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ABSTRACT

Background: Prediction of pathogenic variants is one of the biggest challenges for researchers and

clinicians in the time of next-generation sequencing technologies. Stratification of individuals based

on truly pathogenic variants might lead to improved, personalized treatments.

Results: We present Frequency Conservation Score (FCS) and Frequency Conservation Score for

Mitochondrial  DNA (FCSMt)  two  methods  for  the  detection  of  pathogenic  single  nucleotide

variants in nuclear and mitochondrial DNA, respectively. These scores are based in a random forest

model trained over a set of potentially relevant predictors: (i) conservation scores (PhastCons and

phyloP);  (ii)  locus  variability  at  each  genomic  position  built  from gnomAD database  and (iii)

physicochemical  distance  for  amino  acids  substitutions  and  the  impact/consequence  over  the

canonical transcript. FCS showed an AUC of 98% for deleteriousness in an independent validation

dataset,  outperforming other scores  such as  metaLR,  metaSVM, REVEL, DANN, CADD, SIFT,

PROVEAN  or  FATHMM-MKL.  Moreover,  FCSMt  presented  an  AUC=0.92  for  pathogenic

mitochondrial SNVs detection. The tool is available at http://bioinfo.cnic.es/FCS

Conclusions: FCS and FCS-Mt improve pathogenic mutation detection, allowing the prioritization

of relevant variants in Whole Exome and Whole Genome Sequencing Analysis.
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1 BACKGROUND

Most variation between individuals has no direct impact on health. Hence, prioritization of variants

according to their potential pathogenicity is a challenge in the detection of genetic based diseases.

To help in this task, the American College of Medical Genetics and Genomics (ACMG) and the

American  Association  for  Molecular  Pathology (AMP) recommended the  use  of  computational

prediction tools for the interpretation of the identified variants (1). Therefore, it is clear the need of

accurate tools for pathogenic variants detection. 

Mendelian diseases are produced mainly by rare or low frequency variants. For this reason, variants

detected at low frequency are often classify as potentially pathogenic. However, the definition of

“low” frequency relies in an arbitrarily set cutoff. This problem became more apparent when a large

number of the variants contained in aggregated databases of population variants, such as ExAc and

GNOMAD, were  very  low frequency single  nucleotide  variants  (SNV) or  even singletons  (2).

Additional  to variant  frequency,  allele  frequency could give information for  deleteriousness  for

variant  prioritization.  In  this  sense,  allele  frequency for  variants  allocated in  a  specific  genetic

position, could also give an indirect measure of the relevance of this nucleotide. Bearing in mind the

assumption that population variability in a concrete genomic position could be related with the

selective pressure associated to this nucleotide, we could assume that the number of variants at a

specific position weighted by their frequencies in the population could reflect the relevance of this

locus and its pathogenic status. Therefore, allele frequency/locus variability could be a relevant

feature to be included in a functional predictor.

The most relevant state of the art  tools for the detection of pathogenic variants are: metaSVM,

metaLR  (3) and REVEL (4). MetaSVM and MetaLR are two ensemble scores based on Support

Vector Machine (SVM) and Logistic  Regression (LR),  respectively.  Both methods integrate  the

information of 11 non-ensemble predictors (PolyPhen-2, SIFT, MutationTaster, Mutation Assessor,

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 15, 2019. ; https://doi.org/10.1101/805051doi: bioRxiv preprint 

https://doi.org/10.1101/805051
http://creativecommons.org/licenses/by-nc-nd/4.0/


FATHMM, LRT, PANTHER, PhD-SNP, SNAP, SNPs&GO and MutPred), three conservation scores

(GERP++, SiPhy and PhyloP) and four ensemble scores (CADD, PON-P, KGGSeq and CONDEL)

(3). REVEL is also an ensemble score, a random forest algorithm that relies in MutPred, FATHMM

v2.3, VEST 3.0, Polyphen-2, SIFT, PROVEAN, MutationAssessor, MutationTaster, LRT, GERP++,

SiPhy, phyloP, and phastCons (4). All of them are meta-learners obtained by machine learning, that

strongly  rely  over  other  functional  predictors,  outperforming  them  and  proving  that  machine

learning  is  an  interesting  strategy  to  undertake  the  challenge  of  pathogenic  variants  detection

because of the large number of variants and samples currently available. 

On the  other  hand,  the  degree  of  DNA conservation  is  also  a  relevant  indicator  of  nucleotide

importance, which could correlate with neutral-pathogenic status. Many of the available tools for

deleterious variants detection depend somehow in conservation information, constituting a relevant

resource for functional predictors.

Most of these predictors are built  to annotate variants encoded in the nuclear DNA. We know,

however, that human genetic information is encoded by two widely different genomes, nuclear and

mitochondrial genome. Both genomes have their own evolutionary engines: while nuclear genome

presents sexual reproduction as source of variability with sister chromatid exchange, mitochondrial

DNA is mainly maternally inherited and has a higher mutation rate as its main source of variability.

Therefore, mitochondrial DNA has its own conservation path and population frequencies and may

not present the same behavior as nuclear DNA for these features. This could be a major point to

take into account for the classification of mitochondrial variants.

In this paper we present Frequency-Conservation-Score (FCS) and Frequency-Conservation-Score

for  Mitochondrial  DNA (FCSM),  two  machine  learning  methods  for  the  prediction  of  variant

deleteriousness in nuclear and mitochondrial DNA respectively.

FCS and FCSM are freely available at bioinfo.cnic.es/FCS as R shiny app.
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2 METHODS

FCS and FCSM were built following the work flow depicted in figures 1A and 1B, respectively. 

Models training and validation for FCS

We trained four different models, a random forest, a logistic regression, a least absolute shrinkage

and selection operator (LASSO) and a neural network. Models specific parameters were tuned up

by 5-fold cross-validation, splitting the data into 80% training and 20% evaluation set of  train

subset (supplementary file). 

Tuned up models were evaluated in test subset  and most accurate model  measured as area under

curve (AUC) in the receiving operator characteristic (ROC) curve was selected as FCS. Then FCS

was validated in ClinVar validation data set. 

Multicollinearity was assessed for explanatory variables in the model (supplementary file). Beside

that, variable importance was studied calculating net reclassification improvement NRI and AUC

differences (differences in AUC between a model with the variable and a model without the variable

within  a  bootstrap  strategy)  by  calculating  a  D-statistic,  using  ClinVar  validation  data  set,

(supplementary file).

Finally, a cutoff value for FCS score was proposed as a trade between sensibility and specificity, for

pathogenic variant detection. 

In brief, for FCS development the score followed a double validation, first in test subset where

FCS was selected and second in ClinVar validation data set. 

Models were trained using caret v-6.0  (5), glmnet v-2.0  (6), ranger v-0.11.2  (7) and nnet v-7.3

(8) R-packages.  Received  Operative  Curves  and  their  respective  Areas  Under  the  Curve  were

obtained  by  pROC  v-1.15.0  (9) and  ROCR  v-1.0  (10) R-packages.  NRI  was  calculation

PredictABLE v-1.2.2 R-package (11) and  D statistic was calculated meanwhile pROC.
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Models training and validation for FCSM

The  same  four  models  trained  for  FCS  were  also  trained  for  FCSM  (random  forest,  logistic

regression, LASSO and neural network), tuning up their parameters by 5-fold CV. Then, obtained

models from training step were evaluated in validation data set in order to select the best model as

FCSM, figure 1C and 1D. Multicollinearity was analyzed for variables included in FCSM as well as

their relative importance within the model measured as NRI and differences between AUC due to

the variable.

A cutoff value for FCSM score was set, as the best trade-off between sensibility and specificity, for

pathogenic variant detection in mitochondrial DNA. 

Unlike for FCS, training data set was not split in training and test subset and FCSM was

validated only in validation data set. 

Training data sets

Training data set for FCS

The training data set was built gathering unique variants from twelve bench-marking data sets also

used for the development of predictors published by other authors (IDSV and MutationTaster2),

included in VariBench benchmark database suite (12–14). After filtering variants that were included

in validation data set, obtained 80586 variants (46612 benign Vs 33974 pathogenic). Training data

set was split into two different subsets, the  training subset, containing 70% of variants used for

training the models and another data subset and the test subset, represented by the remaining 30%

of variants, used for testing the models in order to select the best model, figure 1A.

Training data set for FCSM

To build training data set for FCSM, we gathered 224 variants from high confident Clinvar variants,

Mitomap (15) curated variants and Varibench . These labeled variants represent the learning subset,

that  was used to  lead a  semi-supervised machine learning strategy,  with a  Linear  Discriminant
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Analysis (LDA), to assign labels to mitochondrial variants registered for sequences deposited in

Genebank,  taken  from  Mitomap.  Labeled  mitochondrial  variants  from  Mitomap  represent  the

training data set for FCSM, figure 1B. 

FCS and FCSM variables

Considered features to train both FCS and FCSM were the locus variability, phastCons(16) and

phyloP(17) conservation  scores,  Grantham  distances  and  variant’s  predicted  impact  over  the

canonical transcript.

Locus variability was computed as:

 LV=−log (N∗∑ Fqi)

where LV is locus variability,  N is the number of alleles described in gnomAD  gnomAD 2.1.1

(18) for FCS or in Mitomap data base for FCSM, including the considered variant and  Fqi are

gnomAD/Mitomap frequencies for alleles affecting to this position. If the variant is not described in

the data bases, its frequency is considered to be 0.000001. 

The impact over the canonical transcript was obtained using Variant Effect Predictor VEP (19), web

version for GRCh37,  that  classifies it  as  “HIGH”, “MODERATE”,  “MODIFIER” and “LOW”.

Variant impact categories were transformed into dummy variables, in order to obtain a coefficient

for each category in the regression model, so each category acts as a switcher. 

Variants were also annotated with Grantham score for the amino acids substitutions, setting this

value to 0 for no missense SNVs (20).

PhastCons and phyloP scores were represented by pre-computed values estimated over a multiple

sequence alignment of 100 vertebrate species. AnnotationHub v-2.14.5 (21) and GenomicScores v-

1.6.0 (22) R-packages, were used for variant annotation with these conservation scores. 

Variants’ data imputation was carried out as mean and mode values, using randomForest R package

(23). Before variable imputation the percentages of missing values was a 0% for locus variability,
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0% for Grantham score, 0% for each impact dummy variable, 0.65% (585 variants) for Phastcons

and 0.65% (585 variants) for phyloP.

Validation data sets

Validation data set for FCS

Validation data  set  was obtained from variants  in  ClinVar data  base  (24,25),  selecting variants

clinically classified as “benign” or “pathogenic”. These variants were annotated using dbNSFP 4.0a

(26), with 3 general ensemble functional predictor scores, MetaLR, MetaSVM, REVEL, CADD

(27), DANN (28), SIFT (29), PROVEAN (30) and FATHMM-MKL (31), obtaining 17208 variants

(4790 benign Vs 12418 pathogenic). 

Validation data set for FCSM

Mitochondrial validation data set for FCSM was represented by 224 variants from high confident

ClinVar variants, Mitomap curated variants and mitochondrial curated variants from Varibench data

sets, other than the variants from learning subset, figure 1B. 

Comparative study

The accuracy of FCS was compared against other functional predictors, measured as AUC in ROC

curves  and  the  performance  in  Precision-Recall  PR  curves.  For  this  purpose,  it  was  selected

functional predictors  commonly used in clinical practice (REVEL, metaSVM, metaLR, CADD,

DANN, SIFT, PROVEAN and FATHMM-MKL). Accuracy differences between predictors were

evaluated, calculating D statistic score (supplementary file).

For  FCSM,  the  limited  amount  of  pre-computed  values  for  other  functional  predictors  over

considered mitochondrial validation data set did not allow FCSM comparison with other predictors.

Nevertheless, theperformance of FCSM was compared with FCS in mitochondrial SNVs.
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Fig. 1. Followed workflow for the development and validation of FCS (A) and FCSM (B). mt-

SNVs: mitochondrial single nucleotide variants; LDA: Linear Discriminant Analysis.
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3 RESULTS

FCS RESULTS

Selected model 

Random  forest  resulted  as  the  most  accurate  model  in  training  step  showing  an  accuracy  of

AUC=0.92, so it was selected as FCS (more details in supplementary file). Regarding to correlation

analysis performed, most of model’s regressors showed  low correlation level, with the exception of

both conservation scores with strong (figure 1 and table 1, supplementary file).  

Analyzing variable importance in FCS,  measured as  NRI values, we obtained that most relevant

variable was  locus variability NRI=1.4173 [1.3976 - 1.437], p-value<0.001; followed by phyloP

score  NRI=0.3869 [0.3666-0.4072],  p-value<0.001;  Phastcons  score  NRI=-0.0782 [-0.0925-

-0.0638],  p-value<0.001;  Grantham’ Score  NRI=0.2399 [0.221-0.2588],  p-value<0.001;  HIGH

impact  dummy variable  with  NRI=0.1476 [0.1362-0.159],  p-value<0.001;  MODERATE impact

dummy variable  with  NRI=0.0694 [0.0597-0.0792],  p-value<0.001;  MODIFIER impact  dummy

variable with NRI=0.1259 [0.1149-0.1368], p-value<0.001 and LOW impact dummy variable with

NRI=0.1162 [0.1056-0.1268],  p-value<0.001  (figure  2  and  supplementary  file).  Although  NRI

result was negative for PhastCons score, the variable was considered for the model given its D-

statistic result D=3.3518 (p-value<0.001).

Figure 2. Feature relative importance in FSC, measured as NRI value.
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AUC comparison

According to our outcomes, FCS showed the highest accuracy AUC=0.98 for pathogenic variant

detection and also the highest Precision Recall trade, followed by REVEL (AUC=0.96), metaLR

and  metaSVM  both  with  AUC=0.93,  SIFT  and  CADD  both  with  AUC=0.90,  PROVEAN

(AUC=0.89),  FATHMM-MKL  (AUC=0.84)  and  DANN  (AUC=0.82),  figures  3A  and  3B.

Accuracy differences between scores, computed as D-statistic revealed that FCS was statistically

significant  better  than  REVEL (D=13.03;  p<0.001),  metaLR  (D=21.893;  p<0.001),  metaSVM

(D=24.553;  p<0.001),  CADD  (28.736;  p<0.001),  SIFT  (D=29.019;  p<0.001),  PROVEAN

(D=30.864; p<0.001), FATHMM-MKL (D=39.151; p<0.001) and DANN (D=41.664; p<0.001).

Figure 3.  ROC curves (A) and Precision-Recall PR curve (B) for FCS and comparing functional

predictors  in  ClinVar  validation  data  set.  ROC  curve  (C)  and  PR  curve  (D)  for  FCSM  in

Mitochondrial validation data set .
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Cutoff value for FCS

According  to  our  validation  data,  we  suggest  a  cutoff  for  FCS of  0.4067561,  giving  94% of

sensibility and 93%  of specificity. This threshold was selected as the lowest value of FCS with the

best trade-off sensitivity/specificity.

FCSM RESULTS

Selected model 

Random forest  presented  the  highest  accuracy  AUC=0.92,  followed  by  LR  model  AUC=0.87,

LASSO AUC=0.81 and the  neural  network  AUC=0.5  (figure  2 supplementary  file).  Therefore,

Random forest model was selected as FCSM, figures 3C and 3D. According to features relative

importance analysis, Locus variability presented a  NRI=1.1154 [0.9136-1.3172], but none of the

other  variables  presented  a  significant  evidence  (NRI  or  D-statistic  values)  for  feature  relative

importance  (table  3  supplementary  file).  Bivariate  association  study  and  correlation  analysis

between features included in FCSM reveled that most of the variables showed low association

degree, figure 2 supplementary file. 

 

FCS Vs FCSM comparison for mt-SNVs

FCSM (AUC=0.92) outperformed FCS (AUC=0.81) for neutral-pathogenic classification of SNVs

in mitochondrial DNA, both in terms of accuracy and precision-recall trade-off, figure 3C and 3D.

Cutoff value for FCSM

Considering our outcomes the best threshold of FCSM for pathogenic variant detection in mt-DNA

was 0.488 rendering 0.86% of sensibility and 0.85% of specificity.
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4 DISCUSSION

We have developed FCS and FCSM, two methods to discriminate neutral from deleterious SNVs, in

nuclear DNA and mitochondrial DNA respectively.  Regarding to ROC curves comparison results,

FCS reached the highest accuracy compared to the other considered scores, that are widely used as

predictors  for  variant  pathogenicity.  Being  a  not  stacked  machine  learning  score,  FCS  uses

information resources that could represent an added value in variant ranking. REVEL, metaLR and

MetaSVM, are three of the most accurate predictors published in the literature in pathogenic variant

detection. All of them are machine learning based approaches that share most of their constituent

features, independently of trained underlying algorithm. In this sense, FCS only shares with them

the use of conservation scores, but also includes additional information,  as the  locus variability

derived from gnomAD, the physicochemical impact in amino acids substitutions gathered up in

Grantham score and the variant impact over considered canonical transcript, allowing to improve

other scores results in variants pathogenic-neutral classification. However, this increased accuracy

was joined to the best performance in PR curves, so FCS presented the best results with the least

costs in terms of false positives and false negatives. 

Though nuclear and mitochondrial DNA share a co-evolution track, for SNVs classification in mt-

DNA, it is necessary to take into account, that their different evolving strategies lead to differences

in locus variability and conservation status. Therefore, FCSM trained over the same regressors as

FCS but in mtDNA variants, presented higher neutral-pathogenic classification ability than FCS for

SNVs detection in mt-DNA, figures 3C and 3D. The accuracy presented by software predictors over

human non-synonymous variants in mtDNA, ranges from 0.48 to 0.84  (32). In this sense, FCSM

resulted as a fairly accurate predictor trained for mitochondrial particularities with an AUC=0.92.

Additionally,  unlike  other  classifiers,  our  predictor  is  trained  not  only  for  missense  variants

affecting  proteins,  but  also  for  variants  affecting  tRNA and  control  region  in  mitochondrial

chromosome, so FCSM could add extra information for variant prioritization in mtDNA. 
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In this study, unlike the strategy adopted by other authors focusing in allele frequency to select

working variants,  we decided to  include this  information to  train the random forest  algorithm.

Nevertheless,  allele  frequency  information  was  considered  only  to  extract  the  degree  of  locus

variability, giving an indirect measurement of the relevance and the freedom for diversity at each

considered  genomic  position.  In  accordance  with  NRI,  locus  variability presented  the  highest

relevance in the final outcome, both for FCS and FCSM. 

Phastcons and phyloP are two widely used conservation tools,  that  relies in different  strategies

(16,17). PhastCons is a hidden Markov model-based method that estimates conservation rate, for a

specific site, taking in to account the rates of neighboring sites. By contrast, PhyloP scores measure

evolutionary  conservation  at  individual  alignment  sites,  giving  information  not  only  about  the

magnitude but also about the direction of the evolution rate compared with a neutral drift model.

The two methods have different strengths and weaknesses, PhastCons is effective for conserved

elements/regions  detection  and  phyloP,  on  the  other  hand,  is  more  appropriate  for  evaluating

signatures  of  selection  at  particular  nucleotides  or  classes  of  nucleotides.  Relaying in  different

approaches,  both  scores  provide  independent  and  complementary  information  for  FCS,  but

according to NRI values, Phastcons is more relevant in FCS. On the other hand, there is no evidence

for importance interpretation of both scores in FCSM, probably due to validation data set size curse.

Additionally, we also considered the direct effect of SNVs in canonical transcripts as measurable

feature to train our models through impact dummies variables. All of them resulted approximately

equivalent in FCS, with much lower weight in variant classification than Locus variability, while

there were no evidences about their relative importance in FCSM. 

Regarding to  missense  SNVs,  Grantham score gives  the physicochemical  impact  underlying  in

amino acids substitutions, establishing the distance between these amino acids depending on the

composition, polarity and molecular volume. This score, though does not take in to account 3D
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structure  of  the  protein,  can  place  a  complementary  background  to  the  one  given  by  the

conservation scores, focused in evolutionary distances over nucleotide sequence.

Since  the  development  of  next  generation  sequencing technology and its  clinical  appliance  for

mendelian diseases diagnostic or cancer management, discriminating deleterious variants from the

bast mass of neutral  variants, has became a key stone in clinical diagnostic. In this sense, it  is

capital the use of informative tools that aid in the task of variant prioritization, oriented to reduce

the group of variants of uncertain significance. For this purpose, it is important the use of a wide

range of information to undertake this task accurately. In this project, we demonstrated that our

score  FCS,  gives  a  new  approach  for  SNVs  pathogenic  classification,  that  improves  the

performance of other scores commonly used as functional predictors in clinical practice, so could be

considered as a tool for variant ranking, except for mitochondrial SNVs, where FCSM has proved

to be a better tool.

In  future  studies,  we  shall  investigate  the  possibility  of  improve  pathogenic  status  detection,

considering  the  inclusion  of  insertion  and  deletion  variants  for  training  a  new  version  of  our

functional predictor scores.

5 CONCLUSIONS

FCS is a tool with a higher accuracy, compared with other relevant scores for pathogenic mutation

detection. This improvement may be due to the addition of allele frequency derived information

added to the partial detection power given by conservation information, predicted impact over the

transcripts or amino acids substitution relative importance. Therefore it could be used to prioritize

variants as disease candidates. 

FCSM could be used in variant prioritization for SNVs in mt-DNA, given that is a specific score

trained considering mt-DNA particularities. 
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