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Abstract 
Cerebrovascular diseases (CVD) are a group of medical conditions that impair circulation of blood 

to the brain, including stroke, transient ischemic attack (TIA), embolism, aneurysm, and other 

circulatory disorders affecting the brain. Here, we investigated the effects of having CVD history 

on the molecular signature of brain regions by comparing gene expression profiles from several 

brain tissues between cohorts with and without CVD history. We first merged tissue samples 

from GTEx RNA-Seq dataset into clusters based on the overall gene expression similarity. Then 

we performed differential expression (DE) analyses for each cluster using a linear mixed model 

that controls covariates and the individual random effect. Cross-region DE genes were ranked by 

the combined q-values derived from the mixed model using Fisher’s method. Functional 

enrichment analyses were performed using Gene Set Enrichment Analysis (GSEA) program. We 

identified hundreds of DE genes, and many of them are related to endothelial or brain functions 

and associated diseases. We found that STAB1 was highly overexpressed across brain regions in 

the CVD cohort, and the upregulation of STAB1 in brain tissues may contribute to weaker self-

defense mechanisms against lesions in the brain. Our results suggest a list of candidate genes and 

pathways that may be dysregulated in the brains of people with CVD history, implying that 

suffering from CVD could pose potential hazard to the brain. 

 

Introduction 

Cerebrovascular disease (CVD) remains one of the global leading causes of disability and 

mortality1, and the incidence and costs are projected to rise substantially in the future2. CVD is a 

group of clinical conditions that impair the blood flow to the brain, including stroke, transient 

ischemic attack (TIA), intracranial aneurysm, embolism, and other vessel diseases. It is a 

multifactorial and complex disease caused by genetic and environmental factors1,3. Previous 

genome-wide association studies (GWAS) and meta-analyses had identified various genetic loci 

associated with stroke in predominantly European-ancestry groups4-25, a recent multiancestry 

meta-analysis in 521,612 individuals discovered 22 new risk loci, bring up to 32. Most identified 

stroke loci are associated with other vascular traits and correlated with blood pressure26. Besides 

multiple genetic risk factors, several single-gene disorders also contribute to CVD27–35. However, 

genetic variability that contributes to susceptibility to these diseases and the mechanism 

underlying CVD largely remain to be identified.  

 

Cerebrovascular diseases are also influenced by clinical features. Sex-related differences exist in 

incidence rates reported by community-based and hospital-based studies36. Age is another risk 

factor - the incidence and severity of stroke, the most significant entity of CVD, are significantly 

increased with age37. Likewise, the increase of body mass index (BMI) could lead to a significant 

increase in the relative risk of total stroke, ischemic and hemorrhagic stroke38.  
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Genotype-Tissue Expression (GTEx) project has established a database of clinical information 

such as medical histories, expression data, and whole-genome sequences, and helps discover the 

underlying genetic variability in multiple healthy human tissues39. The medical histories were 

from the hospital systems where recorded prior care of some deceased donors.  Understanding 

normal physiology can provide new information on disease mechanisms and better treatment for 

patients. 

 

In this study, we analyzed the 6,295 human transcriptomes covering 42 tissues from GTEx v6 

release, to investigate the effects of having CVD medical history. We applied a linear model 

which corrects for confounding factors including sex, age, BMI, hardy scale, batch, and principal 

components inferred from genotypes to identify differentially expressed genes. Functional 

enrichment analyses reveal known biological functions and processes which are overrepresented 

in derived differential expressed genes. The main goal of stroke/CVD research is to develop 

effective treatments to reduce brain impairment from ischemic insult through a better 

understanding of the underlying pathogenic molecular mechanisms; although this study analyzed 

the expression data from normal tissues without true diseases, the results may let us know the 

long-term effects of CVD histories to the human body as well as deeper insights of CVD 

characteristics and mechanisms. 

 

Results  

Merging sample groups 
 

The RNA-seq data from GTEx v6 release were downloaded from dbGaP. After preprocessing, 

normalizing and filtering the data as described in method, there are total 6295 samples (523 with 

and 5772 without CVD histories) covering 42 tissues from 428 subjects (41 with and 387 without 

CVD histories) (Supplementary Fig. S1).  
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Supplementary Fig. S1 Number of samples with and without CVD history in each selected tissue and cluster.  

 

In order to increase the statistical power by maximizing the sample sizes, we clustered 

transcriptionally indistinguishable tissue samples by performing principal component analysis 

(Supplementary Fig. S2). There are three main clusters of brain tissues – brain-0, brain-1 and 

brain-2. Since unequal subtissue composition in a cluster may lead to gene expression differences 

between the two cohorts, Chi-square tests were implemented to determine whether their 

composition is significantly different, and none of those P-values is greater than 0.05 (Table 1). 

Also, skin samples were grouped from lower leg (sun exposed) and from the suprapubic region 

(sun unexposed). 
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Supplementary Figure S2. PCA plot shows three clusters among the samples of brain tissues in the gene expression space.  

Table 1. Tissue composition in brain clusters. P-values were calculated using chi-square test. 

 

 

Differential expression analysis of brain transcriptomes 
Voom-limma40,41 pipeline was implemented to identify genes which are differentially expressed 

between cohorts with and without CVD histories. Details of the model see method. Genes at a 

false discovery rate (FDR) less than 0.1 and log2 fold change greater than 1.5 are considered 

significantly differential expressed (Supplementary Fig. S3).  

 
 

Supplementary Figure S3. Number of significant genes identified by our linear regression model in each tissue and cluster. Significant means 

FDR < 0.1 and log2 fold change > 1.5. 

For brain clusters, genes in limma reports were ranked by calculating Fisher’s combined P-value42 

from the adjusted P-values in three clusters, showing a common set of genes which share similar 

expression patterns across brain regions. We yielded 220 significant combined differentially 

expressed (DE) genes (Fisher’s P-value < 0.1) and directions of t-statistics of 217 genes are same 

(Fig. 1). Among these genes with consistent directions, 125 are up-regulated while 92 are down-

regulated (Supplementary Data S1). 
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Figure 1. Scatter plot of t-statistics from three clusters. Each dot is expression value of one gene. Colors represent negative logarithm of 

combined Fisher’s q-values. Top 5 significant genes are highlighted within orange boxes. 

 

 

Dozens of consistently significant DE genes are related to hypoxia response, and hypoxia refers to 

oxygen levels below normal and is a common occurrence following stroke. Some of these genes 

interact with hypoxia inducible factors-1 (HIF-1), one of the critical regulators of cellular 

response to hypoxia. For example, the most significantly upregulated gene ANKRD37 (Fig. XA), 

PFKFB3, FECH, GPRC5A, VEGFA. Note that VEGFA (vascular endothelial growth factor A), 

which is critical for blood vessel growth in central nervous system (CNS) and is also triggered by 

hypoxia and inflammation, only significantly overexpressed in brain-0. Another top significant 

DE gene RBM3 (Fig.XB), a RNA-binding protein induced by hypoxia and is neuroprotective 

under stress condition, however is downregulated in our DE results. None of the HIF genes were 

differentially expressed, maybe because the activation of HIF-1 only lasts for a period after 

cerebral ischemia43. A significant downregulated lncRNA in brain-0 and brain-1, RP11-284F21.9 
(Fig.XC), is antisense to BCAN44. BCAN (Brevican) encodes a member of proteoglycans that is 

specifically expressed in CNS, maintaining the extracellular environment of mature brain45. 

Among those upregulated genes, SERPINA1 (Fig. XD), TGFB1, TSPAN2 had been associated with 

subtypes of stroke by GWAS and meta-GWAS. In summary, our DE analysis on brain 

transcriptomes revealed genes related to occurrences after cerebrovascular accidents like the 

hypoxia mentioned above, including three genes previously implicated in stroke. 
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Figure 2. Top significant DE genes in brain groups. The left panel is the overall expression level in all groups, and the right panel is expression 

level in each group. Combined q-value is calculated using Fisher’s method. 

 

 

 
Table 2. Summary of the DE genes which have been associated with stroke or subtypes of stroke by GWAS. The log2 fold change and adjusted 

p-value for each gene in the tissue, and the p-value from GWAS results were included. 

 

 

 

DE genes were further analyzed by Gene Set Enrichment Analysis (GSEA) to gain a functional 

overview. GSEA presented a wide spectrum of Gene Ontology biological process (GOBP) terms, 

most top significantly enriched terms are shown in Fig 3. Generally, inflammatory mechanisms 

are significantly upregulated since most of the terms are linked to inflammation. Mast cells are 

perivascular resident cells distributed in most tissues around blood vessels and can also be found 

in central nervous system (CNS), they have been associated to various neuroinflammatory 

conditions of CNS like stroke46; the pro-inflammatory interferon gamma signaling is directly 

associated with stroke by neurodegeneration47; Toll-like receptors (TLRs) are master regulators of 

innate immunity and play an integral role in the activation of the inflammatory response during 

infections, also play a modulating role in ischemic brain damage after stroke48; proinflammatory 

cytokines, such as IL-6, have been implicated in several mechanisms that might promote ischemic 

brain injury49; and immune cell proliferation, differentiation, activation and cell adhesion are all 

involved in innate and adapt immune responses, then these responses as well as angiogenesis and 

coagulation share extensive cross talk with inflammatory reactions. Additionally, reactive oxygen 

species (ROS) metabolic process and apoptotic process are upregulated, not shown in the figure 

though. On the other hand, downregulated genes are enriched in several metabolic processes, 

mitochondrial functions and cell cycle events.  Furthermore, “refined” hallmark gene sets 

enrichment reveals more specific pathways associated with neuroprotective effects 

(Supplementary Fig. S4), such as IL-6/JAK/STAT3, PI3K/AKT/mTOR, mTORC1 signaling.  
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Figure 3. Enrichment map shows significantly enriched GOBP terms for genes upregulated and downregulated in the cohort with CVD history. 

Each circle composed with three parts which represent the P-values for each term in three brain clusters, the size of a circle correlated to the 

NES scroe. 

 

 
Supplementary Figure S4. GSEA results for hallmark gene sets. The color and the size correlate to the FDR values and NES score.  
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Unsurprisingly, disease and phenotype associations are enriched in typical CVD-related traits: 

transient cerebral ischemia, intracranial aneurysm, atrial fibrillation, etc. and some vascular 

diseases like Ehlers-Danlos syndrome, Behcet's disease and vasculitis (Supplementary Data X). 

Likewise, many autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus 

and immune thrombocytopenic purpura, as well as some other common diseases like Crohn’s 

disease and chronic obstructive pulmonary disease (COPD) are mapped to upregulated terms. 

These diseases may share common risk factors with cerebrovascular diseases. What’s more, 

infections or infectious diseases terms are also highly enriched, maybe due to infections are one of 

the common medical complication after stroke, leading to unfavorable functional outcome. 

Overall, these functional enrichment results link to the clinical conditions of CVD, common 

occurrences and complication after stroke as well as diseases not just in brain, and provide the 

possibly molecular evidence. 

 

Differential expression analysis of other tissues 
 

On top of brain, several tissues - tibial artery, atrial appendage, minor salivary gland and skeletal 

muscle, skin - are also identified dozens or hundreds of DE genes by our linear model. 

Surprisingly, atrial appendage, actually the right atrial appendage (RAA) collected by GTEx 

(SMSMPSTE, phv00169238.v6.p1.c1), has over 1,000 significant DEGs. Interestingly, there is no 

information on relationship between RAA and stroke, only a weak incidence of atrial 

thrombosis50, while left atrial appendage (LAA) is the site most commonly correlated with 

thrombus formation that might increase risk of stroke66. 

 

Multiple genes identified by stroke and aneurysm GWAS are overlapped with DE genes in some 

tissues (Table 3). For instance, ALDH2 which associates with ischemic stroke and intracranial 

aneurysm is downregulated in visceral adipose (Fig. 4). Genetic variants in ALDH2 exhibit 

association with visceral fat accumulation in male51 and hypertension52, both mediated by alcohol 

consumption, and lead to lower gene expression levels in adipose tissue. Increased visceral adipose 

tissue (VAT) is a risk factor for carotid artery atherosclerosis, atrial fibrillation and stroke, and low 

VAT proportion associates with better outcomes in acute ischemic stroke patients53. 

 

 

  
Table 3. Summary of the DE genes which have been associated with stroke and aneurysm by GWAS. The log2 fold change and adjusted p-value 

for each gene in the tissue, and the p-value from GWAS results were included. 

Figure 4. Expression level of DE gene overlapped with GWAS results ALDH2 in visceral adipose 
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Almost all these tissues are enriched in mitochondrial-related terms, for instance, mitochondrion 

organization, mitochondrial electron transport and cellular respiration (Supp Table X). These 

terms are downregulated in visceral adipose, atrial appendage, skeletal muscle, pituitary and skin, 

while upregulated in tibial artery and minor salivary gland. Concomitantly, metabolic and 

catabolic processes are also downregulated in some tissues but upregulated in other tissues. 

Moreover, enriched muscle or cardiac muscle contraction terms are mapped to atrial appendage, 

tibial artery and skeletal muscle. In summary, __. 

 

 

Discussion 
 

Large-scale genome-wide association studies have obtained more and more genetic loci related to 

cerebrovascular disease with the increased amounts of genetic data and curated databases. 

However, molecular changes on mRNA level is difficult to prove and most transcriptome analyses 

on CVD only restricted to middle cerebral artery occlusion (MCAO) mouse and rat model or 

human blood expression data due to the limitation of tissue accession. Here, we analyzed multiple 

human tissue expression data from GTEx, although the condition is just having or not having 

CVD medical history also samples were all reviewed as normal, dozens to thousands of DE genes 

were identified across some of the tissues. Therefore, our results may indicate and prove what 

complications and events would occur after CVD and even what contributes to CVD causes, 

revealing underlying molecular signatures and mechanisms and providing new perspectives for 

further CVD studies.  

 

We first built a linear mixed model, which allows both fixed and random effects, and applied it to 

expression data. The results of functional enrichment analysis based on identified differentially 

expressed genes successfully present most of the conditions after cerebrovascular diseases. Take 

ischemic stroke as an example, briefly, brain ischemia triggers inflammation followed by the 

generation of reactive oxygen species (ROS), these initiators of inflammation will activate 

microglia, the resident immune cell in brain. Next, microglia produce more pro-inflammatory 

cytokines leading to adhesion molecules induction in the cerebral vasculature. Cytokines then 

infiltrate more immune cells into ischemic brain, and inflammatory cells release cytotoxic agents 

such as nitric oxide (NO) causing brain cell damage exacerbation as well as the disruption of the 

extracellular matrix and blood-brain barrier (BBB)54,55. Therefore, therapies targeting both acute 

and chronic neuroinflammation could effectively reduce further brain damage and lessen long-

term effects on neurological function.  

 

Hypoxia is also closely associated with inflammatory condition and it causes cell injury and 

induce microglial activation, since many genes regulated by hypoxia involved in inflammatory 

responses56. Hypoxia following stroke is common and often attributed to pneumonia, aspiration 

and respiratory muscle dysfunction, with some other related syndromes57. We found that 

ANKRD37 (Ankyrin Repeat Domain 37) was highly overexpressed across brain regions in cohort 

with CVD history. ANKRD37 is induced in hypoxia and it is targeted by transcription factor 

Hypoxia-inducible factor 1 (HIF-1)58. It may be a clue about how hypoxia involves in brain 

damage following CVD, while ANKRD37 is weakly documented, further experiments and 

analysis are necessary. Similarly, several genes are worth being notice, such as RBM3 and RP11-
284F21.9 mentioned above and another upregulated gene STAB1. STAB1 encodes a 

transmembrane receptor protein that may function in angiogenesis, lymphocyte homing, cell 
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adhesion, defense against bacterial infection, or receptor scavenging for acetylated low density 

lipoprotein. 

 

Moreover, genetic epidemiology reveals genetic variants associated with stroke. ALDH2-rs671, 

the variant associated with alcohol intake, has been used to conduct stroke mendelian 

randomization studies, proving alcohol consumption uniformly increases blood pressure and 

stroke risk59. And in our results, ALDH2 indeed downregulated in visceral adipose tissue which is 

well in line with previous reports. However, the associations were only replicated in male Asian 

population, there may be more details of mechanisms of ALDH2 to be explored. Our results may 

provide clues for further genetic studies. When we investigated the DE genes across analyzed 

tissues, we found excessive numbers of genes identified in right atrial appendage (RAA), the 

entire anterolateral triangular part of the right atrium. Despite most interests of stroke prevention 

(i.e. left atrial appendage closure) in atrial fibrillation (AF) patients are on left atrial appendage 

(LAA), the role of RAA in disease risk need to be elucidate and RAA might be an alternative 

position for stroke or cardiovascular diseases prevention. 

 

The DTHFUCOD First Underlying Cause Of Death may affect the results 

 

Materials & Methods 
 

GTEx data 
 
We collected RNA-Seq data from the Genotype-Tissue Expression (GTEx) project v6 release39 

(dbGaP: phs000424.v6.p1). The RNA-Seq data were filtered and preprocessed using Yet Another 

RNA Normalization pipeline (YARN) R package67, and normalized in a tissue-aware manner by 

smooth quantile normalization68. GTEX-11ILO was remove due to potential sex misannotation. 

We only selected subjects that had MHCVD value 0 or 1 and genotype PCs, also excluded sex-

specific tissues (ovary, prostate, testis, uterus, vagina) and cell lines. Moreover, the suboptimal 

samples, those with “FLAGGED” in the SMTORMVE field, were removed. Finally, total 6,295 

samples were included in downstream analysis. Then, based on the similarity of expression 

profiles, we grouped 13 brain subregions into three main clusters by PCA: Brain-0 (amygdala, 

anterior cingulate cortex, frontal cortex, hippocampus, hypothalamus, spinal cord, substantia 

nigra), Brain-1 (cerebellar hemisphere, cerebellum) and Brain-2 (caudate, nucleus accumbens, 

putamen). 

 
The medical history of cerebrovascular disease of GTEx subjects was recorded as value 0 (No), 1 

(Yes) and 99 (Unknown) in variable MHCVD (dbGaP: phv00169142.v6.p1). The first 20 genotype 

principal components (PCs) of 450 donors were downloaded from dbGaP (phs000424.v6.p1), and 

the top three PCs were used as they captured the major genotype variance.  

 

Differential expression analysis 
 
Differential expression (DE) analysis between CVD and non-CVD samples was conducted using 

the voom-limma pipeline40,41: RNA-Seq read counts were transformed to log counts per million 
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(log-cpm) with associated precision weights to stabilize the variance in the data using the voom 

function, followed by linear model fitting and empirical Bayes procedure. In each brain tissue 

cluster, we modelled gene expression using the following linear regression model with blocking 

due to multiple and various tissue sites: 

 
Y ~ β1 Sex + β2 Age + β3 BMI + β4 Hardy + β5 Batch + β6 MHCVD + β7 PC1g + β8 PC2g + 
β9 PC3g + β10 Site + u1 Subject + ε 
 
where Y is the gene expression level; Sex denotes the reported sex of the subject; Age denotes the 

age of the subject; BMI denotes the body mass index of the subject; Hardy denotes the 4-point 

Hardy scale of the subject (death classification), subjects where Hardy scale was missing were 

excluded ; Batch denotes the type of nucleic acid isolation batch of the sample; MHCVD denotes 

whether the subject had CVD medical history; PCg1~3 denote the first three PC values inferred 

from the subject genotype; Site denotes the tissue type of the sample; Subject denotes subject ID 

of the sample and was treated as a random effect factor.  

 

In each tissue except brain tissues, we adopted the following linear regression model without 

blocking: 

 
Y ~ β1 Sex + β2 Age + β3 BMI + β4 Hardy + β5 Batch + β6 MHCVD + β7 PC1g + β8 PC2g + 
β9 PC3g + ε 

 
To control the false discovery rate (FDR), the P-values from the regression model were adjusted 

for multiple testing using Benjamini-Hochberg method69. The DE genes of brain clusters were 

ranked by the combined adjusted P-values derived from the three adjusted P-values in the results 

of each cluster using Fisher’s method42. The significant threshold of DE genes was set as 0.1 FDR. 

 

Functional Enrichment Analysis 
 
Pre-ranked Gene Set Enrichment Analysis (GSEA)70 was conducted with gene lists ranked by the 

t-statistics from the results of DE analysis with default program parameters and a default 

background set on GSEA v4.0.1. Gene Matrix Transposed (GMT) files of Gene Ontology (GO) 

were downloaded from Molecular Signatures Database v7.0. Disease Ontology (DO) annotation 

file was downloaded from Alliance of Genome Resource and processed to gmt file. Likewise, 

Human Phenotype Ontology (HPO) gmt were modified from the file downloaded on HPO 

website71. 

 

Collection of costumed genes 
 

GWAS association data were all downloaded from GWAS catalog using keyword “stroke” and 

“brain aneurysm”. 
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