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Highlights 
• This work investigates the feasibility of using a one-time system calibration (called GIRF) 

based on a linear time-invariant gradient model to account for k-space trajectory 

deviations in spiral fMRI. 

• We show that the image quality and the spatial specificity of the fMRI activation are 

substantially improved when using the GIRF-prediction for trajectory correction while the 

nominal reconstructions suffer from artifacts and mis-placed fMRI activation. 

• We demonstrate that system characterization via the GIRF can enable spiral fMRI in 

situations when concurrent monitoring is not available. 

Abstract  
Purpose: Spiral imaging is very well suited for functional MRI, however its use has been limited 

by the fact that artifacts caused by gradient imperfections and B0 inhomogeneity are more 

difficult to correct compared to EPI and requires accurate knowledge of the traversed k-space 

trajectory. With the goal of making spiral fMRI more accessible we have evaluated image 

reconstruction using trajectories predicted by the gradient impulse response function (GIRF), 

which can be determined in a one-time calibration step. 

Methods: GIRF-predicted reconstruction was tested for high-resolution (0.8mm) fMRI at 7T. 

Image quality and functional results of the reconstructions using GIRF-prediction were 

compared to reconstructions using the delay corrected nominal trajectory and concurrent field 

monitoring. 

Results: The reconstructions using nominal spiral trajectories contain substantial artifacts and 

activation maps contain mis-placed activation. Image artifacts are substantially reduced when 

using the GIRF-predicted reconstruction and the activation maps for the GIRF-predicted and 

monitored reconstructions largely overlap. The GIRF reconstruction provides a large increase in 

the spatial specificity of the activation compared to the nominal reconstruction.  

Conclusion: The GIRF-reconstruction generates image quality and fMRI results similar to using 

a concurrently monitored trajectory. The presented approach does not prolong or complicate the 

fMRI acquisition. Using GIRF-predicted trajectories has the potential to enable high-quality high-

resolution fMRI in situations where concurrent monitoring is not available. 
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Introduction 
Blood Oxygen Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) requires 

fast imaging for which the current gold standard are acquisitions with an Echo Planar Imaging 

(EPI) readout. Spiral readouts have many desirable properties for rapid acquisitions and have 

long been considered a promising alternative to EPI for fMRI (Glover, 2012): They can provide 

higher k-space sampling efficiency compared to EPI sampling (Glover, 2012; Glover and A. T. 

Lee, 1995; Noll et al., 1995) and allow a more flexible choice of echo time (TE). The latter is 

especially useful for high-resolution fMRI at 7T or above where for EPI large parallel imaging 

factors or Partial Fourier are required to achieve the optimal TE for BOLD contrast. Further, 

spiral-in/out trajectories (Glover and Law, 2001) can increase the acquisition efficiency and can 

improve fMRI in regions prone to dropout, such as the orbitofrontal cortex. Finally, spiral imaging 

naturally has reduced sensitivity to pulsatile motion (Glover and A. T. Lee, 1995; Yang et al., 

1998) and under-sampled non-Cartesian imaging results in relatively incoherent aliasing, which 

is less detrimental to image quality compared to coherent aliasing, which occurs in under-

sampled EPI (Wright et al., 2014). 

 

Despite these advantages spiral imaging has not yet become a mainstream fMRI acquisition 

strategy. The reasons for the slow uptake of spiral fMRI include the fact that artifacts caused by 

gradient imperfections (discrepancy between the actual and nominal gradients) and B0 

inhomogeneities are more difficult to correct for spiral trajectories compared to EPI. Localized 

off-resonance resulting from susceptibility-induced field inhomogeneities cause dropout and 

shifts in EPI for which a number of established correction methods exist (Andersson et al., 2003; 

Smith et al., 2004). Similarly for gradient infidelity, the correction of the Nyquist ghost artifact in 

EPI is considered a routine step in image reconstruction, for example using navigator lines 

acquired before the readout (Schmitt et al., 1998). For spiral readouts, B0 inhomogeneities and 

trajectory imperfections cause blurring and geometric distortions. To reduce these issues 

gradient delay correction is typically performed in spiral imaging (Börnert et al., 1999). However 

this is usually not as effective as the EPI delay correction, and spiral fMRI images have often 

been blurry as a result, especially around the air-tissue interfaces in the frontal sinuses and ear 

canals.  

 

Monitoring of the encoding fields during the acquisition using Nuclear Magnetic Resonance 
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(NMR) field probes (Barmet et al., 2008; De Zanche et al., 2008) allows for precise 

measurement of the traversed k-space trajectory. In conjunction with a B0 field map covering the 

imaging FOV, included in a model-based reconstruction, this yields high-quality spiral imaging 

(Engel et al., 2018; Kasper et al., 2018; Wilm et al., 2016). This has been shown to enable high-

resolution spiral fMRI (Kasper et al., 2017; Kasper et al., 2019). However, the required setup for 

concurrent monitoring might not always be available, in which case modeling the behavior of the 

gradient chain can be an alternative. 

 

Deviations from the prescribed encoding which are reproducible (for example, induced by eddy 

currents) can be corrected by using a model to characterize the gradients. It has been shown 

(Addy et al., 2012; Vannesjo et al., 2013) that to a high degree of accuracy the gradient chain 

can be considered as a linear, time invariant (LTI) system. For an LTI system, the relation 

between the input to the system and its output is determined by the impulse response of the 

system – in the case of the gradient chain, the gradient impulse response function (GIRF).  

 

We have previously shown for a range of different trajectories that GIRF-prediction enables high 

quality image reconstruction with only minor image quality differences to using the monitored 

trajectory (Vannesjo et al., 2016). This evaluation was performed on individual images. In fMRI, 

however, we perform high duty cycle imaging over extended periods of time (5-10 minutes for a 

typical fMRI run with a single fMRI session often containing multiple runs). We know that 

gradient heating over the course of an fMRI experiment violates the LTI assumption at the basis 

of the GIRF prediction. But we do not know to what extent this will affect an image time-series, 

such as required for fMRI. The aim of the present work is to evaluate the utility of GIRF-based 

reconstruction for functional MRI. The results are assessed by comparison with reconstructions 

based on concurrent field monitoring and nominal trajectories with optimal delay correction. 

 

Methods 
All data were acquired on a 7T Achieva system (Philips Healthcare, Best, Netherlands) using a 

quadrature-transmit coil and 32-channel head receive array (Nova Medical, Wilmington, MA). 

The manufacturer’s built-in eddy current compensation was kept activated for all experiments.  

 

GIRF measurement and GIRF-based trajectory prediction 
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If a system is linear and time-invariant it can be described via its impulse response function, 

which is the output of the system to a very brief input pulse. Knowledge of the system’s impulse 

response allows predicting the system response o(t) via convolution of the input waveform i(t) 

with the impulse response (equation [1]). In the frequency domain this corresponds to a 

multiplication with the Fourier transform of the impulse response [2] (typically called the system 

transfer function – for simplicity we use the acronym GIRF referring to the gradient response 

function both in the time and in the frequency domain).  

o(t) = i(τ ) ⋅ girf (t −τ ) ⋅dτ∫      [1] 

    [2] 

The characterization of the 7T scanners gradient chain was performed similarly as described by 

Vannesjo et al. (Vannesjo et al., 2013): A set of gradient input pulses were played out and the 

resulting magnetic fields were measured with a dynamic field camera (Dietrich et al., 2016) 

consisting of 16 1H NMR field probes distributed on the surface of a sphere of 10 cm radius. 

This allows fitting of spherical harmonic basis functions up to 3rd order to the probe 

measurements. The GIRF was calculated via frequency-domain division of the measured output 

by the known inputs (using least-squares combination of data from different input pulses). For 

an accurate GIRF calibration the input gradient pulses should cover the entire range of expected 

frequencies, while complying with hardware and acquisition time constraints. This was achieved 

by using 12 different triangular pulses (slew rate 200 T/m/s, time-to-peak 20–158 ms at ~12-ms 

increments). The GIRF measurements took approximately 3 minutes (12 gradient pulses, 3 

gradient directions, 4 averages, 1.2 s TR). The individual probe signals were corrected for 

concomitant fields terms which are a known deviation from the LTI assumption (for details see 

(Vannesjo et al., 2016)). This correction was also applied to the concurrent field monitoring data 

described in the next section.  

 

GIRF-based gradient time courses were determined via frequency-domain multiplication of the 

nominal gradient time course with the measured GIRFs. 

 

Concurrent field monitoring  

 

Concurrent field monitoring was performed during all scans using NMR field probes clip-

O(ω) = I(ω) ⋅GIRF(ω)
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mounted (Barmet et al., 2008) on the 32-channel head receive coil. The probe data was fitted to 

up to 1st order spherical harmonics producing linear gradient field terms in the three orthogonal 

directions (and the corresponding k-space trajectory kx,ky,kz), as well as a 0th-order field term 

(k0), which reflects global field changes over time. 

 

The field probes were excited before the readout gradient starts and were read out concurrently 

with the head-coil acquisition. Due to the long readout and the strong gradients applied the 

probe signal can de-phase prior to the end of the monitoring period. Each probe’s signal was 

therefore visually inspected and if the probe signal had very low amplitude and the signal phase 

exhibited discontinuities the probe was excluded from the spherical harmonic fit. Per subject 

between 5-7 probes (on average 6.2) were excluded in this study, leaving approximately 10 

probes.  

 

Undesired saturation of the NMR field probe signal can occur if the repetition time of the probe 

excitation is short relative to the T1 of the probes. To allow sufficient signal recovery between 

measurements the field camera recording was performed on every third slice. For the non-

monitored slices the k-space trajectory from the last monitored slice was used.  

 

FMRI acquisition 

 

The data collected in this work was also used in a recent publication exploring the use of 

concurrently monitored single-shot spirals for fMRI (Kasper et al., 2019). Data were collected 

from seven healthy volunteers in accordance with the local ethics regulations. The visual fMRI 

paradigm used a simple retinotopic mapping (Warnking et al., 2002) protocol, designed to 

stimulate quarter-fields of the visual cortex, similar to the one used in (Kasper et al., 2014). The 

subjects were presented with 15 s blocks of two flickering, color-changing 90° wedges 

separated by 180° interleaved with 15 s of rest (fixation cross). Alternating blocks of upper 

left/lower right (ULLR) and blocks of upper right/lower left (URLL) wedges were presented over 

100 volumes (~330s). The subjects were instructed to fixate on a point at the center between 

the wedges. In order to maintain the subjects’ attention, they were asked to respond to any 

contrast alteration of the fixation point via button box. 

 

We used a multi-slice 2D gradient-echo sequence with a single-shot Archimedean spiral-out 
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readout (designed according to (Lustig et al., 2008)) of 59 ms duration. The radial spacing of 

samples was chosen to under-sample k-space by a factor of 4 with respect to the field-of-view 

(FOV) of 23 cm. The transversal images were acquired with an in-plane resolution of 0.8 mm 

isotropic and a TE of 25 ms, selected for optimal BOLD contrast. 36 slices of 0.89 mm thickness 

(with a slice gap of 0.11 mm) were acquired, resulting in a FOV of 23x23x3.6 cm and a volume 

TR of 3.3 s. Excitations were preceded by a Spectral Presaturation with Inversion Recovery 

(SPIR) fat suppression module. 

 

A Cartesian multi-echo GRE scan (FOV = 23 cm, resolution = 1 mm isotropic, TE1=4ms, ΔTE = 

1ms, 6 echoes collected) was collected to estimate coil sensitivities and B0 maps. The B0 maps 

were calculated by voxel-vise fitting the signal phase over the different echoes. The coil 

sensitivities were estimated from the first echo of this data.  

 

One subject was excluded from the study due to subject motion. The data from the six 

remaining volunteers were reconstructed and analyzed as described below. 

 

Image reconstruction and processing 

 

The images were reconstructed offline in Matlab using CG-SENSE (Pruessmann et al., 2001) 

with multi-frequency interpolation for fast off-resonance correction (Sutton et al., 2003). For each 

data set three reconstructions were performed using the following k-space trajectories: 

 

1. Delay-corrected nominal trajectory (labeled nominal in figures) 

2. GIRF-predicted trajectory (labeled GIRF or GIRF-predicted in figures) 

3. trajectory measured with concurrent field monitoring (labeled monitored in figures). 

 

For the monitored and GIRF-predicted reconstructions the imaging data was demodulated by 

the measured/predicted 0th-order field integrals k0.  

 

A center frequency adjustment is a typical fMRI pre-scan, which was not performed in this study 

because it is redundant when using concurrent field monitoring. In order to not artificially 

disadvantage the GIRF-predicted and nominal reconstructions we performed a processing step 

equivalent to frequency adjustment. The center frequency was determined via a linear fit on the 
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first 0.9 ms of the monitored k0 (first slice of the first volume, before the readout gradient starts). 

The imaging data was then demodulated by the center frequency for the nominal and the GIRF-

predicted reconstruction.  

 

The nominal trajectories were delay-corrected prior to reconstruction. We minimized the RMSE 

trajectory difference between the nominal and the monitored trajectory on the first readout of the 

time series. A global delay was chosen for the x and y gradient axes as the small differences 

between the two axes were within the standard deviation of the delay calibration).  

 

The reconstructed image time series was corrected for subject translations and rotations 

(McFLIRT/FSL). The data was pre-whitened (FILM/FSL) and GLM-analysis was performed 

using FEAT in FSL(Jenkinson et al., 2012). Activation was assessed using z-statistics 

contrasting ULLR versus URLL. In order to produce fMRI data with high spatial specificity we 

performed no spatial smoothing or clustering. 

 

All of the analysis was performed on a per-subject basis in the space of each subject’s 

functional data to avoid any degradation of the spatial resolution by registration. The first echo of 

the multi-echo GRE was used as the subjects’ structural scans. For the analysis of the 

functional results, masks of the grey matter and white matter in the visual cortex were 

determined as an intersection of a V1-V3 mask (using Juelich atlas (Eickhoff et al., 2005; Zilles 

and Amunts, 2010) labels 81-86 in FSL) and subject-specific GM/WM masks generated by 

segmenting the structural image using FAST/FSL (Zhang et al., 2001). A significance threshold 

of z > 2.3 (p < 0.01) was used for all the activation maps shown. In table 1 the average and 90th 

percentile of the absolute value of significant z-stats within the GM V1-V3 ROI are reported.  

 

The concurrently monitored trajectories and the resulting image reconstructions were used as 

reference to assess the nominal and GIRF-predicted data. For example, in table 1 the trajectory 

error and image artifacts are quantified as root-mean-squared error (RMSE) compared to 

concurrent monitoring, and figure 6 shows how much the GIRF/nominal z-statistic maps deviate 

compared to the measured one. Receiver operator characteristic (ROC) curves were used to 

additionally provide a comparison of the fMRI results without selecting the monitored 

reconstruction as the ground truth. ROC analysis typically involves plotting the number of true-

positive activations against the number of false-positive findings. In this work we used the 
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subject-specific gray and white matter masks of V1-V3 to identify “true positives” and “false 

positives” respectively and plotted this while varying the z-statistic threshold from 0 to the 

maximum z present in the data. The area under the curve (AUC) gives a measure of spatial 

specificity and was used to compare between the reconstructions. In addition to not requiring a 

ground truth, this analysis has the advantage of not depending on a specific significance 

threshold (for example z > 2.3).  

 

The temporal SNR (tSNR) was evaluated in the motion-corrected fMRI time series, and was 

calculated on a voxel-by-voxel basis as the mean signal over time divided by the temporal 

standard deviation of the signal. The tSNR was averaged over the GM V1-V3 ROI and reported 

in table 1 for each subject and reconstruction.  

 

Results 
The delay-corrected nominal spiral trajectory deviates substantially from the one measured with 

the NMR field probes, especially close to the center of k-space where the gradients are rapidly 

changing (Fig.1 a-c). For the example subject shown in Fig. 1 the distance between the nominal 

and the measured trajectory reach ~1.5*1/FOV. The GIRF-predicted spiral trajectories follow the 

measured ones much more closely until about 40 ms into the spiral readout. Towards the edge 

of k-space however there is little improvement from the GIRF-predicted trajectories over the 

nominal ones (for the example subject in Fig. 1 the maximum k-space deviation between the 

GIRF-predicted and the nominal trajectories is ~0.75*1/FOV). 
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The root-mean-square trajectory error (RMSE), defined here as the Euclidian distance to the 

monitored trajectory, averaged for all slices and volumes, is reported for all subjects in table 1. 

Averaged over all subjects the nominal RMSE and GIRF-predicted RMSE were 19.66 rad/m and 

10.85 rad/m respectively. This corresponds to a ~45% RMSE reduction when using GIRF 

prediction over nominal trajectories. Figure 1d/e shows the concurrently monitored, GIRF-

predicted and nominal k0. The zero-order phase offset k0 reflects global variations in B0. 

Demodulation with an accurate estimate of k0 can substantially improve image quality (Vannesjo 

et al., 2016). The measured k0 oscillations are closely coupled with those of the spiral readout 

gradients. This is partially predicted by the GIRF but the amplitude of oscillations is not captured 

accurately. Additionally, the k0 exhibits slower trends over the readout, for example a change in 

slope at about 35 ms, which are not captured by the GIRF. These slower dynamics are 

qualitatively similar across subjects but are not captured by the GIRF prediction, suggesting that 

they are not linearly related to the gradient waveform. Average RMSE over all subjects (see 

table 1 for results for individual subjects) is 1.06 rad for nominal k0 and 0.94 rad for GIRF-

predicted k0, which corresponds to an improvement of 11%. 

Figure 1: Comparison of a nominal delay-corrected, GIRF-predicted and concurrently monitored spiral trajectory. (a) 
An example spiral trajectory and (b) zooms highlighting differences between the three trajectories. (c) The k-space 
distance between nominal/GIRF-predicted and monitored is shown to quantify differences over the course of one 
spiral readout. (d) Spiral readout (x-axis) including zooms. (e) The zero order field term k0 over one readout. Note that 
the nominal k0 has a non-zero slope due to the retrospective “frequency adjustment” correction applied. (f) Difference 
of nominal/GIRF-predicted to measured k0. 
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The GIRF-predicted and nominal trajectories are the same for all reconstructions whereas the 

monitored trajectory is updated every 3rd readout. Fig. 2 illustrates how much the trajectory 

changes over the course of the fMRI experiment. Over the 5.5 minute experiment the trajectory 

gradually shifts from the first volume (blue) to the last volume (red), likely due to gradient 

heating. 

 Subjects à 1 2 3 4 5 6 Mean 

Trajectories 

RMSE |k| nomi 19.78 19.60 20.84 19.63 18.67 19.40 19.66 
RMSE |k| GIRF 9.85 10.66 12.80 9.07 10.55 12.19 10.85 
RMSE k0 nomi 1.186 0.89 1.078 1.04 1.34 0.85 1.06 
RMSE k0 GIRF 1.11 0.75 0.90 0.84 1.24 0.81 0.94 

Images 
RMSE nomi 6.34 6.45 5.22 6.97 5.03 5.06 5.85 
RMSE GIRF 2.01 2.07 1.98 2.36 2.52 1.95 2.15 

tSNR 
tSNR moni 16.44 19.39 14.98 15.43 13.95 15.4 15.93 
tSNR GIRF 14.94 18.25 14.23 14.71 13.37 14.7 15.03 
tSNR nomi 15.47 19.42 14.90 15.66 14.09 15.5 15.84 

fMRI 

mean zstat moni 3.74 4.09 3.98 4.33 4.04 3.72 3.98 
mean zstat GIRF 3.66 3.92 3.86 4.14 3.73 3.75 3.84 
mean zstat nomi 3.54 3.94 3.85 3.84 3.55 3.81 3.76 
90th perct. moni 5.72 6.74 6.34 7.13 6.62 5.76 6.39 
90th perct. GIRF 5.58 6.35 6.04 6.74 5.77 5.88 6.06 
90th perct. nomi 5.14 6.20 5.83 5.97 5.32 5.94 5.73 
ROC AUC moni 928 758 860 1062 624 755 831 

Figure 2: Evolution of k-space trajectories over the fMRI experiment showing how (a) monitored spiral trajectory 
changes form the first volume (dark blue) to the last (dark red) including zoom and (b) RMSE on the k-space distance, 
|k|, for the nominal/GIRF-predicted trajectories with respect to the monitored one. In the lower row (c) k0 with zoom 
and (d) RMSE of the nominal/GIRF-predicted k0 with respect to the measured one are shown. 
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ROC AUC GIRF 809 615 703 981 577 723 735 
ROC AUC nomi 548 341 266 295 80 463 332 

Table 1: Results summary metrics for all subjects (from top to bottom): RMSE trajectory errors for the k-space 
distance, |k|, and the zero order field term, k0, using the monitored trajectory as the ground truth, RMSE image error 
using the monitored reconstruction as the reference, average tSNR in the brain, average and 90th percentile z-
statistics in the GM V1-V3 ROI and the AUC from the ROC plots to evaluate spatial specificity of the z-statistic maps. 

The nominal spiral images are corrupted by blurring and geometric distortion (Fig 3). The GIRF-

predicted reconstruction provides improved image quality. Residual artifacts (mainly subtle 

blurring and some ringing) can be observed in the difference images to the monitored 

reconstruction. The global image artifact levels, defined here as the RMSE to the monitored 

reconstruction averaged over all voxels in a brain mask and all volumes in the fMRI time-series, 

are reported in table 1. Averaged over all subjects the artifact level was 5.85 for nominal image 

reconstructions and 2.15 for GIRF-predicted k0, which corresponds to an improvement of 63%.  
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A comparison of the first and final volume in the fMRI time series revealed an increase in image 

artifacts over time for the GIRF reconstruction (shown for an example subject in Fig. 4). 

However, the image artifact reduction compared to nominal still corresponds to 57% in the final 

volume compared to 65% for the first volume (averaged over all subjects).  

Figure 3: Image quality comparison of reconstructions using monitored trajectories (left), GIRF-predicted trajectories 
(centre) and nominal trajectories (right) for two difference slices for an example subject. To the right of each sub-
figure, the differences to the corresponding reconstructions based on the monitored trajectory are displayed. The 
difference images are scaled to percent of the maximum value in the monitored reconstruction. In the inferior slice (a) 
the GIRF-predicted recon only contains a small increase in blurring compared to the monitored reconstruction. In a 
superior example slice (b) the GIRF-predicted recon additionally exhibits an increase in ringing artifacts.  
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The average temporal SNR over all subjects (table 1) is highest for monitored reconstructions, 

slightly lower for the nominal recon (<1% reduction) and lowest for the reconstructions using 

GIRF-predicted trajectories (~5% reduction). We expect the reconstructions using concurrent 

monitoring to have slightly improved tSNR as we are reducing the temporal variance by 

correcting for field effects caused by long-term gradient heating and physiological field 

fluctuations. This is not captured by the GIRF where we use the same trajectory for each 

volume. The higher tSNR of the nominal reconstruction could potentially be explained by the 

larger amount of blurring present, which acts as a local averaging kernel.  

Figure 4: Quality of GIRF-predicted reconstruction over fMRI time-series: Top row shows difference images of 
monitored and GIRF-predicted reconstructions at the start, middle and the end of the 330-second fMRI acquisition. 
The bottom row shows the RMSE for GIRF-predicted/nominal reconstructions with respect to the monitored one. A 
zoom showing the dynamics of the GIRF-predicted RMSE is shown on the bottom right.  
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For the monitored and GIRF-predicted reconstructions, the spiral fMRI results show good 

correspondence of the activation with gray matter architecture (Figs. 5-6), while the nominal 

data contain misplaced activation (apparent for example where activation is crossing white 

matter boundaries). The activation maps for the GIRF-predicted and monitored reconstructions 

overlap largely (Fig. 6).  

 

Figure 5: Evaluation of the fMRI experiment designed to stimulate the quarter-fields of the visual cortex. Z-statistic 
maps (contrasting ULLR versus URLL) overlaid on the subject’s structural image. The activation for the monitored 
and GIRF-predicted reconstructions match the grey matter architecture well, as seen for example along the calcarine 
sulcus (sagittal view), while the nominal reconstruction results in misplaced activation.   
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The increased specificity for the GIRF-predicted reconstructions is confirmed by the ROC 

analysis (Fig. 7). The GIRF reconstruction provides a large increase in specificity, compared to 

the nominal reconstruction (~122% increase in specificity as captured by the AUC, averaged 

over all subjects). The monitored reconstruction in turn provides a smaller additional 

improvement over the GIRF reconstructed z-stats (average increase of ~13%). The ROC 

analysis assumes that all activated voxels within the GM V1-V3 ROI are true positives. Note that 

this is different to how true positives are defined in the z-statistics map comparison with 

monitored as the ground truth. 

Figure 6: Activation maps (transversal section of visual cortex) for six subjects. Maps of false positives (yellow) and 
false negatives (pink) with respect to the monitored reconstruction are displayed below each GIRF-predicted and 
nominal image.  
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Discussion 
The results presented above show that the reconstructions using the nominal trajectory contain 

a large amount of artifacts (blurring, ringing and distortion) while the monitored and GIRF-

predicted trajectories enable high-quality image reconstruction. The main goal of this work was 

Figure 7: (a) Grey and white matter masks of V1-V3 used for the analysis. (b) Schematic explaining receiver 
operating characteristic (ROC) curve analysis used to assess the spatial specificity of the different reconstructions 
(without having to choose a specific one as ground truth). The dashed line is the line of no discrimination, indicating 
equal amounts of true and false positives. The area under the curves (AUC) values were used as a summary metric 
and are reported in table 1. (c) ROC curves for all six subjects, indicating that the spatial specificity of the activation is 
highest for the monitored reconstructions. The GIRF-predicted reconstruction results in only slightly reduced 
specificity whereas the nominal curve lies substantially closer to the line of no discrimination.  
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to determine if image reconstruction using GIRF-predicted trajectories is suitable for use in 

functional MRI where long high-duty cycle acquisitions cause heating of the gradient coils and 

the surrounding structures. The temperature increase alters electrical and mechanical material 

properties and thus changes the behavior of the gradient chain. This is a deviation from the LTI 

assumption underlying the GIRF approach. We observed an increase in artifacts in the GIRF-

predicted reconstructions over the course of the fMRI acquisition. This is expected as the GIRF 

measurement (which is relatively low duty cycle itself) was performed starting “from cold” (no 

high duty-cycle scanning run beforehand). Therefore, towards the end of an fMRI time series the 

gradients are in a different thermal state to the one they were characterized in. Overall the 

impact of this on the fMRI results is small. The spatial specificity of the GIRF-predicted fMRI 

results is very close to the monitored ones while it is substantially reduced for the nominal 

reconstruction. In the z-statistic maps from the nominal reconstruction we see mis-placed 

activation, which is not localized to the gray matter due to the blurring and other artifacts present 

in the image.  

 

The delay correction of the nominal trajectory did not improve the image quality much (over not 

performing delay correction), which stands in contrast to EPI where calibrating a delay between 

odd and even lines typically allows substantial artifact reduction. The spiral readout gradients 

sweep a large range of temporal frequencies, whereas the EPI has a dominant peak at the 

switching frequency. Presumably for this reason, a single delay works well in EPI compared to 

spirals where it is important to know the full response over a large range of frequencies.  

 

B0 related artifacts dropout and distortion scale with field strength, therefore it is especially 

important to include B0 correction for fMRI at 7T. For the nominal reconstructions the artifacts 

are worst near the air-tissue interfaces where B0 inhomogeneity is large despite the fact that 

static B0 is accounted for in all reconstructions. This is because B0 correction relies on geometric 

congruency between the field map and the encoded image (Spirig et al. 2017). Accurate 

knowledge of the encoding fields therefore becomes even more important at ultra-high field.  

 

We further evaluated the spatial specificity of the GIRF-predicted reconstruction, to test 

suitability of the approach for high-resolution fMRI, as for example required to detect activation 

on the level of cortical lamina and columns. We assessed the spatial specificity using a ROC-

style analysis, which allows quantifying specificity without choosing one reconstruction as a 
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ground truth and is independent of a specific significance threshold. The challenge with this 

method is that it requires accurate true/false positive masks, which relies on accurate 

segmentation and registration of an anatomical atlas to the subjects’ functional data.  

 

The GIRF-predicted trajectories consistently provided good results for all subjects acquired. 

There were some inter-subject differences in how closely the GIRF-predicted reconstructions 

match the monitored ones (see Fig. 5 and 7). The fMRI scans used in this study were acquired 

at different time points within the scanning session (sometimes it was the first longer scan of the 

session whereas other times a few other fMRI runs had been performed immediately 

beforehand). This could explain some of the differences in performance of the GIRF-prediction 

in different subjects analyzed.  

 

Concurrent monitoring allows capturing dynamic effects over the course of the fMRI experiment. 

These can be divided into two components, (a) non-LTI effects such as fluctuations caused by 

the subject, (b) changes in the GIRF over time. The latter could be addressed by measuring 

temperature dependent GIRFs (Nussbaum et al., 2018)(Stich et al., 2019). The hardware 

temperature can easily be assessed via the scanner’s temperature monitoring system or using 

separate temperature sensors and this information can then be used to select the optimal GIRF 

for each measurement. Non-linear effects and fast-changing time-dependencies cannot be 

captured using this model. Concurrent monitoring of the encoding fields would have to be 

performed to correct for these effects.  

 

In this study the reconstructions using measured trajectories provided the best results but 

concurrent monitoring is technically challenging and can be difficult to incorporate into routine 

fMRI scanning. When concurrent monitoring is not feasible GIRF-predicted trajectories provide 

an alternative. To concurrently monitor the long readouts required for high-resolution single-shot 

spirals field probes with suitable specifications (size and material (doping) of the probe) need to 

be chosen to avoid probe de-phasing during the measurement. If the optimal field monitoring 

setup is not available or if de-phasing still occurs (for example due to a poor shim) concurrent 

monitoring could be combined with GIRF-prediction, where the earlier part of the readout is 

measured and the later part is predicted(Wilm et al., 2019).  

 

GIRF characterization is a one-time calibration step (previous work has shown the GIRF to be 
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stable over at least 3 years (Vannesjo et al., 2016)) and can be performed without any 

specialized equipment. In this study the GIRF was determined using a dynamic field camera, 

which allows very accurate characterization of the encoding fields with high frequency resolution 

(including accurately determining cross terms and higher order terms). However the GIRF can 

also be measured using a phantom-based approach (Addy et al., 2012; Duyn et al., 1998) with 

some loss in the frequency resolution of the GIRF (Graedel et al., 2017). 

 

We used a spiral-out fMRI protocol for this study, but the GIRF-based trajectory prediction can 

be used for any trajectory. For example it could be employed for hybrid spiral-in/out methods 

(Glover and Law, 2001), which can provide high BOLD sensitivity as well as improved signal 

dropout artifacts. Beyond spirals the GIRF could enable other non-Cartesian fMRI techniques, 

which require accurate gradient correction, such as radial (G. R. Lee et al., 2010), PROPELLER 

(Krämer et al., 2012) and TURBINE fMRI (Graedel et al., 2016). Furthermore, the approach 

presented here is also useful to correct EPI trajectories, as the GIRF correction captures effects, 

which the commonly used odd-even lines EPI Nyquist ghost correction schemes (Schmitt et al., 

1998) do not correct (Vannesjo et al., 2016).  

 

Conclusion 

GIRF-predicted trajectories have the potential to enable high-quality spiral fMRI in situations 

where concurrent monitoring is not available. The presented approach requires only a one-time 

calibration per system, thus the fMRI acquisition is not prolonged or complicated by the 

acquisition of additional data for correction purposes.  
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