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Abstract 1 

The success of CRISPR/Cas9 gene editing applications relies on the efficiency of the 2 

single guide RNA (sgRNA) used in conjunction with the Cas9 protein. Current sgRNA design 3 

software vary in the details they provide on sgRNA sequence efficiency and are almost 4 

exclusively restricted to model organisms. The crispRdesignR package aims to address these 5 

limitations by providing comprehensive sequence features of the generated sgRNAs in a single 6 

program, which allows users to predict sgRNA efficiency and design sgRNA sequences for 7 

systems that currently do not have optimized efficiency scoring methods. crispRdesignR reports 8 

extensive information on all designed sgRNA sequences with robust off-target calling and 9 

annotation and can be run in a user-friendly graphical interface. The crispRdesignR package is 10 

implemented in R and has fully editable code for specialized purposes including sgRNA design 11 

in user-provided genomes. The package is platform independent and extendable, with its source 12 

code and documentation freely available at https://github.com/dylanbeeber/crispRdesignR. 13 

 14 

Introduction 15 

The CRISPR/Cas9 system has attracted attention in recent years for its ability to edit and 16 

regulate DNA in a wide variety of organisms and cell types. Using a strand of single guide RNA 17 

(sgRNA), the Cas9 protein is able to search a cellular genome and induce double stranded breaks 18 

at a target sequence complementary to the sgRNA that can then be modified1. However, several 19 

sequence features of the sgRNA and surrounding DNA sequence can influence the enzymatic 20 

activity of Cas92. Crucially, the genomic DNA must contain a protospacer adjacent motif (PAM) 21 

in the region immediately following the 3’ end of the target DNA for Cas9 to recognize the 22 

sequence1. Other sgRNA sequence features like nucleotide composition, presence of 23 

homopolymers, and self-complementarity can affect the activity of the sgRNA2. 24 

The efficiency of the sgRNA is a major factor in the success of Cas9 gene editing 25 

applications2. To predict the efficiency of sgRNA sequences, scoring methods have been 26 

developed by applying machine learning techniques to CRISPR/Cas9 experimental data3,4,5. 27 

These efficiency scoring methods are accurate within the parameters of the experiments they 28 

were based on. However, the predictions are not necessarily generalizable to Cas9 applications in 29 

all cell types, organisms, and PAMs not included in the efficiency scoring experimental data. At 30 

their most predictive, scoring methods have been shown to only explain about 40% of the 31 
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variation in efficiency for most guides6. Known sequence features that decrease sgRNA 32 

efficiency are not always considered by scoring models3,4, which could result in suggesting 33 

inactive sgRNAs. The predictive power of these machine learning models may be improved by 34 

considering their predictions along with the known effects of sequence features in the genome. 35 

Potential sgRNA sequences that contain a sequence feature not conducive to Cas9 36 

enzymatic activity can be scored highly by efficiency scoring methods that have not been trained 37 

on that feature. In order to generate the most active sgRNA, sequence features must be 38 

considered alongside efficiency scoring, however current programs designed to identify suitable 39 

sgRNAs often do not report all sequence features relevant to sgRNA efficiency. This forces users 40 

to run multiple programs to obtain all pertinent information. Features like sgRNA self-41 

complementarity, presence of homopolymers, and potential off-target effects can drastically 42 

affect experimental outcomes and are often not considered by scoring models3,4. sgRNA 43 

sequences that are able to form hairpins with themselves or with other regions of the RNA 44 

backbone have been shown to either reduce or increase activity in separate situations7,8. 45 

Homopolymers that contain 4 or more consecutive identical base pairs (e.g. GGGG) can 46 

decrease cutting activity, and a homopolymer with 4 consecutive T’s will be terminated 47 

prematurely in systems that utilize RNA polymerase III to create the sgRNA7. It is possible for 48 

Cas9 to target and cleave DNA sequences with multiple mismatches to the guide RNA resulting 49 

in off-target effects3. While often problematic for those working with Cas9, these off-target 50 

sequences as well as hairpins and homopolymers can be predicted from the sequence features of 51 

the guide RNA. Such features are expected to affect activity more consistently across different 52 

cell types, organisms and PAMs than specific nucleotide position features2. 53 

We have developed the R package crispRdesignR to improve upon current sgRNA design 54 

software for CRISPR/Cas9 applications by providing all guides that match a customizable PAM 55 

sequence within a target region of any genome using the advanced Doench Rule Set 2 predictive 56 

model3, and by reporting sequence features often missing from other available programs but 57 

important in the CRISPR/Cas9 system including the GC content, self-complementarity, presence 58 

of homopolymers, and potential off-target effects for each candidate sgRNA. This is especially 59 

useful for working with non-standard Cas9 applications where the efficiency score may not be 60 

reliable. An optional table can be generated that displays supplementary information on where 61 

the potential off-target effects occur in a user-selected genome. The crispRdesignR package can 62 
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also be utilized with a graphical user interface for easier accessibility to non-bioinformaticians. 63 

In addition, the flexibility of this R package allows users to design sgRNAs in non-model 64 

organisms by inputting custom genomes and annotation files for analysis, highlighting the 65 

versatility of crispRdesignR. 66 

 67 

Materials and Methods 68 

Model Features 69 

The predictive sgRNA efficiency scoring model used in crispRdesignR examines the 70 

same features as the Doench model3 except for the cut site within the resulting protein, because 71 

not every Cas9 target site is located in a protein encoding region. Our program employs a 72 

gradient boosted regression model trained on the FC and RES data set used in Doench Rule Set 73 

2. The FC and RES data sets3 contain about 5000 sgRNA sites plus context sequence (30-mer) 74 

for a variety of different genes. Ranks for each sgRNA site are calculated from read counts and 75 

normalized between 0 and 1, which is used by the gradient boosting algorithm gbm15 to predict 76 

sgRNA activity. The Doench 2016 scoring method is trained on guide RNA utilizing the 77 

5’NGG3’ PAM sequence. When designing guides for custom PAM sequences, crispRdesignR 78 

does not change the scoring method as many of the sequence features considered by Doench 79 

20163 are unrelated to the PAM sequence. It is however important to note that the accuracy score 80 

provided is expected to be less accurate when designing sgRNA sequences with custom PAMs. 81 

The presence of specific nucleotides at certain positions in an sgRNA target site can 82 

influence the activity of that site. crispRdesignR will consider the single and dinucleotides at 83 

each position and convert them into features that our machine learning model uses to predict 84 

activity. In accordance with the Doench Rule Set 23, our model accounts for the presence of 85 

position-dependent single nucleotides, position-dependent dinucleotides, single nucleotide count, 86 

dinucleotide count, GC count, nucleotides that bookend the PAM sequence, and thermodynamic 87 

features of the target sequence plus context region (30-mer). As in Doench Rule Set 2, nucleotide 88 

features are one-hot encoded, meaning that the presence of a nucleotide in a position is either 89 

“off” (0) or “on” (1). This leads to four features for each single nucleotide position (A, C, T, or 90 

G) and sixteen features for each dinucleotide position (AA, AC, AG, AT, etc.). One-hot 91 

encoding of these features is crucial for accurate machine learning predictions and is made 92 

possible by the vtreat package9. A position-independent total count of single and dinucleotides is 93 
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also used. This is simply the number of each specific nucleotide and dinucleotide combination in 94 

the 30-mer. Four features counting each single nucleotide and sixteen features counting each 95 

dinucleotide are recorded. 96 

The GC count of the target site (20-mer) is taken and converted into a single feature (a 97 

number between 0 and 20). However, two additional GC features are taken, one binary variable 98 

for if the GC count is above 10 and another for if the GC count is below 10. The two nucleotides 99 

that bookend the “GG” of the PAM site are one-hot encoded as a dinucleotide feature. These are 100 

the nucleotides at position 25 and 28 of the 30-mer. As with the position-dependent dinucleotide 101 

features, these two nucleotides are converted into 16 binary features, one for each possible 102 

dinucleotide combination. 103 

Four thermodynamic features are recorded, one for the predicted melting temperature 104 

(Tm) of the sgRNA plus context sequence (30-mer), one for the Tm of the five nucleotides 105 

upstream from the PAM (positions 20-24), one for the Tm of the eight nucleotides upstream 106 

from the previous 5-mer (positions 12-19) and one for the Tm of the five nucleotides upstream 107 

from the 8-mer (positions 7-11). The Doench Rule Set 2 uses the Tm_staluc function from 108 

biopython to calculate the Tm of these regions, so the function employed by crispRdesignR 109 

mirrors the Tm_staluc function using thermodynamic data from Allawi and SantaLucia10. 110 

 111 

Model Predictions 112 

The model features were used to train a gradient boosted regression model with the R 113 

package gbm11 on the FC and RES data used by the Doench Rule Set 2. Position-dependent 114 

features that contained no variation due to the restrictive PAM site were removed. Other features 115 

that showed no impact on the predictive power of the model were also removed. To predict the 116 

efficiency of package-generated sgRNA target sequences, the same features collected to design 117 

the model are collected for each possible target site. The generated data are then run through the 118 

gbm package and return a number from 0 to 1 for each target site, with 0 indicating less activity 119 

and 1 indicating greater activity. 120 

 121 

Off-Target Annotation 122 

Users may search any genome that is provided through the BSgenome package12. 123 

BSgenome also allows users to import custom genomes and DNA sequences from FASTA files 124 
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(using the forgeBSgenomeDataPkg command on a seed file that describes the paths to the raw 125 

sequence data in FASTA format; more information can be found in the BSgenome 126 

documentation). Genome annotation files (.gtf) can be acquired through the Ensembl and 127 

BioMart databases or users can upload their own. Larger genomes should be loaded as a 128 

compressed .gtf file (.gtf.gz) due to size limitations. 129 

When off-target searching is on, each sgRNA sequence is checked for the presence of 130 

possible off-target sequences with up to four mismatches in the 20-mer. Off-target sequences 131 

must match the rules of the PAM site or be included in the list of possible 5’NGG3’ PAM 132 

mismatches made available by Doench et al.3. Off-target sequences that contain 4 mismatches 133 

and do not directly match the PAM sequence are not reported by crispRdesignR as they are 134 

highly unlikely to be active3. The matchPattern() function available in the package BioStrings13 135 

is used to collect data on each possible off-target sequence. matchPattern() searches the target 136 

genome for matching patterns with between 1 and 4 mismatches. Indels are not considered when 137 

searching for matches. When searching genomes with many base pairs (e.g. over 1 billion) it is 138 

recommended to keep the DNA query sequence under 500 base pairs to keep the search time to 139 

several minutes. While the matchPattern() function is slower than other match finding methods 140 

because it does not require the genome to be pre-indexed, which itself takes additional time, this 141 

method allows users to easily search uploaded custom genomes without prior processing.  142 

The locations of the possible off-target sequences are cross referenced with a user 143 

supplied genome annotation file (.gtf) and reports an off-target information table listing each 144 

possible off-target along with the sgRNA target site that it matches. crispRdesignR reports 145 

sgRNA target sequences and other perfect genomic matches in the off-target annotation table so 146 

that the user may verify their target location within the genome. The off-target information table 147 

lists the sequence type of the off-target, as well as the gene ID, gene name, and exon number. A 148 

cutting frequency determinant (CFD) score for each off-target is also listed in the off-target 149 

annotation table, which is calculated using data from Doench et al.3 to estimate the likelihood of 150 

Cas9 targeting this sequence. Each mismatch position is assigned a value based on the change 151 

from one specific nucleotide to another and the values are multiplied, producing a number 152 

between 1 and 0, with 1 being more likely to be targeted and zero being less likely. 153 

crispRdesignR does not consider the position of the query target DNA sequence when finding 154 
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possible off-targets so that the user may verify the location of their sgRNA target sequences 155 

within the genome in the off-target annotation table.  156 

 157 

Functions 158 

All data is generated with a single function in R13: sgRNA_design(userseq, genomename, 159 

gtfname, userPAM, calloffs = TRUE, annotateoffs = TRUE). 160 

• userseq: The target sequence with which to generate sgRNA guides. Can either be a character 161 

sequence containing DNA bases (A,C,T,G) or the name of a FASTA or text file in the 162 

working directory. 163 

• genomename: The name of a genome (in BSgenome format) to check for off-targets and 164 

provide locations for sgRNA guides. These genomes can be downloaded through BSgenome 165 

or compiled by the user. 166 

• gtfname: The name of a genome annotation file (.gtf) in the working directory to annotate 167 

sgRNAs and off-target sequences. 168 

• userPAM: An optional argument used to set a custom PAM for the sgRNA. If not set, the 169 

function will default to the "NGG" PAM. Warning: the accuracy of Doench efficiency scores 170 

has only been tested for the "NGG" PAM. 171 

• calloffs: If TRUE, the function will search for off-targets in the genome chosen specified by 172 

the genomename argument. If FALSE, off-target calling will be skipped. 173 

• annotateoffs: If TRUE, the function will provide annotations for the off-targets called using 174 

the genome annotation file specified by the gtfname argument. If FALSE, off-target 175 

annotation will be skipped. 176 

• getsgRNAdata(x): This command is used to retrieve the data on the generated sgRNA 177 

sequences, where x is the raw data generated by sgRNA_design(). 178 

• getofftargetdata(x): This command is used to retrieve the additional off-target data, where x is 179 

the raw data generated by sgRNA_design(). 180 

crispRdesignR makes use of the R packages vtreat9 , gbm11, Bsgenome12, BioStrings14, 181 

shiny15, and stringr16. Sequence homology features are calculated based on the gRNA 182 

interaction screen reported in Thyme et. al. 17. 183 

 184 

Results 185 
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The crispRdesignR tool is built entirely in the R programming language, utilizing various 186 

packages to assist with different aspects of the program (see Materials and Methods). The 187 

program can be run on the command line or through a graphical user interface (GUI). Guide 188 

RNAs are designed based on a 23 base pair sequence from a user-input DNA sequence or 189 

FASTA file that ends with the PAM. The only hard limitation on DNA regions that can be used 190 

as guide RNA is the presence of the PAM site, 5’NGG3’ in the case of spCas9, the most 191 

commonly used Cas9 enzyme. In order to effectively provide a score for the experimentally-192 

supported scoring method used in crispRdesignR, flanking sequence is also collected; this 193 

flanking sequence includes the four base pairs before the 5’ end of the sgRNA and three base 194 

pairs after the 3’ end of the PAM sequence. In total, a region of 30 bases pairs is collected for 195 

each possible sgRNA. The R package searches for sgRNAs from the input and returns a table 196 

listing candidate sgRNAs and their sequence features, and optionally returns annotated off-target 197 

information in a user-chosen genome (Figure 1). The GC content of each target sequence is 198 

calculated excluding the PAM site, as the GC content of the PAM does not affect binding to the 199 

target region3. The self-complementarity score provided by crispRdesignR includes possible 200 

regions of self-complementarity within both the sgRNA target sequence and the region on the 201 

sgRNA backbone that is prone to forming hairpins. Homopolymers are detected by searching for 202 

strings of 4 or more consecutive base pairs. 203 

 204 

Featurization 205 

crispRdesignR has adopted the efficiency scoring method developed in Doench et al. 206 

(2016), employing a gradient boosted regression model trained on the FC and RES data set used 207 

in Doench Rule Set 2. In accordance with the Doench Rule Set 2, our model accounts for the 208 

presence of position-dependent single nucleotides, position-dependent dinucleotides, single 209 

nucleotide count, dinucleotide count, GC count, nucleotides that bookend the PAM sequence, 210 

and thermodynamic features of the target sequence plus context region (30-mer). The presence of 211 

specific nucleotides at certain positions in an sgRNA target site can influence the activity of that 212 

site. crispRdesignR considers the single and dinucleotides at each position and converts them 213 

into features that the machine learning model uses to predict activity.  214 

 To find off-target hits for the sgRNA, the genome from a user-selected species is loaded 215 

into the program through the Bsgenome12 package in R, and each guide RNA is then searched 216 
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through the genome for up to 4 mismatches. Once a complete list of matching sequences with 217 

genomic locations has been collected, the program then cross-references the matching locations 218 

with gene information provided in a user-input gene annotation file (.gtf). If the sgRNA matches 219 

a position in a gene, crispRdesignR reports the gene name as well as whether the match lies in a 220 

coding region. 221 

Running crispRdesignR will output two results tables (Figure 2). The first table contains 222 

the information on each individual sgRNA, including the sequence, PAM, location, direction 223 

relative to the target sequence, GC content, homopolymer presence, self-complementarity, off-224 

target matches, and predicted efficiency score. The second table contains the information about 225 

each off-target match, including the original sgRNA, off-target sequence, chromosome, location, 226 

direction relative to the target sequence, number of mismatches, gene ID, gene name, type of 227 

DNA, and exon number. These tables can be sorted and searched through the GUI or 228 

downloaded as .csv files for further analysis. The location of the original sgRNA target sequence 229 

in the genome can be found in the off-target information section for identity verification. If no 230 

genome is provided or off-target searching is skipped, no data will be provided in the off-target 231 

matches column or the off-target information table. 232 

 233 

Benchmarking 234 

Programs used to design sgRNA sequences often rely on predictive models but fail to 235 

report other sequence features that impact Cas9 enzymatic activity. In other cases, the 236 

information reported is calculated without excluding the PAM site, which is a recognition site for 237 

the protein and is not found in the sgRNA sequence. For example, CHOPCHOP v218,19 is one of 238 

the few applications that will provide the GC content of each sgRNA sequence, but it provides 239 

the GC content of both the target sequence plus the PAM site, instead of the target site alone 240 

(however, this has been corrected in the newer version of CHOPCHOP (v3)20.  241 

The crispRdesignR software excludes the PAM site from the sequence information 242 

reported and provides more sequence features to the user than other prominent free sgRNA 243 

design programs (Table 1). Its ability to search custom genomes and annotation files is essential 244 

when designing targets for non-model organisms and non-standard cell types. The ability to use 245 

customized PAMs in crispRdesignR permits the design of sgRNAs for uncommon Cas9 proteins. 246 

Another R-based program, CRISPRseek21, also allows users to design sgRNA in custom 247 
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genomes with non-standard PAMs, but lacks a GUI and does not report several important 248 

sequence features such as hairpins, GC content, and homopolymers. 249 

 250 
Speed Comparisons 251 

 crispRdesignR has relatively fast runtimes to discover sgRNA sequences compared to 252 

other tools, although using custom genomes that are not pre-indexed leads to increased runtimes 253 

when choosing to call and annotate off-targets (Table 2). Most other web-based programs have 254 

pre-indexed genomes for fast off-target calling, but indexing can take several hours to perform 255 

and as such is not always ideal for users uploading custom genomes or for few queries. On a 256 

desktop with 3.4 GHz CPU and 8.00 GB RAM, the run time for a 128 bp sequence (“DAK1 257 

short”, provided with the program) in S. cerevisiae averages out to 8 seconds in crispRdesignR 258 

when calling off-targets (3 seconds without off-target calling) compared to 7 seconds in 259 

CRISPOR22 and 5 seconds in CHOPCHOP v219. GuideScan23 has some of the shortest runtimes 260 

when genomic coordinates are known beforehand and provided (2-3 seconds in H. sapiens and S. 261 

cerevisiae), but the web application can take over a minute if provided a FASTA file when 262 

searching the human genome. crispRdesignR and CRISPRseek23 are comparable in terms of 263 

speed, with crispRdesignR gaining a speed advantage when searching smaller genomes and 264 

CRISPRseek gaining an advantage in larger genomes. When performing off-target searches in 265 

the human genome, each additional sgRNA generated by crispRdesignR will add about 1 minute 266 

of run time. To reduce run-time when searching for off-targets, it is recommended that users 267 

keep DNA query sequences under 250 bases pairs when searching against a genome containing 268 

over a billion base pairs.  269 

 270 

Discussion 271 

When utilizing other web-based sgRNA design programs, a user is often limited by a list 272 

of preinstalled genomes. crispRdesignR sets itself apart by allowing the user to import a custom 273 

genome and/or genome annotation file to search for sgRNAs and off-target effects. Allowing 274 

custom genomes and providing extensive target sequence information makes crispRdesignR 275 

particularly useful when working with non-model organisms, non-standard cell types and 276 

uncommon PAMs. The crispRdesignR software provides comprehensive sequence features to the 277 

user that are often omitted from other prominent free sgRNA design programs. The complete 278 
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sequence feature information provided by crispRdesignR is very well-suited to applications 279 

where efficiency scores are of limited use. When using efficiency scoring methods with 280 

conditions that they have not been trained on (for example different organisms, cell types, and 281 

PAMs), the efficiency predictions will be less accurate. However, the predictive power of the 282 

model may not be completely lost if efficiency scoring methods are used in addition to known 283 

effects of various sequence features on activity to eliminate inactive sgRNA3. 284 

The open source nature of crispRdesignR allows user to build on the features of the 285 

software for their specific uses. The gradient boosted regression model that crispRdesignR uses 286 

for efficiency scoring can be trained on other experimental data sets that contain the sgRNA 287 

sequence plus context (30-mer) and guide rankings assigned scores between 0 and 1. This allows 288 

for user-generated efficiency scoring models trained on data relevant to that user’s needs. 289 

However, for this to be a strongly predictive model, activity data must be available and 290 

normalized for thousands of sgRNA sequences in that relevant context3. The accessibility of the 291 

output tables as .csv files generated by crispRdesignR also allow a user to easily isolate the 292 

sgRNA sequences and run them through other scoring applications that are more appropriate for 293 

a specific application but that lack the sequence features, off-target annotation, or genome 294 

customization of crispRdesignR.  295 

The flexibility and detail that is provided by the robust off-target annotation system used 296 

by crispRdesignR currently limits the speed of the program. While other programs may allow a 297 

user to index genomes for quicker searching, the process of indexing a custom genome can be 298 

hardware intensive and overall slower than a few searches on an unindexed genome for off-299 

targets, particularly for design applications in a small target region. For applications that require 300 

sgRNA design in a large target region (over 1000 base pairs) within a large genome (over 1 301 

billion base pairs), the user can turn off off-target calling in crispRdesignR to prevent long run 302 

times. Although web-based programs that access pre-indexed genomes offer superior speed, we 303 

show that they often report less sequence feature information, fewer off-targets, and they are 304 

limited to the genomes that can be searched to a pre-defined list. 305 

Another R package, CRISPRseek23, uses similar methods of efficiency scoring and off-306 

target calling, allowing for searching custom genomes and annotation files. However, it lacks the 307 

graphical user interface and several sequence features provided by crispRdesignR. The two 308 

programs both take longer to run than many of their web-based counterparts due to the ability to 309 
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use non-indexed genomes, although crispRdesignR has a speed advantage when searching 310 

smaller genomes while CRISPRseek is faster when searching larger genomes. Although both 311 

programs use the same efficiency scoring method, CRISPRseek requires the user to add python 312 

packages in order to obtain the scores based on Doench Rule Set 23. crispRdesignR is able to 313 

provide scores based on Rule Set 2 completely within R. Each program contains exclusive 314 

features that the other lacks that may be useful in different settings. For example, CRISPRseek 315 

has the ability to filter sgRNA based on restriction enzyme cutting sites, while crispRdesignR 316 

detects possible self-complementary sgRNA sequences.  317 

The R package crispRdesignR sets itself apart by allowing the user to import a custom 318 

genome and/or genome annotation file to search for sgRNAs and off-target effects, while 319 

providing extensive target sequence information and the option of an accessible GUI. These 320 

unique features make crispRdesignR particularly useful for non-bioinformaticians working with 321 

non-model organisms, non-standard cell types, and uncommon PAMs. Accessible source code 322 

further adds to the versatility of crispRdesignR and lends itself to integration with different 323 

analysis pipelines and efficiency scoring methods as future technological improvements are 324 

made. 325 

 326 

Data Availability 327 

 The source code and example data for the crispRdesignR package is available at: 328 

https://github.com/dylanbeeber/crispRdesignR. 329 
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 393 

Software name 
CHOPCHOP 
v218,19 

CRISPR 
Design3 

CRISPRseek21 CRISPOR22 
 
GuideScan
23 

crispRdesignR 

Providing entity Harvard Broad 
Institute 

UMASS 
Medical 

Tefor MSKCC UML 

All targets Yes No Yes Yes Yes Yes 

Scoring method Customizable Doench Doench Doench & 
M.-Mateos 

Doench Doench 

Hairpins Yes No No No No Yes 

GC content Yes No No No No Yes 

Homopolymers No No No No No Yes 

Max no. of 
mismatches 

3 4 4 4 3 4 

PAM Customizable NGG, 
NNGRR 

Customizable Customizable NGG, 
TTTN 

Customizable 

Off-target 
Annotation 

No Limited Yes Yes No Yes 

Table 1. Feature comparisons between several prominent free sgRNA design programs 394 
CHOPCHOP v218,19, CRISPR Design3, CRISPRseek21, CRISPOR22, and GuideScan23. Features 395 
reported include whether all targets that match the PAM are output (All targets), the scoring 396 
method from Doench3, Moreno-Mateos4, or customizable), self-complementarity through hairpin 397 
detection, GC content, homopolymer filtering, the maximum number of mismatches permitted 398 
between the guide sequence and reference, the available PAM sequence, and whether off-target 399 
sequences are reported and annotated. 400 
 401 
Test 
Sequence 

Genome CHOP-
CHOP19 

CRISPR 
Design3  

CRISPR
seek23  

CRISP-
OR22  

Guide
Scan23 

crispRdesignR 
(no off-
targets) 

crispRdesignR 
(with off-
target calling) 

DAK1 
short 

S. cerevisiae 
(yeast) 

0:05  N/A 2:10  0:07  0:02 0:03  0:08  

DAK1 S. cerevisiae 
(yeast) 

0:18 N/A 4:24  0:19  0:02 0:14  1:47  

MYBPC3 
deletion 

H. sapiens 
(human) 

0:06 0:15  6:50  0:10  0:03 0:03  7:36  

Partial 
ADRB1 

H. sapiens 
(human) 

0:34 0:26  14:35 0:15  0:03 0:05  15:42  

Table 2. Runtime comparisons for example sequences in each program analyzed. Run times 402 
(minutes:seconds) were averaged over three trials on a desktop PC with 3.4 GHz CPU and 8.00 403 
GB RAM. Some programs offered a limited list of available genomes that prevented analysis 404 
(indicated by N/A). The DAK1 short example sequence can be found on the crispRdesignR 405 
github site; it is 128 bp long and generates 13 target sequences, with 35 off-targets. The DAK1 406 
sequence contains 1780 bp and generates 170 target sequences, with 495 off-targets. The 407 

MYBPC3 deletion sequence contains 57 bp and generates 6 target sequences, with 2,219 off-408 
targets. The Partial ADRB1 sequence contains 70 bp and generates 11 target sequences, with 409 
9,200 off-targets. 410 
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Figure 1. A screen capture from the crispRdesignR GUI demonstrating the target sequence, 411 
genome selection, and genome annotation file inputs. Partial sgRNA results and off-target 412 
annotations are also shown. 413 
 414 

Figure 2. The output tables of crispRdesignR using a partial version of the DAK1 gene 415 

sequence, which is provided with the package download. Not all off-target matches are shown in 416 
the screenshot. Columns in the sgRNA table include sgRNA sequence, PAM, direction, start, 417 
end, GC content, presence of homopolymers, possible self-complementary sequences, efficiency 418 
score3, and number of matches in the user-provided genome with between 0 and 4 mismatches 419 
(MM). The Off-target information table includes the original sgRNA sequence, chromosome, 420 
start, end, number of mismatches, strand, CFD scores, matched sequence, gene ID, gene name, 421 

sequence type, and exon number. 422 
423 
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Figure 1 424 

425 

426 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/805630doi: bioRxiv preprint 

https://doi.org/10.1101/805630
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18

Figure 2 427 

428  
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