 h after transfection, they were harvested and seeded in the CIM-plate. 

Every well of the bottom chamber was filled with 160 μl of the corresponding medium at 10% 

FBS concentration. After placing the upper chamber on top of the lower chamber, 50 μl of 

serum free medium was added on each CIM well for the background measurement. After 3x 

PBS washing, 3x104 cells re-suspended in 100 μl of the corresponding medium at 1% FBS 

concentration were seeded in each well of the upper chamber. The measurements were taken 

every 15 minutes until 24 h after seeding and expressed as cell index values. Mann-Whitney 

U test was used for statistical analysis with GraphPad software. 

 

Cell cycle analysis 
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Seventy-two hour after transfection, cells were collected, stained with DAPI and analyzed by 

flow cytometry using the BD FACS Canto II cytometer (BD Biosciences, USA). Briefly cells 

were harvested and washed 2X in PBS to get rid of serum proteins at 1200 rpm for 5 minutes. 

Pellets (up to 3x106 cells) were resuspended in 1.2 ml PBS (Ca and Mg free). For crosslinking 

proteins 3.0 ml of 95% ice cold EtOH was added dropwise while vortexing. Cells were fixed in 

this final 70% Et-OH solution for at least 30 minutes or over night. The Et-OH/cell suspension 

was then diluted with 12 ml of PBS (for a total volume of 15 ml) and centrifuge at 2000-2200 

rpm for 10 min. Cells were then washed once more with 15 ml PBS and then resuspended in 

0.5-2.0 ml of DAPI stain solution (0.1% TritonX 100 and 10 ug/ml). After 30 min of incubation 

on ice cells were analyzed by flow cytometry, measuring the fluorescence emission at 461 

nm. Data were analysed using the FlowJo software version 10.5.3 (https://www.flowjo.com).  

 

Apoptosis analysis by flow cytometry 

BT-549 and MDA-MB231 cells were transfected with siRNA (control or against LRRC4B) and 

MCF-7 cells were transfected with LRRC4B overexpressing plasmid or control plasmid. Eight 

hours after transfection medium was changed and doxorubicin added according to the 

respective IC50 for each cell line25,26. Cells were collected 60 hours post siRNA transfection 

or LRRC4B overexpression and 48 hours post treatment with doxorubicin respectively, stained 

with annexin V (Annexin V-FITC conjugate; Invitrogen, CO; #V13242) and propidium iodide 

(PI; Invitrogen, CO; #V13242), and analyzed by flow cytometry using the BD FACS Canto II 

cytometer (BD Biosciences, USA). Briefly, cells were harvested after incubation period and 

washed twice by centrifugation (1,200 g, 5 min) in cold phosphate-buffered saline (DPBS; 

Gibco, CO; #14040133). After washing, cells were resuspended in 0.15 ml AnnV binding buffer 

1X (ABB 5X, Invitrogen, CO; #V13242; 50 mM HEPES, 700 mM NaCl, and 12.5 mM CaCl2 at 

pH 7.4) containing fluorochrome-conjugated AnnV and PI (PI to a final concentration of 1 

ug/ml) and incubated in darkness at room temperature for 15 min. As soon as possible cells 

were analyzed by flow cytometry, measuring the fluorescence emission at 530 nm and >575 

nm. Data were analysed using the FlowJo software version 10.5.3 (https://www.flowjo.com).  
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FIGURES AND FIGURE LEGENDS 

 

Fig. 1. Overview of the APSiC algorithm. a, Illustration of the transformation from the raw 

cell viability scores for a given gene (left, using TP53 as an example) to the rank profile (right). 

Each bar of the waterfall plots represents one sample and is colored by the mutational status 

of the given gene in the sample. The red ellipse in the rank profile (right) represents a no-

change (random) viability band. b-c, Schematic representation of the APSiC algorithm for 

identifying (b) genetic and (c) non-genetic drivers (See Online Methods for details).  
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Fig. 2. Analysis of the genetic drivers in the DRIVE perturbation screen. a, The number 

of cell lines available for 26 cancer subtypes in the DRIVE perturbation screen. b, Kernel 

density estimation of the P values (on a -log10 scale) for genetic drivers using the APSiC 
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algorithm in a pan-cancer analysis. Candidate mutation oncogenes, amplification oncogenes, 

and mutation tumor suppressors identified by the APSiC are shown, with genes reaching 

significance level after multiple testing corrections highlighted in red. c, Rank profile for a 

mutation oncogene (BRAF) colored by mutation status. d, Rank profile of an amplification 

oncogene (KRAS) colored by copy number status. e, Rank profile of a mutation tumor 

suppressor (ARID1A) colored by mutation status. f, Dot plots of the P values (on a -log10 scale) 

for genetic drivers using the APSiC algorithm in a cancer type-specific analysis, for (top) 

mutation oncogenes, (middle) amplification oncogenes and (bottom) mutation tumor 

suppressors. Genes reaching significance level after multiple testing corrections are 

highlighted in red. Cancer types are sorted by the number of cell lines. 
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Fig. 3: Pan-cancer analysis of the non-genetic drivers in the DRIVE perturbation screen. 

a, Heatmap illustrates consensus clustering of the 500 most variable P values for non-genetic 

drivers using the APSiC algorithm for the 26 cancer types in the DRIVE perturbation screen. 

Consensus clustering identified 4 clusters across cancer types and 5 clusters across the 500 

genes. One of the clusters was enriched for genes involved in mRNA splicing and processing. 

b, Rank profiles for PRPF6 in (top) non-Hodgkin B-cell lymphoma and (bottom) upper 

aerodigestive tract carcinoma and for SART3 in (top) PNET neuroblastoma and (bottom) 

breast carcinoma.  
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Fig. 4: Cancer type-specific analysis of the non-genetic drivers in the DRIVE 

perturbation screen. Non-genetic driver genes identified in the 12 cancer types with 

corresponding gene expression data from the TCGA. APSiC P values are shown (on a -log10 

scale) for driver genes significant after multiple testing corrections and over- or 

underexpressed in human cancers for oncogenes (in red) and tumor suppressor genes (in 

blue), respectively. The top 20 genes for each cancer type are labelled. 
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Fig. 5: LRRC4B has tumor suppressor-like properties in in-vitro models of breast 

cancer. a, e, i, Western blotting showing LRRC4B protein level in (a) MDA-MB231, (e) BT-

549 and (i) MCF-7 cell lines 48 and 72 hours post transfection. Actin was used as a loading 

control and for normalization. b, f, j, Proliferation kinetics of (b) MDA-MB231, (f) BT-549 and 

(j) MCF-7 cells upon (b, f) downregulation or (j) upregulation of LRRC4B compared with the 

control. c, g, k, Migration potential of (c) MDA-MB231, (g) BT-549 and (k) MCF-7 cells upon 

(c, g) downregulation or (k) upregulation of LRRC4B compared with the control. d, h, i, Cell 

cycle analysis of (d) MDA-MB231, (h) BT-549 and (i) MCF-7 cells upon (d, h) downregulation 

or (i) upregulation of LRRC4B compared with the control. Error bars represent standard 

deviation from three independent experiments. For all experiments, statistical significance was 

assessed by multiple t-tests (* P < 0.05, ** P < 0.01, *** P < 0.001). 
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Fig. 6: LRRC4B expression modulates induction of apoptosis by Doxorubicin. a, Dot 

plot illustrating the flow cytometry gating strategy used to assess cell viability and apoptosis 

using Annexin V and propidium iodide staining of MDA-MB231, BT-549 and MCF-7 cells upon 

downregulation/ upregulation of LRRC4B compared with the control cells, with and without 

Doxorubicin. b, Quantification of the mean (+/- SD) percentage of apoptotic cells (AnnV+) and 

live cells (AnnV-/PI-) across the different groups. Error bars represent standard deviation from 

three independent experiments. For all experiments, statistical significance was assessed by 

multiple t-tests (* P < 0.05, ** P < 0.01, *** P < 0.001). 
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