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Abstract 
Benign prostatic hyperplasia (BPH), a nonmalignant enlargement of the prostate, is one 

of the most common diseases affecting aging men, but the underlying molecular features 

of BPH remain poorly understood, and therapeutic options are limited.  Here we 

employed a comprehensive molecular investigation of BPH, including genomic, 

transcriptomic and epigenetic profiling of 18 BPH cases.  At the molecular level, we 

found no evidence of neoplastic features in BPH:  no evidence of driver genomic 

alterations, including low coding mutation rates, mutational signatures consistent with 

aging tissues, minimal copy number alterations, and no genomic rearrangements.  

Similarly at the epigenetic level, we found global hypermethylation was the dominant 

process (unlike most neoplastic processes).  By integrating transcriptional and 

methylation signatures, we identified two BPH subgroups with distinct clinical features 

and associated signaling pathways, which were validated in two independent cohorts.  

Finally, our analyses nominated mTOR inhibitors as a potential subtype-specific 

therapeutic option.  Supporting this, a cohort of men exposed to mTOR inhibitors showed 

a significant decrease in prostate size.  Our results demonstrate that BPH consists of 

distinct molecular subgroups, with potential for subtype-specific precision therapy via 

mTOR inhibition. 
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Introduction 
Benign prostatic hyperplasia (BPH) is a common disease, affecting nearly all men as they 

age1, 2, 3, 4, 5.  BPH frequently results in bladder outlet obstruction with concomitant lower 

urinary tract symptoms or infections, and more rarely bladder decompensation and renal 

failure3, 6, 7.  The prevalence of BPH increases with age, with BPH symptoms reported by 

roughly half of men at age 501, 2, 3, 4, 7.  Approved medical therapies for BPH are limited 

to alpha-blockers, 5-alpha reductase inhibitors, and PDE5 inhibitors8, 9, 10.  However, 

many patients fail medical therapies, and require surgical intervention11.  Histologically, 

BPH is characterized as the overgrowth of stromal and epithelial cells, and it occurs in 

the transitional zone of prostate1.  Currently, many BPH studies have focused on risk 

factors of BPH12, 13, 14, 15, while the underlying molecular features of BPH remain 

understudied3, 9, 16, 17, 18, 19 and molecular data is relatively scarce20, 21.  Moreover, BPH 

has been described as “the most common benign tumor in men”, and is commonly 

referred to as an adenoma, but unlike many malignant22, 23 and benign neoplasms24, 25, 26, 

it is unknown whether BPH is a neoplastic process 3, 7, 18, 19, 20.  In this study, we 

performed a comprehensive investigation of 18 BPH cases via next-generation 

sequencing technology (Table S1).  We selected samples from patients with very large 

prostates (top percentile and greater than 100cc, Table S1 and Figure 1A), based on the 

rationale that these “extreme outlier” were more likely to harbor biologically informative 

events27, 28. 

 

 

Results 
To define the landscape of genomic alterations in BPH, we performed whole genome 

sequencing (WGS), whole exome sequencing (WES) and SNP arrays on 18 BPH cases 

and matched controls (Table S1).  The number of somatic coding mutations (SNV) 

ranged from 0.1 to 1 per megabase (Mb) (Table S2).  As compared to neoplastic diseases 

(benign and malignant)24, 25, 26, BPH samples harbored fewer SNVs (Figure 1B), and 

there were no recurrent SNVs to suggest driver alterations.  To understand underlying 

mutational processes, we examined mutational signatures29 across all BPH cases, and 

found BPH was highly associated with mutation signature 129, which included C>T 
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substitutions at NpCpG trinucleotides (Figures 1C and 1D).  This signature has been 

shown to correlate with age29, 30, consistent with the age-related onset of BPH1, 2, 3, 4, 7.  

Moreover, BPH samples harbored minimal copy number alterations, and the fraction of 

altered genome was far lower than seen in primary prostate cancer23 and other neoplastic 

diseases (Figures 1E and 1F, Table S4 and S5).  Also unlike primary prostate cancer23, 31, 

analyses of structural variants in WGS revealed no genomic rearrangements in BPH 

(Figures 1G and S1).  Together, these data show no evidence of driver genomic 

alterations in BPH, inconsistent with a neoplastic disease process. 

 

We next examined the transcriptional landscape of BPH using RNA-seq.  Because BPH, 

by its very nature has no “adjacent normal” tissue, we compared the gene expression 

profiles from BPH samples with histologically normal transition zone tissue sampled 

from age-matched controls (Figure 2A).  We identified a BPH transcriptional signature 

that included 392 differentially expressed genes between BPH and control samples 

(Figure 2B and Table S6).  When compared to control samples from the normal 

peripheral zone, this transcriptional signature was BPH specific, and not specific to 

transition zone tissue (Figure S2).  We next validated this BPH transcriptional signature 

using two independent study cohorts21, 32, and again found reliable clustering of BPH 

samples (Figures 2C and 2D) with similar upregulation of BMP5 identified (Table S6).  

Having defined and validated a robust set of genes altered in BPH, we explored the 

signaling pathways deregulated using gene set enrichment analysis (GSEA)33 (Figure 

2E).  Interestingly, multiple signatures related to inactivation of KRAS signaling were 

observed in our dataset, with concordance in an independent cohort (Figure 2E), and 

again inconsistent with a neoplastic process.  In addition, we observed AR signaling 

downregulated in BPH (Figure 2F), consistent with previous findings that AR signaling 

disruption correlated with prostate inflammation and BPH pathogenesis34, 35.   

 

Next, we investigated the epigenetic landscape of BPH by defining the DNA methylation 

profile of 18 BPH samples and 5 controls from normal transition zone tissue using 

ERRBS (Enhanced Reduced Representation Bisulfite Sequencing).  We identified 92,046 

hypermethylated CpGs and 10,117 hypomethylated CpGs across different genomic 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 16, 2019. ; https://doi.org/10.1101/805168doi: bioRxiv preprint 

https://doi.org/10.1101/805168


regions in BPH, with hypermethylation being the dominant signal across all genomic 

regions, even when controlling for bias of CpG-rich loci (Figures 2G, 2H and S3).  We 

defined a methylation signature for BPH that included 696 differentially methylated 

CpGs in promoter regions (Figure 2I and Table S7).  Consistent with DNA methylation 

as a major mechanism of transcriptional control in BPH, we found negative correlation 

between promoter methylation and gene expression (Figure 2J).  For instance, HOXD1 

was both underexpressed and hypermethylated at the promoter in BPH specimens, 

consistent with the downregulation of AR signaling pathway found in BPH36, 37 (Figures 

2E and S3).   

 

Identifying distinct molecular subtypes in human disease has provided insight into 

important biological and clinical phenomena.  We therefore performed integrative 

analysis using transcriptional and methylation profiling, and identified two distinct BPH 

subtypes (Figure 3A and Tables S6-7), supporting robust biologically distinct subgroups 

across different data types.  To validate distinct subtypes in BPH, we tested our signature 

via k-means clustering in two independent cohorts20, 21, and identified nearly identical 

subgroups (Figures 3C, 3E and Table S8), further supporting the robustness of these 

subgroups across data types and sources.  We then examined the molecular and clinical 

features of these two groups.  One subgroup (BPH-A) was enriched in stromal 

signatures38 (Figures 3B and S4), again in the validation cohort as well (Figure 3D and 

S5).  Integrating the stromal cell signatures from single cell RNA-seq on normal prostate 

tissue39 further confirmed the stromal enrichment in BPH-A subgroup (Figure S7).  Of 

note, there was no clear enrichment of stromal cell content visible on histopathology 

analysis of these samples, suggesting that molecular characterization provided 

independent information (Figure S8).  

 

The second subgroup (BPH-B) was enriched for patients with obesity (BMI >30) and 

hypertension (Figure 3D), potentially suggesting distinct pathobiology.  Consistent with 

this, gene set enrichment analysis between the two subgroups demonstrated significant 

differences among metabolism related signatures, such as fatty acid and amino acid 

metabolism (Figure 3D).  Positive correlation of metabolism dysregulation between the 
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two subgroups extended to both cohorts (Figures 3D and S6), consistent with the clinical 

associations with obesity and hypertension.  We then explored signaling pathways within 

each subgroup to further understand the underlying biology.  As compared to control 

samples, we found differential expression of metabolism related genes predominantly in 

BPH-A samples (Figures 3F and 3G, Tables S10 and S11), consistent with the 

metabolism difference between two subgroups.  Unbiased gene set enrichment analysis 

(GSEA) showed multiple deregulated pathways for each subgroup, with many pathways 

were negatively correlated between two subgroups (Figure 3H and Table S12), 

reinforcing distinct biology.  Together these molecular data suggested two distinct 

biological categories of BPH – one with stromal-like molecular features, and the other 

associated with deregulation of metabolic pathways that presents in patients with 

underlying metabolic disturbances. 

 

To nominate potential subtype specific therapeutic options, we utilized the Connectivity 

Map40, 41 analysis (Figure 4A and Table S13), which uses transcriptional expression data 

to probe relationships between diseases, cell physiology, and therapeutics.  Strikingly, we 

found 50% of nominated compounds in BPH-A subgroup were related to inhibition of 

mTOR signaling (Figure 4B), and the subgroup enrichment of mTOR signaling was 

validated in two independent cohorts (Figure 4C), consistent with prior isolated reports in 

model systems42, 43, 44.  To interrogate the potential effect of mTOR treatment on the 

prostate, we examined prostate size on cross-sectional imaging in patients taking mTOR 

inhibitors.  We identified 425 male patients who had been prescribed an mTOR inhibitor 

(everolimus, sirolimus, or temsirolimus) for transplant or treatment of a non-prostate 

malignancy.  We then reviewed these patient’s charts to identify men with accessible CT 

imaging including the pelvis before and after treatment, identifying 47 such subjects.  CT 

scans from these 47 subjects and 12 men with serial imaging for nephrolithiasis (negative 

controls) then underwent blinded review and assessment of prostate size (Figure S9).  Of 

these men, 17/47 had a prostate size decrease based on pre-established thresholds (12.5% 

decrease from baseline), all of whom were on an mTOR inhibitor (Figures 4D and 4F).  

None of the nephrolithiasis patients showed a significantly prostate size decrease.  A 

higher proportion of patients taking Everolimus had a decrease in prostate size 
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(pvalue=0.02) than Sirolimus (pvalue =0.06), compared to kidney stone patients (0%) 

(Figure 4E).  Similar trends were seen in the effect of mTOR inhibitors on absolute cross-

sectional area (Figure S10).  Overall, these data suggest that subgroup BPH-A represents 

a biologically distinct subtype of disease preferentially dependent on mTOR signaling, 

and mTOR inhibition could serve as a novel therapeutic option. 

 

 

Discussion 
In summary, we report the first comprehensive, multi-level molecular investigation of 

BPH, including genomic, transcriptomic and epigenomic profiling.  While dogma often 

suggests BPH represents a benign neoplastic process, we find no evidence of somatic 

genomic alterations, unlike benign neoplasms like such as frequent MED12 mutations in 

breast fibroadenomas24, 25 and uterine fibromas45 or FRK mutations in hepatocellular 

adenomas26, and BPH exhibited an age-related mutation signature, consistent with the 

higher prevalence in older patients as opposed to underlying oncogenic processes.  

Furthermore, unlike the global hypomethylation signature in neoplastic diseases46, 47, 48, 

the DNA methylation landscape in BPH was dominated by hypermethylation.  Together, 

our genomic and epigenomic data argues against BPH arising from a neoplastic disease 

process.  

 

By integrating the transcriptional and DNA methylation data, we identified and validated 

two molecular subgroups in BPH, one characterized by a stromal signal (despite no clear 

differences in histology), and the other associated with hypertension and obesity, which 

was consistent with metabolism dysregulation between these two subgroups.  Moreover, 

the altered signaling pathways of each subgroup comparing with control samples were 

related to the metabolism regulation and hypertension.  Finally, we nominated potential 

therapeutic compounds for each BPH subgroup, and found that mTOR inhibitors may be 

preferentially active in one subgroup.  By validating mTOR treatment on our institutional 

patient cohort, we found 17/47 patients treated with mTOR inhibitors showed the 

significant decreases on prostate size based on CT scan imaging, and no decrease found 

in patients without mTOR inhibitor.  Overall, our findings provide critical insight into the 
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underlying pathobiology of BPH, identify for the first time distinct molecular subgroups, 

and introduce a paradigm of precision therapy for a disease that affects the majority of 

aging men.   

 

 

Methods 

Samples collection. 

Patients with BPH (benign prostatic hyperplasia) were prospectively enrolled for 

sequencing of prostate tissue samples from transitional zones under a protocol approved 

by the institutional review board of Weill Cornell Medical College.  Normal controls for 

RNA-seq and ERRBS were obtained from men undergoing radical prostatectomy for 

prostate cancer without BPH. Under the supervision of study pathologists, benign areas 

of transition zone distant from the tumor were cored.  Written informed consent was 

obtained, including discussion of risks associated with germline sequencing.  Fresh tissue 

samples were collected and processed using internal standard operating procedures. 

 

Whole genome sequencing and whole exome sequencing platform, data processing 

and analysis pipeline. 

Whole genome sequencing (WGS) on 5 BPH samples with matched normal samples 

from blood tissue was performed in New York Genome Center under standard protocol 

and pipeline for 100bp paired-end sequencing.  Samples were sequenced with average 

genome coverage of 100x for BPH samples, and 50x for matched control samples.  

Whole exome sequencing (WES) on 13 BPH samples with matched control samples from 

blood tissue was performed in the Genomics Core of Weill Cornell Medicine under 

standard protocol and pipeline for 75bp paired-end sequencing.  Whole exome 

sequencing capture libraries were constructed from BPH and control tissue by using 

SureSelected Exome bait (Agilent), and samples were sequenced with average target 

exon coverage of 300-360x for BPH and matched control samples. 

 

Paired-end sequence reads of WGS and WES data were aligned to the human reference 

genome (hg19) using BWA49 v0.7.12.  Sorted bam files were generate via SAMtools49 
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v.0.1.19, and the duplicated mapped reads were marked with Picard v1.134.  BAM files 

were locally realigned to the human reference genome using GATK50 v3.7, and somatic 

base substitutions and small indels were detected by using MuTect51 v1.1.4 and 

Varscan252 v2.3.9, with the sequencing coverage cutoff of at least 14x in BPH and 8x in 

control samples.  Mutations were defined as the shared output between MuTect and 

Varscan2.  After excluding the known human SNPs (dbSNP Build 150) and SNPs 

detected from control samples, the remaining mutations were annotated by ANNOVAR53 

v2018.04.16 with GENCODE human gene annotation.  The mutation signature was 

detected by using SomaticSignatures54 v2.20.0.  DELLY55 v0.8.1, BreakDancer56 v1.3.6 

and CREST57 v2016.12.07 were used to identify the genomic translocations.  The 

mutations results of malignant diseases were downloaded from TCGA studies 

(https://portal.gdc.cancer.gov/).  The mutations results of hepatocellular adenomas (HA) 

and breast fibroadenomas (BFT) were derived from published studies24, 25, 26. 

 

Copy number analysis. 

DNA from BPH and matched control samples from blood tissue were analyzed by 

Affymetrix SNP 6.0 arrays to detect the regions of somatic copy number alteration.  

Quality control, segmentation and copy number analysis were performed as previously 

described23.  The copy number alterations of malignant diseases were downloaded from 

TCGA portal (https://portal.gdc.cancer.gov/).  Segments with log2-ratio >0.3 were 

defined as genomic amplifications, and log2-ratio <-0.3 were defined as genomic 

deletions. 

 

RNA-seq platform, data procession and analysis pipeline. 

RNA-seq library for BPH and control samples from patients without BPH symptoms 

were generated using Poly-A and Ribo-Zero kits.  RNA-seq was performed in the 

Genomics Core from Weill Cornell Medicine under standard protocol and pipeline for 

75bp paired-end sequencing.  Reads were mapped to the human reference genome 

sequence (hg19) using STAR58 v2.4.0j.  Then the resulting BAM files were subsequently 

converted into mapped-read format (MRF) using RSEQtools59 v0.6.  The read count of 

each gene was calculated via HTSeq60 v0.11.1 using GENCODE as reference gene 
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annotation set.  Quantification of gene expression was performed via RSEQtools59 v0.6, 

and expression levels (RPKM) were estimated by counting all nucleotides mapped to 

each gene and were normalized by the total number of mapped nucleotides (per million) 

and the gene length (per kb).  Fusion genes were detected via FusionSeq61 v0.1.2.  

Combat62 v3.20.0 was used to remove the batch effect of different RNA-seq libraries for 

the downstream gene expression analysis.  Heatmap and hierarchical clustering were 

performed via using correlation distance and Ward’s method.  GSEA33 v3.0 was 

performed using JAVA program and run in pre-ranked mode to identify enriched 

signatures.  The GSEA plot, normalized enrichment score and q-values were derived 

from GSEA output for hallmark signature, and the metabolism related signatures were 

derived from MSigDB63 v6.2 database.  Differential expression analysis was performed 

using the Wilcoxon signed-rank and F-statistic test after transforming the RPKMs via 

log2(RPKM + 1).  Multiple-hypothesis testing was considered by using Benjamini-

Hochberg (BH; FDR) correction.  The immune score and stromal score were calculated 

from gene expression of BPH samples via ESTIMATE64 v2.0.0.  The ImmuneSum was 

defined as the sum of normalized z-scores from gene expression of immune markers 

including PDCD1, PDCD1LG2, CD274, CD8A and CD8B.  The comparison of 

molecular and clinical features between two subgroups was performed using Fisher’s 

exact test and Wilcoxon signed-rank test.  The compounds for each subgroup were 

identified by using Connectivity Map (CMAP)41 with the top most overexpressed and 

underexpressed genes as the input, and CMAP score >90 were used to select the 

nominated compounds. 

 

Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) platform, data 

procession and analysis pipeline. 

Genomic DNA was isolated from BPH and control samples, and submitted to the 

Epigenomics Core of Weill Cornell Medicine under standard protocol and pipeline.  The 

Epigenomics Core facility in Weill Cornell Medicine supported alignment and 

methylation extraction for ERRBS data65.  Differentially methylated CpGs (DMCs) were 

identified by methylKit66 and RRBSeeqer67 (false discovery rate =5%, and methylation 

difference more than 10%).  Differentially methylated regions (DMRs) were defined as 
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regions containing at least five DMCs within 250bp window.  Genomic regions for CpGs 

were defined according to the following definitions.  CGIs (CpG islands) were defined 

using annotations from RefSeq.  CGI shores were defined as the regions encompassing 

1kb upstream and downstream of known CGIs.  Non-CGIs were defined as regions at 

least 10kb away from known CGIs.  Promoters were defined as the regions encompassing 

2kb upstream and downstream of the TSS (transcription start site) of RefSeq genes.  

Promoter methylation for each gene was calculated by averaging the methylation levels 

of all CpGs covered in the promoter.   

 

Effect of mTOR inhibition on prostate size  

We searched our electronic medical record to identify all adult male patients who 

received therapy with an mTOR inhibitor (Sirolimus, Everolimus, or Temsirolimus) 

using our institutional i2b2 search tool (IRB 1510016681R003) (Figure S9).  Records 

were manually reviewed in order to identify individuals with CT imaging containing 

the pelvis before and after therapy.  The most proximate CT scan prior to the initiation 

of therapy and the CT scan as close to 6 months after the initiation of therapy were 

used.  This interval was chosen based on the known time course of prostate size 

changes in response to finasteride68.  As negative controls, we identified 12 kidney 

stone patients over age 35 at the time of baseline CT who had serial CT imagining 

including the pelvis who did not take 5-alpha-reductase inhibitors, have prostate 

cancer, recurrent urinary tract infections, or a history of prostatic surgery.  In order to 

establish a signal window, we performed an initial unblinded pilot including patients 

who underwent androgen deprivation therapy as a positive control and kidney stone 

patients as a negative control.  We determined that a decrease in prostate size of 

>12.5% in sequential CT scans would have captured 9/10 androgen deprivation therapy 

patients from CT scans spaced ~6 months apart, and would be >2 standard deviations 

from the mean decrease in prostate size of the kidney stone patients.   

 

We then extracted accession numbers from both kidney stone and mTOR inhibitor 

patients and using a random number generator placed them in arbitrary order for 

review.  A radiologist then reviewed these scans by using accession numbers unaware 
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of treatment assignment (mTOR inhibitor or kidney stone) or whether it was a baseline 

or follow up study.  The prostate was measured in two dimensions in the axial slice 

with the greatest apparent prostate area, with area computed as anterior-posterior x 

transverse measurements.  When unclear, the prostate was measured in two axial slices 

and the maximum area utilized. 

 

Following review, scans were then re-identified, and subjects with a baseline axial 

prostate size <1000 mm2 were excluded from further analysis.  Subjects where the 

blinded review showed a >12.5% decrease in area, defined as initial area- follow up 

area)/ initial area, and then underwent a subsequent blinded review by an urologist 

(JS).  Agreement was necessary between both reviews for a decrease to be considered 

true: when urology review did not identify a decrease >12.5% and this differed from 

radiology review by <20% urology review was prioritized.  For subjects where both 

reviewers agreed on the decrease in area, initial radiology review dimensions were 

utilized.  When there was a >20% discrepancy in measurements (irrespective of 

degree), scans were re-reviewed blinded by radiology, blinded, and these 

measurements utilized.  

 

 

Data Availability 
The dbGap submission of WGS and WES data is in process.  The SNP array data has 

been deposited in GEO under the accession GSE124187, RNA-seq data has been 

deposited in GEO under the accession GSE132714, and ERRBS data has been deposited 

in GEO under the accession GSE123111. 
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Figures and figure legends 

 
Figure 1. The low genomic alterations found in BPH samples. 

(A) Boxplots of prostate volume (cc) of normal, general BPH, and extreme BPH cases 
used in the current study. 

(B) The prevalence of somatic non-synonymous mutations across benign disease and 
multiple cancer types.  The y-axis represents the log10 value of mutations. The x-
axis includes benign (blue) and malignant tumors (pink) from TCGA studies.  
HA: hepatocellular adenomas, and BFT: breast fibroadenomas.  

(C) The somatic mutation signatures of BPH.  The signature is based on the 96 
substitutions classification defined by the substitution class and sequence context 
immediately 3’ and 5’ to the mutation position.  The y-axis represents the 
percentage of mutations attributed to a specific mutation type.  The six types of 
substitutions are shown in different colors.  

(D) The contribution of mutation signatures to each BPH sample.  Each bar represents 
a BPH case and y-axis denotes the number of somatic mutations per megabase.  

(E) The fraction of altered genome, partitioned into bins covering a range from <0.01 
to ≥0.4, shown as a histogram for BPH and primary prostate cancer samples.  
Inset: boxplot of altered genome fraction for BPH samples and primary prostate 
cancer samples from TCGA study. 
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(F) The lower fraction of altered genome in BPH (blue) when compared to malignant 
diseases (pink) from TCGA studies. 

(G) Circos plots of 5 BPH and 2 primary prostate cancer samples.  The rings from 
outer to inner represent somatic coding mutations, copy number alterations and 
genomic rearrangements respectively.  
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Figure 2. BPH transcription and methylation profiles. 

(A) Diagram of sampling location of BPH and control samples used for RNA-seq and 
ERRBS.  Green color represents BPH samples, and grey color represents control 
samples from normal transitional zones. 

(B) Hierarchical clustering and heatmap of transcriptional signatures based on 
significantly differentially expressed genes between BPH and control samples.  

(C) Validation of transcriptional signature (panel B) in an independent study 
(GSE6250).  Green color represents BPH samples, and grey color represents 
control samples from normal transitional zones. 

(D)  The concordance of transcriptional signatures between current and previous BPH 
study.  GSEA analyses of current BPH cases showing that genes upregulated in 
previous BPH cases are positively enriched, and genes downregulated in previous 
BPH cases are negatively enriched. 
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(E) GSEA analysis of BPH cases in oncogenic signatures showing that genes 
downregulated in many cell lines when over-expressing an oncogenic form of 
KRAS gene are positively enriched.  Similar results and high correlation with 
GSE6250 study are shown in inner panel.  

(F) GSEA analysis of BPH cases in AR related signatures showing that genes 
upregulated in LNCaP cells treated with synthetic androgen are negatively 
enriched. 

(G) Pie chart of differentially methylated CpGs between BPH and control samples 
among different genomic regions.  Colors denote different genomic related 
regions. 

(H) Hypermethylation domination found in each of chromosome. The x-axis 
represents the percentages of hypermethylated (label as pink) and hypomethylated 
(label as green) CpGs. 

(I) Hierarchical clustering and heatmap of promoter methylation signature between 
BPH and control samples. 

(J) Correlation between transcription and promoter methylation signatures, and the 
examples of epigenetically silent genes are shown in red. 
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Figure 3. Identification and validation of distinct BPH subgroups. 

(A) Principal component analysis (PCA) based on transcriptional and promoter 
methylation signatures on RNA-seq data. Green denotes subgroup A, and blue 
denotes subgroup B. 

(B) The clinical and biological differences between two BPH subgroups.  * denotes p- 
<0.05 assessing differences between two BPH subgroups. 

(C) The validation of BPH subgroups on an independent microarray study 
GSE101486 with 21 BPH samples via principal component analysis (PCA).  K 
means clustering identified two distinct subgroups based on BPH subgroup 
signature from panel B.  

(D) Clinical and biological differences are shown between two subgroups from 
GSE101486 study.  Bottom left represents GSEA plots of significant enrichment 
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of stromal signature in subgroup BPH-A when comparing with subgroup BPH-B 
from both current and GSE101486 studies.  Bottom right showed the correlation 
of metabolism dysregulation between two subgroups.  X-axis denotes the 
normalized enrichment scores from current study, and y-axis denotes the 
normalized enrichment scores from GSE101486 study.  Red dots represent the 
significant signature with FDR <0.05 in either one of two studies.  Examples of 
metabolism dysregulation examples are shown. * denotes p-value <0.05 assessing 
differences between two BPH subgroups. 

(E) The validation of BPH subgroups on an independent RNA-seq study21 with 30 
BPH samples via principal component analysis (PCA), based on BPH subgroup 
signature from panel B. 

(F) Hierarchical clustering and heatmap of transcriptional signature between 
subgroup BPH-A and control samples.  The enriched functions are shown. 

(G) Hierarchical clustering and heatmap of transcriptional signature between 
subgroup BPH-B and control samples.  The enriched functions are shown.  

(H) The difference of enriched pathways between BPH subgroups when comparing 
with control samples.  Red dots indicate the difference of MSigDB hallmark 
signatures via GSEA with FDR ≤0.05 between two BPH subgroups.  The x and y-
axes represent the normalized enrichment score of signatures from each BPH 
subgroup when comparing to control samples.  
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Figure 4. The alterations and potential precision therapies of BPH subgroups.  
(A) Barplots of nominated compounds from each BPH subgroup when comparing 

with control samples across multiple cell lines, and summary from all cell lines 
via Connectivity Map (CMAP).  X-axis denotes CMAP score.  Different colors 
represent BPH subgroups. 

(B) Nominated compounds from subgroup BPH-A via Connectivity Map.  X-axis 
denotes the CMAP score.  

(C) GSEA analysis of mTOR related signatures in subgroup BPH-A and subgroup 
Sub-A from independent study21, showing that genes down-regulated by mTOR 
inhibitor are positively enriched, and genes up-regulated in CEM-C1 cells (T-
CLL) by mTOR inhibitor are negatively enriched, when comparing to control 
samples. 

(D) Waterfall plot of % prostate axial area change on computed tomography in 47 
patients after initiating therapy with an mTOR inhibitor and 12 kidney stone 
patients (negative controls).  Different colors represent patient type.  Dashed line 
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represents a predetermined threshold (12.5%) for a significant decrease in area. 
(E) Boxplots of % prostate area change in 47 patients taking mTOR inhibitors (26 

with Everolimus and 21 with Sirolimus treatments), and 12 negative controls.  P-
values represent prostate size change for each drug as compared to controls. 

(F) Examples of CT scans from three patients who had a decrease in prostate size 
after initiation of an mTOR inhibitor.  Prostate highlighted in blue. 
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