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Cortical networks show a large heterogeneity of neuronal prop-
erties. However, traditional coding models have focused on ho-
mogeneous populations of excitatory and inhibitory neurons.
Here, we analytically derive a class of recurrent networks of
spiking neurons that close to optimally track a continuously
varying input online, based on two assumptions: 1) every spike
is decoded linearly and 2) the network aims to reduce the mean-
squared error between the input and the estimate. From this we
derive a class of predictive coding networks, that unifies encod-
ing and decoding and in which we can investigate the difference
between homogeneous networks and heterogeneous networks,
in which each neurons represents different features and has dif-
ferent spike-generating properties. We find that in this frame-
work, ‘type 1’ and ‘type 2’ neurons arise naturally and net-
works consisting of a heterogeneous population of different neu-
ron types are both more efficient and more robust against corre-
lated noise. We make two experimental predictions: 1) we pre-
dict that integrators show strong correlations with other inte-
grators and resonators are correlated with resonators, whereas
the correlations are much weaker between neurons with differ-
ent coding properties and 2) that ‘type 2’ neurons are more co-
herent with the overall network activity than ‘type 1’ neurons.
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Introduction
It is widely accepted that neurons do not form a homoge-
neous population, but that there is large variability between
neurons. For instance, the intrinsic biophysical properties
of neurons, such as the densities and properties of ionic
channels, vary from neuron to neuron (1–5). Therefore,
the way in which individual neurons respond to a stimulus
(their ‘encoding’ properties or receptive field) also varies.
A classical example is the difference between ‘type 1’ and
‘type 2’ neurons (6–10): ‘type 1’ neurons or ‘integrators’
respond with a low firing frequency to constant stimuli,
which they increase with the amplitude of the stimulus.
‘Type 2’ neurons or ‘resonators’ on the other hand respond
with an almost fixed firing frequency, and are sensitive
to stimuli in a limited frequency band. Apart from these
intrinsic ‘encoding’ properties of neurons, the ‘decoding’
propertes of neurons also show a large variability (see for
instance (11)). Even if we do not take various forms of (short
term) plasticity into account, there is a large heterogeneity in
the shapes of post-synaptic potentials (PSPs) that converge

onto a single neuron (for an overview: (12, 13)), depending
on amongst others: the projection site (soma/dendrite: (14)),
the number of receptors at the synapse, postsynaptic cell
membrane properties ((15–17)), the type of neurotransmitter
(GABAA, GABAB, glutamate), synapse properties (channel
subunits, (18)), the local chloride reversal potential and
active properties of dendrites (12). This heterogeneity results
in variability of decay times, amplitudes and overall shapes
of PSPs. So neural heterogeneity plays an important role
both in encoding and in decoding stimuli. Whereas the study
of homogeneous networks has provided us with invaluable
insights (19–22), the effects of neural heterogeneity on
neural coding have only been studied to a limited extent
(23–25). Here we show that networks with spiking neurons
with heterogeneous encoding and decoding properties can do
optimal online stimulus representation. In this framework,
neural variability is not a problem that needs to be solved,
but it increases the networks’ versatility of coding.

In order to investigate coding properties of neurons and
networks, we need to use a framework in which we can
assess the encoding and decoding properties and the net-
work properteis. To characterize the relationship between
neural stimuli and responses, filter networks (such as the
Linear-Nonlinear Poisson (LNP) model (26), (27) and the
Generalized Linear Model (GLM) (28, 29), for an overview,
see (30), (31)) are widely used. In these models, each
neuron in a network compares the input it receives with
an ‘input filter’. If the two are similar enough, a spike
is fired. In a GLM, unlike the LNP model, this output
spike train is filtered and fed back to the neuron, thereby
incorporating effectively both the neuron’s receptive field
and history-dependent effects such as the refractory period
and spike-frequency adaptation. It can be shown, that these
types of filter-frameworks describe a maximum-likelihood
relation between the input and the output spikes (32), (33).
However, these models are purely descriptive: they only
describe how spike trains are generated, not how they should
be read out or ‘decoded’. In this paper, we analytically
derive a class of recurrent networks of spiking neurons that
close to optimally track a continuously varying input online.
We start with two very simple assumptions: 1) every spike is
decoded linearly and 2) the network aims to perform optimal
stimulus representation (i.e. reduces the mean-squared error
between the input and the estimate). From this we derive a
class of predictive coding networks, that unifies encoding

Zeldenrust et al. | bioRχiv | October 14, 2019 | 1–18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2019. ; https://doi.org/10.1101/804864doi: bioRxiv preprint 

https://doi.org/10.1101/804864
http://creativecommons.org/licenses/by-nc-nd/4.0/


(how a network represents its input in its output spike train)
and decoding (how the input can be reconstructed from the
output spike train) properties.

We investigate the difference between homogeneous
networks, in which all neurons represent similar features in
the input and have similar response properties, and heteroge-
neous networks, in which neurons represent different features
and have different spike-generating properties. Firstly, we
assess the properties of single-neuron (spike-triggered aver-
age, input-output frequency curve and phase-response curve)
and show that in this framework, ‘type 1’ or ’integrator’
(6, 34) neurons and resonators or ‘type 2’ neurons arise quite
naturally. We show that the response properties of these
neurons (the encoding properties, (35)) and dynamics of
the PSPs they send (the decoding properties) are inherently
linked, thereby giving a functional interpretation to these
classical neuron types. Next, we investigate the effects of
these different types of neurons on the network behaviour:
we investigate the coding efficiency, robustness and trial-
to-trial variability in in-vivo-like simulations. Finally, we
predict that 1) integrators show strong correlations with other
integrators and resonators are correlated with resonators,
whereas the correlations are much weaker between neurons
with different coding properties (36) and 2) that ‘type 2’
neurons are more coherent with the overall network activity
than ‘type 1’ neurons

Methods

We analytically derive a recurrent network of spiking neu-
rons that close to optimally tracks a continuously varying
input online. We start with two assumptions: 1) every
spike is decoded linearly and 2) the network aims to per-
form optimal stimulus representation (i.e. reduces the mean-
squared error between the input and the estimate). We
construct a cost function that consists of three terms: 1)
the mean-squared error between the stimulus and the esti-
mate, 2) a linear cost that punishes high firing rates and
3) a quadratic cost that promotes distributed firing. Every
spike that is fired in the network reduces this cost func-
tion. The code for simulating such a network can be found
at GitHub: github.com/fleurzeldenrust/Efficient-coding-in-a-
spiking-predictive-coding-network.

Derivation of a filter-network that performs stimulus
estimation. Suppose we have a set of N neurons j that use
filters gj(t) to represent their input. Their spiking will give
an estimated input equal to

ŝ(t) =
N∑
j=1

gj(t)∗ρideal
j (t) =

N∑
j=1

nj∑
i=1

gj(t− tij), (1)

where tij are the spike times i of neuron j (what ‘ideal’ stands
for will be explained later). The mean-squared error between

the estimate ŝ and the stimulus s equals

E(t) =
∫ t

0
(s(t)− ŝ(t))2dt=

∫ t

0
(s(t)−

N∑
j=1

nj∑
i=1

gj(t−tij))2dt.

(2)
Suppose that at time t = T + ∆ we want to estimate the dif-
ference in error given that there was a spike of neuron m at
time T or not. The difference in error is given by

Eno spike at T (T + ∆)−Espike at T (T + ∆) =∫ T+∆

0
(s(t)−

N∑
j=1

nj∑
i=1

gj(t− tij))2dt

−
∫ T+∆

0
(s(t)−

N∑
j=1

nj∑
i=1

gj(t− tij)−gm(t−T ))2dt=

−
∫ T+∆

0
gm(t−T )2dt

+ 2
∫ T+∆

0
gm(t−T )

s(t)− N∑
j=1

nj∑
i=1

gj(t− tij)

dt.
(3)

We introduce a greedy spike rule: a spike will only be placed
at time T if this reduces the mean squared error at T + ∆, so
if the expression in equation (3) is positive. This results in a
spike rule:

∫ T+∆

0
gm(t−T )

s(t)− N∑
j=1

nj∑
i=1

gj(t− tij)

dt
>

1
2

∫ T+∆

0
gm(t−T )2dt.

(4)

Obviously, if the decision is made at time t= T +∆, a spike
cannot be placed in the past (t= T ). Therefore, we introduce
two spike trains: the real spike train ρ(t), where a spike will
be placed at time T + ∆ with the spike rule above (equation
(4)). This represents the ‘ideal’ spike train ρideal(t), which
is ρ(t) shifted by an amount of ∆, so that a spike at time
T + ∆ in ρ(t) is equavalent to a spike at time T in spike
train ρideal(t). This means that the neurons have to keep
track of their own spiking history for at least ∆ time and that
any prediction of the input is delayed by an amount of ∆
(
∑N
j=1 gj(t)∗ρj(t) is an estimate of the input, delayed ∆ in

time).

Equation (4) defines a filter-network. Each neuron m
keeps track of a ‘membrane potential’ V

Vm(T + ∆) =
∫ T+∆

0
gm(t−T )s(t)dt

−
∫ T+∆

0
gm(t−T )

N∑
j=1

nj∑
i=1

gj(t− tij)dt,

(5)
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Input Encoding Decoding EstimateLateral Connections

Fig. 1. Overview of the network model. Each neuron k filters the input s(t) using an input filter gin
k . It receives input from other neurons l via lateral filters glat

kl and sends
input to other neurons l via lateral filters glat

lk . Finally, the network activity can be decoded linearly using decoding filters gk .

that it compares to a threshold Θ

Θ = 1
2

∫ T+∆

0
gm(t−T )2dt+ν = 1

2

∫ ∆

−T
gm(x)2dx, (6)

Note that the threshold is not evaluated over the whole filter,
but only between t=−T and t= ∆. Only if ∆ is larger than
the causal part of the filter and the proposed time of the spike
T larger than the acausal part, the whole filter is taken into
account, and the threshold reduces to Θ = 1

2 for (L2-norm)
normalized filters.

The network defined by equation (4) can spike at any
arbitrary frequency, and neurons show no spike-frequency
adaptation. Two neurons that have identical filters except
for their sign, have lateral filters gout

m (0) = 2(Θ). Depending
on the shape of the filter and the value of ∆, the maximum
value of these lateral filters can exceed twice the threshold
of the postsynaptic neuron, so a spike in a neuron can
induce a spike in a neuron with a filter that is identical
except for their sign. This ‘ping-pong effect’, which makes
the estimate fluctuate very quicky around the ideal value,
can be dampened by introducting a spike cost. So to force
the network to choose solutions with realistic firing rates
for each neuron, we introduce to additional terms to the
threshold:

Θc(t) = 1
2

∫ ∆

−T
gm(x)2dx+ν+µgthreshold(t−T ), (7)

where ν is a spike cost that punishes high firing rates in the
network, which makes the code more sparse. µgthreshold(t)
is a spike cost kernel that punishes high firing rates in a
single neuron (the effect is equivalent to spike-frequency
adaptation) that makes the code more distributed between
the neurons. In this paper we use an exponential kernel with
time constant of 60 ms unless stated differently.

The first term on the right of equation (5) shows that
neuron m is convolving the input s(t) with an input filter
gin
m(t) that is a flipped and shifted version of the filter neuron

m represents: ∫ T+∆

0
gm(t−T )s(t)dt=∫ T+∆

0
gin
m(T + ∆− t)s(t)dt= (gin

m ∗s)(T + ∆),

where
gin
m(t) = gm(∆− t). (8)

Note that by introducing the time delay ∆ between the
evaluation time and the spike time, the input filter is now
shifted relative to the representing filter. The representing
filter can contain a causal part, that consists of the systems
estimation on how the stimulus will behave in the near
future of the spike, i.e. the systems estimation of the input
auto-correlation. Any acausal part of the input filter is not
used (since we do not know the future if the input s(t)), and
vanishes as long as g(t) = 0 for t >∆. The optimal value of
∆ depends on how much of a prediction the neuron wants
to make into the future, but also on how long it is willing to
wait with its response.

The second term of equation (5) denotes the lateral
(j 6=m) and output (j =m) filters, that are substracted from
the filtered input as a result of the spiking activity of any of
the neurons. For well-behaved filters we can write∫ T+∆

0
gm(t−T )

N∑
j=1

nj∑
i=1

gj(t− tij)dt

=
N∑
j=1

∫ T+∆

0
gm(t−T )

(
gj ∗ρideal

j

)
(t)dt

=
N∑
j=1

(
gin
m ∗gj ∗ρideal

j

)
(T + ∆),

(9)

so that we find an output filter

gout
m (t) =−

(
gin
m ∗gm

)
(t) (10)

and lateral filters

glat
mj(t) =−

(
gin
m ∗gj

)
(t), (11)
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where t denotes the time since the spike of neuron j. Note
that a spike at T can only influence the decision process at
T + ∆, so the part of the filter where 0 ≤ t− tij < tij + ∆
does not influence the spiking process, and is therefore not
used.

In summary, we defined network that can perform near-
optimal stimulus estimation. Given a set of readout filters
gi(t), the membrane potential of each neuron i is defined as

Vi(t) = gi(t−∆)∗

s(t)− N∑
j=1

gj(t)∗ρj(t−∆)

 . (12)

A spike is fired if this reduces the MSE of the estimate, which
is equivalent to when the membrane potential exceeds the
threshold Θc (equation (7)). This model has two main char-
acteristics: the input, output and lateral filters are defined by
the representing filter, and the representation of the input by
the output spike train is delayed by an amount ∆ in order for
the network to use predictions for the stimulus after the spike.

We conclude that a classical filter network can perform
near-optimal stimulus encoding given a certain relation
between the input, output and lateral filters. In the classical
framework of LNP and GLM models, acausal filters g
are used, and the readout of the model is only used for
information theoretic purposes. However, if the readout
is being done by a next layer of neurons, one cannot use
acausal filters: every spike of a presynaptic neuron m at time
tim, can only influence the membrane potential at its target
at t > tim (i.e. can only cause a post-synaptic potential after
the spike). Therefore, in a layered network, a self-consistent
code will use only representative filters that are causal

g(t) = 0 if t < 0

This means that for the input filters

gin = 0 if t >∆

Note that if ∆ = 0, the input filter reduces to a single value
at t = 0. If ∆ = 0 and g(0) = 0, the input filter and hence
the output and lateral filters vanish. Note that the threshold
is scaled to the part of g between 0 and ∆, so not to the full
integral over g. In this paper, we will normalize the input
filters so that the thresholds are the same for all neurons.

Analysis.

Generation of neuron filters. In this paper, we choose each
neuron filter on the basis of 8 basis functions given by the
following Γ-functions:

Γn(t) = tne−t (13)

Type 1 neuron The representing filter of a ‘type 1’ neuron
(figure 3 A & B, blue) is chosen equal to a Γ-function
(equation (13)) with n= 3.

Type 2 neuron The representing filter of a ‘type 2’ neu-
ron (figure 3 A & B, red) is chosen as gtype 2(t) =
Γ3(t)(0.2−0.8sin(0.6t)).

Off cells We call a neuron with an inverted representing fil-
ter an ‘off cell’. So a ‘type 1 off cell’ has represent-
ing filter gtype 1, off(t) = −Γ3(t) and a ‘type 2 off cell’
has representing filter gtype 2, off(t) = −Γ3(t)(0.2 −
0.8sin(0.6t))

Homogeneous network The representing filters of a ‘type
1’-network are equal to the ‘type 1’ neuron (half of the
neurons) or minus the ‘type 1’ neuron (other half of the
neurons).

Type 1 & type 2 network A quarter of the representing fil-
ters of the neurons in the network are equal to the ‘type
1’ neuron, a quarter to minus the ‘type 1’ neuron, a
quarter to the ‘type 2’ neuron and a quarter to minus
the ‘type 2’ neuron.

Heterogenous network The representing filters in the het-
erogenous network are products of Γ functions and os-
cillations. This is in order to ensure that they have re-
alistic properties (i.e. vanishing after tens of milisec-
onds), while still being able to represent different fre-
quencies. Half of the neurons have a representing fil-
ter equal to gn(t) = Γ3(t)(0.2± 0.8sin(ψt)), with ψ
a random number between 0 and 1.5 and half of these
using an addition and half a subtraction. The represent-
ing filters of the other half of the population are given
by gn(t) = Γ3(t)(0.2±0.8cos(ψt)).

Spike Coincidence Factor. The coincidence factor Γ (37, 38)
describes how similar two spike trains s1(t) and s2(t) are:
it reaches the value 1 for identical spike trains, vanishes
for Poissonian spike trains and negative values hint at anti-
correlations. It is based on the binning of the spike train in
K = T

p bins of binwidth p. The coincidence factor is cor-
rected for the expected amount of coincidences 〈Ncoinc〉 of
spike train s1 with a Poissonian spike-train with the same
rate ν2 as spike train s2. It gives a measure of 1 for identical
spike trains, 0 if all coincidences are accidental and negative
values for anti-correlated spike trains. It is defined as

Γ12 = Ncoinc−〈Ncoinc〉
1
2 (N1 +N2)

1
N

(14)

in which
〈Ncoinc〉= 2ν2pN1 = 2N1N2

K

Finally, Γ is normalized by

N = 1−2ν2p= 1− N2
K

so it is bounded by 1. Note that the coincidence factor is
not symmetric nor positive, therefore it is not a metric. It is
only defined as long as each bin contains at most one event,
however, we counted the bins with double spikes as bins con-
taining one spike. Finally, it will in general saturate at a value
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below one, which can be seen as the reliability. The rate as
which it reaches this value (for instance as defined by a fit to
an exponential function) can be seen as the precision. In sec-
tion we calculated the coincidence factor between the spike-
train response to each stimulus presentation for each neuron
in the network, and averaged this over neurons to obtain a Γ,
a measure for the trial-to-trial variability or the degeneracy of
the code of the network (figure 4, left).

Mean-Squared Error, Network Activity and Effciency. The
Mean-Squared Error (MSE) is for N measurements in time
is defined by

MSE(s, ŝ) =
N∑
n=1

(sn− ŝn)2

However, this typically increases with the stimulus ampli-
tude and length. To assess the performace of networks inde-
pendently of stimulus amplitude, we normalized the mean-
squared error by deviding it by the mean-squared error be-
tween the stimulus and an estimate of a constant zero signal
(or equivalently, the MSE between the stimulus and network
estimate if the network would be quiescent, MSEno spikes):

MSE = MSE
MSEno spikes

. (15)

An MSE close to zero means a good performance, whereas a
value close to one means performance that is comparable to
a network that doesn’t show any activity. Given that the goal
of this network is to give an approximation of the input signal
with the lowest number of spikes as possible, we define the
network activity A (in Hz) as

A= # spikes
NneuronTsim

, (16)

where N is the number of neurons, and T the duration of the
stimulus, and the efficiency E (in seconds) of the network as

E = 1
MSE ·A

. (17)

Results
In this section, we will discuss the properties of the network
derived in section . We will start with the general network
behaviour, and show that it can track several inputs. Next,
we will show that this framework provides a functional inter-
pretation of ’type 1’ and ’type 2’ neurons. In the following
sections, we will zoom in on the relation between trial-to-
trial variability and the degeneracy of the code used, and on
the network’s robustness to noise. Finally, we will make ex-
perimental predictions based on the network properties.

Network response. In figure 2, the response of two differ-
ent networks is shown: a homogeneous network, consisting
of 50 neurons with a positive representing filter g (see sec-
tion ) and 50 neurons with a negative one and a heteroge-
neous network (bottom), consisting of 100 neurons with each

a different (but normalized, based on Γ-fuctions) represent-
ing filter g. Both networks can track both constant and fluc-
tuating inputs with different frequencies well. Note that even
though there is no noise in the network, the network response
is quite irregular, like in in-vivo recordings. Note also that the
heterogeneous network is better at tracking fast fluctuations.
How well the different types of networks respond to different
types of input, what the response properties of the networks
are, and what the influence of the type of filter g is, will be
investigated in the following sections.

‘Type 1’ and ‘type 2’ neurons. If we create representing
filters randomly (see section ), they generally fall into
one of two types: unimodal ones (only postitive or only
negative) or bimodal ones (both a positive and a nega-
tive part). In this section, we will investigate the difference
between neurons using these two types of representing filters.

In figure 3 the response of a single neuron with a uni-
modal (blue) or multimodal (red) representing filter (both
are normalized with respect to the input filter gin, so between
t = 0 ms and t = ∆ = 7,5 ms) to different types of input
is shown (see section ). Note that these simulations are for
single neurons, so there is no network present, like in in-vitro
patch-clamp experiments. A neuron with a unimodal repre-
senting filter (figure 3 A and B, blue) shows a continuous
input-frequency curve (figure 3 C and D). Such a neuron
with a unimodal representing filter has a unimodal Phase
Response Curve (PRC) and Spike-Triggered Average (STA)
(figure 3 E and F). A neuron with a multimodal representing
filter (figure 3 A and B, red) does initially only respond
with a single spike to the switching on of the step-and-hold
current. Only for high current amplitudes it starts firing
pairs of doublets, due to the interaction between the filtering
properties and the spike-frequency adaptation. It has a
bimodal PRC within the doublets (figure 3 E, solid red line),
but a unimodal PRC between the doublets (figure 3 E, dashed
red line) . Such a neuron with a multimodal representing
filter also has a bimodal Spike-Triggered Average (figure
3 F, red line). The input-frequency curves, PRC and STA
together, show that neurons with unimodal representing
filters show ’type-1’ -like behaviour, whereas neurons with
multimodal fitlers show ’type 2’-like behaviour.

Homogeneous and heterogeneous networks. In the
previous section, we showed that ‘type 1’ and ‘type 2’ neu-
rons appear naturally in the predictive coding framework we
defined in section . Even though the single-neuron response
properties of ‘type 1’ and ‘type 2’ neurons have been stud-
ied extensively, most simulated network consist of a single or
a few homogeneous populations of leaky integrate-and-fire
(‘type 1’) neurons. Here, we will investigate the effect of
heterogeneity in the response properties of single neurons on
the network properties and dynamics. We will compare a ho-
mogeneous network consisting of ‘type 1’-neurons, an inter-
mediate network consisting of ‘type 1’ and ‘type 2’-neurons,
and a heterogeneous network (see section ).
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Fig. 2. Example of the response of a homogeneous (red) and a heterogeneous (blue) network to a constant input (first column), to a low frequency input (5 Hz, second
colum), to a high frequency input (80 Hz, third column) and to a recorded LFP-signal (right). The homogeneous network consists of 50 neurons with a positive representing
filter g and 50 neurons with a negative one (see section ); the heterogeneous network consists of 100 neurons with each a different (but normalized) representing filter g.
Network parameters: ∆ = 7,5 ms, ν = µ= 0.5. No noise is added to this network.

Heterogeneous networks are more efficient than homo-
geneous networks. The trial-to-trial variability of network
responses depends critically on both the network structure
and on the input stimuli used. For instance, it has been shown
that (sub)cortical responses to stimuli with naturalistic statis-
tics are more reliable than responses to other stimuli(39–45).
This suggests that, depending on the cortical area and the
input statistics, neural networks can use codes that are highly
degenerate or non-degenerate. For clarification, we define
here a degenerate code as a code in which the stimulus can be
represented with a low error by several different population
responses. Therefore, a degenerate code will show a high
trial-to-trial variability, or a low reliability. We hypothesize
that a network consisting of neurons that represent similar
features of the common input signal (i.e. several neurons
have the same representing filter g) will use more degenerate
codes than networks consisting of neurons that represent
different features of the input signal (i.e. every neuron has a
different representing filter g). So we hypothesize that homo-
geneous networks will show a higher trial-to-trial variability
(i.e. a lower reliability). Here, we investigate the relation
between trial-to-trial variability, network performance, input
statistics and the network heterogeneity. We do this by
simulating the response of three different networks with
increasing levels of heterogeneity (a network consisting only
of identical ‘type 1’ neurons, a mixed network consisting of
‘type 1’ and ‘type 2’ neurons and a heterogeneous network in

which each neuron is different, see section ) to input stimuli
with different statistical properties (varying the amplitude
and the autocorrelation time constant τ ).

In figure 4, we simulated three networks (see also sec-
tion ): a homogeneous network (first row), a mixed network
(second row, consisting for 50 % of ‘type 1’ neurons (pos-
itive and negative filters) and for 50 % of ‘type 2’ neurons
(positive and negative filters) and a heterogeneous network
(third row). We varied both the amplitude and the time
constant of the input signal (by filtering the input forwards
and backwards with an exponential filter). To determine
the level of degeneracy of the code the network uses, we
performed the following simulations: we computed the
network response to the same stimulus (T = 2500 ms) twice,
but before this stimulus started, we gave the network a 500
ms random start-stimulus. Note that there was no noise in the
network except for the different start-stimuli. We calculated
four network performance measures:

Network Activity A (Hz) We assessed the total network ac-
tivity (figure 4, first column), as the average firing fre-
quency per neuron (see section ).

Reliability Γ The coincidence factor Γ (37, 38) (see section
) describes how similar two spike trains are: it reaches
a value of 1 for identical spike trains, vanishes for
Poisson spike trains and negative values hint at anti-
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Fig. 3. Example of a ‘type 1’ (blue) and a ‘type 2’ (red) neuron. A) Representing filter of a ’type 1’ (blue) and a ’type 2’ (red) neuron. B) Self-filters for both neuron types.
C) Instantaneous frequency of the first two spikes in response to step-and-hold inputs of different amplitudes. D) Average frequency in response to step-and-hold inputs of
different amplitudes. E) Phase-response curves for the first and second pairs of spikes, calculated as response to a small pulse (0.1 ms, amplitude 1.5 (‘type 2’) and 3.7 (‘type
2’)) on top of a constant input (amplitude 0.9 (‘type 1’) and 2.2 (‘type 2’)). F) Spike-triggered average in response to a white-noise stimulus (amplitude: 0.45 (‘type 1’) and 1.1
(‘type 2’)) filtered with an exponential filter with a time constant of 1 ms.

correlations. We calculated the coincidence factor be-
tween the spike-train response to each stimulus presen-
tation for each neuron in the network, and averaged this
over neurons to obtain Γ, a measure for the trial-to-trial
variability of the network (figure 4, second column). If
the network uses a highly degenerate code, the starting
stimulus will put it in a different state just before the
start of the stimulus used for comparison, and the trial-
to-trial variability will be high (low Γ). On the other
hand, if the network uses a non-degenerate code, the
starting stimulus will have no effect, and the trial-to-
trial variability will be low (high Γ). Therefore, Γ (fig-
ure 4, left) represents the non-degeneracy of the code:
a Γ close to zero corresponds to a high degeneracy and
a high trial-to-trial variability, and a Γ close to one a
low degeneracy and a low trial-to-trial variability.

Error MSE To assess the performace of the network, we
calculated the normalized mean-squared error (MSE
(figure 4, third column), see section ), so that a value
of MSE close to zero means a good network perfor-
mance, and a value close to one means performance
that is comparable to a network that doesn’t show any
activity.

Efficiency E (s) Given that the goal of this network is to

give an approximation of the input signal with the low-
est number of spikes as possible, we define the network
efficiency (in seconds) as the inverse of the product of
firing rate and the error (see section ), so that the effi-
ciency decreases with both the network activity and the
error (MSE (figure 4, fourth column).

In figure 4, it is shown that all three networks (homogeneous,
type 1 & type 2 and heterogeneous, respective rows) perform
well (small error, second column) over a wide range of
stimulus amplitudes and frequencies. The performance of
the network depends strongly on the heterogeneity of the net-
work and the characteristics of the stimulus: heterogeneous
networks show a smaller MSE (second column), especially
for fast-fluctuating (small τ ) input. However, this comes at
the cost of a higher activity A (first column), in particular
at larger stimulus amplitudes. If we summarize this by the
efficiency E (fourth column), we see that the heterogeneous
network is more efficient, in particular for low amplitude and
fast fluctuating stimuli.

The amplitude of the stimulus relative to the amplitudes of
the neural filters and the amount of neurons is important: to
represent a high-amplitude stimulus requires all the neurons
to fire at the same time, which makes the code highly
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non-degenerate: Since the filter amplitudes are between 1
and 2, a stimulus with an amplitude (standard deviation)
of 20 would need an equivalent number of the N = 100
neurons (the ones with a positive filter) to spike at the same
time to reach the amplitude of the peaks. This results in a
reliable, non-degenerate code (high Γ). Alternatively, when a
low-amplitude stimulus is represented by many neurons with
relatively high-amplitude filters, the network can ’choose’
which neuron to use for representing the input, thereby
making the code degenerate (low Γ). 1. This is reflected in
the reliability Γ (third column). In a homogeneous network
consisting of identical neurons representing a low amplitude
input, there is no difference between a spike of neuron A or
one of neuron B, making the code highly degenerate (low Γ).
When the amplitude of the stimulus increases, more neurons
are recruited to represent the stimulus, thereby increasing
both the network activity A and the reliability Γ. When the
stimulus amplitude becomes too high to represent properly,
both the error MSE and Γ increase sharply (bottom left), and
the efficiency E decreases (bottom right). Therefore, a high
trial-to-trial variability, or a low reliability Γ is a hallmark
of an efficiently coding network, and a strong decrease of
the trial-to-trial variability (an increase in Γ) is a sign of a
network starting to fail to track the stimulus. This happens
for lower amplitudes for the heterogeneous network than for
the homogeneous network.

In conclusion, all three networks can track stimuli with
a wide range of parameters well, but the heterogeneous
network performs shows a lower error for an only small
increase in activity, therefore the heterogeneous network is
more efficient than the homogeneous network. However, the
homogeneous network can track higher amplitude stimuli,
in particular slowly fluctuating ones. The efficiency of the
code shows a strong inverse relation with the trial-to-trial
variability: the higher the network reliability, the lower its
efficiency. So a high trial-to-trial variability is a hallmark for
an efficiently coding network.

Heterogeneous networks are more robust against correlated
noise than homogeneous networks. In the previous section
it was shown that heterogeneous networks are more efficient
than homogeneous networks in encoding a wide variety
of stimuli. However, these networks did not contain any
noise. It has been shown that cortical networks receive
quite noisy input, which is believed to be correlated between
neurons(46–48). Therefore, we will test in this section how
robust homogeneous and heterogeneous networks are against
correlated noise.

To test for robustness against noise, we chose a stimu-
lus that all networks responded well to: amplitude = 10,
τ = 15 ms (see the white start in figure 4). Noise was added
in a ’worse case scenario’: it had the same temporal proper-
ties as the stimulus (i.e. it was white noise filtered with the

1However, note that none of the networks are very good at responding to
very low stimulus amplitudes: this is because most fluctuations are smaller
than the filter amplitudes

same filter with τ = 15 ms) and several neurons received the
same noise. Two parameters were varied: the amplitude of
the noise, and the correlations between the noise signals that
different neurons receive. This was implemented as follows:
next to the stimulus, every neuron received a noise signal
and we varied the relative amplitude of the noise signal
(anoise/asignal). Correlations between the noise signals for
different neurons were simulated by only making a limited
amount of noise copies, that were distributed among the
neurons. So in figure 5, the top horizontal row of each axis
corresponds to the situation in which each neuron receives
an independent noise signal, the bottom horizontal row of
each axis represents the situation where all neurons receive
the same noise signal (and hence there is from the network’s
point of view no difference between signal and noise). So
in figure 5, the leftmost column of each axis corresponds
to the situation without noise, the top row corresponds to
a simulation where all neurons in the network recieve an
independent noise signal and the bottom row corresponds
to the situation where every neuron receives the same noise
signal.

In figure 5, it is shown that all three networks are very
effective in compensating for independent noise by increas-
ing their firing rate. Note that the stimulus and the noise add
quadratically, so that a signal with amplitude 10 and noise
with amplitude 12 (relative amplitude 1.2) add together to a
total input of amplitude

√
102 + 122 = 15.5 for each neuron.

However, the firing rate of a network with signal amplitude
= 10 and noise amplitude = 12, is much higher than the firing
rate of a network that receives a signal with amplitude 15.5
and no noise (compare figures 4 and 5). So the networks
increase their activity both due to the increased amplitude of
the input, and in order to compensate for noise. The top row
of each subplot in figure 5 corresponds to a simulation where
all neurons in the network recieve the same noise signal.
In this case, it is impossible for the network to distinguish
between signal and noise. In the row above, only two noise
copies are present, in the row above that five, and so on.
The homogeneneous network can handle higher amplitudes
of independent noise (top part of each subplot) before the
representation breaks down (MSE > .2), but all networks
are able to compensate for independent noise amplitudes
up to equal to the signal amplitude (signal-to-noise ratio =
1). The heterogeneous network however, is better at dealing
with correlated noise (bottom part of each subplot): it shows
a lower error and higher efficiency for when there are few
copies of the noise signal. The type 1’& type 2 network
appears to combine the properties of both networks: it has a
low error in both representing independent noise and at rep-
resenting correlated noise. These differences in robustness
against noise probably have a relation with ambiguities in
degenerate codes, as will be discussed in section .

Experimental predictions. In the previous sections, we de-
rived a predictive coding framework and assessed the effi-
ciency and robustness of representing a stimulus of homoge-
neous and heterogeneous networks. In this section, we will
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Fig. 4. Heterogeneous networks are more efficient and show less trial-to-trial variability. Results of two simulations using the same stimulus, but different initial network states,
in a homogeneous ‘type 1’ network (first row), a network with ‘type 1’ and ‘type 2’ neurons (second row) and a heterogeneous network (third row). The network network
activity A (first column), reliability Γ (second column), network MSE (third column) and efficiency E (fourth column) are shown as a function of the time constant (τ ) and
amplitude of the stimulus. All networks perform well over a wide range of stimulus amplitudes and frequencies, but the heterogeneous network is more efficient for a wider
range of input parameters, in particular for fast-fluctuating low amplitue signals. The bottom row shows how the network activity, error and efficiency depend on the reliability
Γ. Parameters: ∆ = 7,5 ms, ν = µ= 1,5, N = 100. The white star denotes the parameter values used in section

include experimental predictions with respect to the predic-
tive coding framework and the effect it has on correlation
structures.

Signal and noise correlations. The predictive coding
framework that we derived in section predicts a specific
correlation structure: neurons with similar filters g should
show positive signal correlations (because they use similar
input filters), but negative noise (also termed spike count)
correlations (because they have negative lateral connections).
In many experimental papers, noise and signal correlations

between neurons are measured (49, 50) (for an overview,
see (51)). However, the methods authors use vary strongly:
the amount of repetitions of the stimulus varies from tens to
hundreds, the windows over which correlations are summed
vary from tens of miliseconds to hundreds of miliseconds
and the strength of the stimulus (i.e. network response)
varies from a few to tens of Hz. All these parameters strongly
influence the conclusions one can draw about correlations
between (cortical) neurons. In order to be able to compare
the correlations this framework predicts with experiments,
we performed the following simulation (based on (50), figure
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Fig. 5. Heterogeneous networks are more robust against noise. Network activity A (first column), network error MSE (second column) and efficiency E (third column) of
a homogeneous network (top row), a network with ‘type 1’ and ‘type 2’ neurons (middle row) and a heterogeneous network (bottom row). Next to the stimulus, each neuron
in the network was presented with a noise input, with a varying relative amplitude (horizontal axis) and number of copies of the noise signal (vertical axis; 1 copy means all
neurons receive the same noise, 100 copies means all neurons receive independent noise). Network: ∆ = 7,5 ms, ν = µ = 1,5, N = 100. Stimulus: amplitude = 10,
τ = 15 ms. Noise: τ = 15 ms.

6): we chose a 20 s. stimulus (exponentially filtered noise,
τ = 15 ms), and showed a network of N = 100 neurons
300 repetitions. We chose the stimulus amplitude so that
the network response was around 8 Hz. In order to be able
to compare neurons with similar filters and neurons with
different filters, we used the ‘type 1 & type 2’ network (see
section ). To assess the effects of shared noise, each neuron
received a noise signal that was the sum of an independent
noise signal, and a noise signal that was shared between
10 neurons (amplitude signal = 2.7, amplitude independent
noise = 0.5, amplitude correlated noise = 0.5). In this
simulation, we can compare neurons that share a noise
source, and neurons that don’t.

In figure 6, the signal and noise correlations between
‘type 1’ and ‘type 2’ and ‘on’ and ‘off’ cells (see section
and figure 3) are shown. We ran a simulation consisting of
300 trials, in which the same signal, but a different noise
realization was used. We used the same method as (48)2:

• For the signal correlations (figure 6, first column), we
calculated the average spike train over the 300 trials

2Note that the spike-count correlation is proportional to the area under the
noise cross-correlogram in this method

and calculated the cross-correllogram, normalized to
the total average number of spikes.

• For the noise correlations (figure 6, second column),
we subtracted the cross-correlogram of the averaged
spike trains (see above) from the cross-correlograms
averaged over all trials.

• For the noise correlations, shared noise condition
(figure 6, third column), we simply calculated the noise
correlations as above for two neurons that shared a
noise source.

We performed this correlation analysis for two ‘type 1’
neurons (figure 6, top row, blue), for two ‘type 2’ neurons
(figure 6, middle row, red) and for a ‘type 1’ and a ‘type
2’ neuron (figure 6, bottom row, purple). We performed
the correlation analysis also between two neurons with the
same representing filter (solid line) and with a neuron and
a neuron with an inverted representing filters (‘off-cells’,
dashed lines).

We start by looking at cells with similar filtering prop-
erties. In figure 6 A, we show that ‘type 1’ neurons show
positive signal correlations with other ‘type 1’ neurons
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(solid blue line), and negative signal correlations with their
off-cells (dashed blue line). As expected, ‘type 1’-neurons
show negative noise correlations with other ‘type 1’-neurons
(figure 6 B, solid blue line), and positive noise correlations
with their off-cells as long as noise is independent (dashed
blue line). When neurons share a noise source (figure 6 C),
the noise correlations are positive, but show a small negative
deflection around zero lag for on cells (solid blue line). For
‘type 2’ neurons, we can show similar conclusions: two
on-cells have positive signal correlations (figure 6 D, solid
red line), negative noise correlations for independent noise
((figure 6 E, solid red line), and positive noise correlations
with a negative peak around zero for shared noise ((figure 6
F, solid red line). An on and an off cell show negative signal
correlations (figure 6 D, dashed red line), but hardly any
noise correlations for independent noise (figure 6 E, dashed
red line) or shared noise (figure 6 F, dashed red line).

We now focus at cells with different filtering proper-
ties. ‘Type 1’ and ’type 2’ on cells show positive signal
correlations (figure 6 G), solid purple line). Note that the
peak is shifted towards positive lags, meaning that the ’type
2’ neurons spike earlier in time than ’type 1’ neurons. ‘Type
1’ and ’type 2’ on cells show only small noise correlations for
independent noise (figure 6 H, solid purple line). When noise

is shared (figure 6 I, solid purple line), a small deflection at
zero lag can be seen.

Under experimental conditions, correlations are often
summed over a window of about 10 miliseconds or more.
Therefore, we conclude that even though the predictive cod-
ing framework predicts negative noise correlations between
similarly tuned neurons, and positive noise correlations
between oppositly tuned neurons, these would be very hard
to observe experimentally. For shared noise, we expect
to see noise correlations with a similar sign as the signal
correlations, but with small deflections at small lags, as
shown in figure 6 C, F, I.

‘Type 2’ neurons show more coherence with network activ-
ity. To examine how the two different neuron types couple to
the network activity in response to a temporally fluctuating
stimulus, we study the spike coherence with a simulated Lo-
cal Field Potential (LFP). In figure 7, we analyse the network
activity of the different types of neurons, using the ‘type 1
& type 2’-network (see section and figure 3). Next to the
stimulus, each neuron in the network was presented with a
noise input (of which half the power was independent, and
half was shared with a subset of other neurons). Network:
∆ = 7,5 ms, ν = µ = 1,5, N = 100. Stimulus: τ = 15 ms,
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amplitude = 2.7. Noise: τ = 15 ms, amplitude independent
noise = 0.5, amplitude shared noise = 0.5. For the network
activity, each spike was convolved with a Gaussian kernel
(σ = 6 ms). Looking at the network activity (figure 7 A and
B), it is clear that ‘type 2’ neurons (red line) respond in a
much more synchronized manner (high peaks), and ‘type 1’
neurons (blue line) respond in a much more continuous way.
We quantified this, by convolving each spike with a Gaussian
kernel (σ = 6 ms), and calculating both the correlations be-
tween the network activity and that of a single neuron (figure
7 C), and by calculating the ’spike-triggered network activity’
(52) (figure 7 D). From this it is clear, that ‘type 2’ neurons
show a much stronger coupling to the overall network activity
(making them ’chorists’) than ‘type 1’ neurons (making them
’soloists’). So we predict that ‘type 2’ neurons are more co-
herent with the network activity/LFP than ‘type 1’ neurons.

Discussion
Biological data often show a strong heterogeneity: neural
properties vary considerably from neuron to neuron, even
in neurons from the same network (1–5), but also see (53).
Theoretical networks, however, often use a single or only a
very limited amount of ‘cell types’, where neurons from the
same cell type have the same response properties. In order
to investigate the effects of network heterogeneity on neural
coding, we derive a filter network that efficiently represents
its input from first principles. We start with the decoding
instead of with the encoding (this is not common, but has
been done before (54)), and formulate a spike rule in which
a neuron only fires a spike if this reduces the mean-squared
error between the received input and a prediction of the
input based on the output spike trains of the network,
implementing a form of Lewicki’s ‘matching pursuit’ (55).
Linear decoding requires recurrent connectivity, as neurons
representing different features in the input should inhibit one
another to alllow linear decoding, something that has been
shown in experiments (56). A similar framework has been
formulated in homogeneous networks with integrate-and-fire
neurons (57–60) and in networks using conductance-based
models (61). Effectively, this network performs a form of
coordinate transformation (62): each neuron represents a
particular feature of the input, and only by combining these
features the complete stimulus can be reconstructed. This
network is related to autoencoders, in that it finds a sparse
distributed representation of a stimulus by using an over-
complete set of basis functions in the form of a feed-forward
neural-network. The homogeneous integrate-and-fire net-
works in this framework have been shown to operate in a
tightly balanced excitatory-inhibitory regime, where a large
trial-to-trial variability coexists with a maximally efficient
code (63).

With the derived filter network, we are able to study
both single neuron and network properties. On the single
neuron level, we find that the single-neuron response
properties are equivalent to those of ‘type 1’ and ‘type 2’
neurons (for an overview see (8, 9, 64)): Neurons using

unimodal representing filters showed the same behaviour
as ‘type 1’ cells (continuous input-frequency curve (6),
unimodal Phase-Response Curve (PRC) (7, 65) and a
unimodal Spike-Triggered Average (STA) (66)), whereas
neurons using bimodal filters correspond to ‘type 2’ cells
(discontinuous input-frequency curve, bimodal PRC and a
bimodal STA). This should be the case, as the STA is a result
of the filtering properties of the neuron, and proportional to
the derivative of the PRC (67). In this framework, neurons
with bimodal representing filters will also send bimodal
Post-Synaptic Potentials (PSPs) to other neurons, so EPSPs
with an undershoot or IPSPs with a depolarizing part. This
might sound counterintuitive, because we often think of
excitatory post-synaptic potentials (EPSP) as having a purely
depolarizing effect on the membrane potential of the post-
synaptic neuron, and of inhibitory post-synaptic potentials
(IPSP) as having a purely hyperpolarizing effect. However,
a post-synaptic potential might have both excitatory and
inhibitory parts, depending on the type of synapse and the
ion channels present in the membrane. For instance, an
undershoot after an EPSP can be observed as an effect of
slow potassium channels (17) such as IM (16), IA (15) or
IAHP (68). IPSPs can have direct depolarizing effects when
the inhibition is shunting (69), (70), or due to for instance
deinactivation of sodium channels, or slow activation of
other depolarizing channels such as Ih. The observation
that neurons using unimodal representing filters show ‘type
1’ behaviour and neurons using bimodal representing filters
show ‘type 1’ behaviour gives a functional interpretation of
these classical neuron types: ’type 1’ cells are more efficient
at representing slowly fluctuating inputs, whereas ’type 2’
cells are made for representing transients and fast-fluctuating
input. This can also be observed in the network activity:
’type 2’ neurons show a much stronger coupling to the
overall network activity (making them ’chorists’ (52)) than
‘type 1’ neurons (making them ’soloists’). This is expected,
as ‘type 1’ neurons are generally harder to entrain (65),
whereas ‘type 2’ neurons generally show resonant properties
(71). So we predict that ‘type 2’ neurons are more coherent
with the network activity (local field potential) than ‘type 1’
neurons.

We compare both the functional coding properties and
the activity of networks with different degrees of heterogene-
ity. We found that all networks in this framework can respond
efficiently and robustly to a large variety of inputs (varying
amplitude and fluctuation speed) corrupted with noise with
different properties (ampitude, fluctuation speed, correlation
between neurons). All networks show a high trial-to-trial
variability, that decreases with the network efficiency. So
we confirmed that trial-to-trial variability is not necessarily
a result of noise, but is actually a hallmark of efficient
coding (72–74). In-vivo recordings typically show strong
trial-to-trial variability between spike trains from the same
neuron, and spike trains from individual neurons are quite
irregular, appearing as if a Poisson process has generated
them. In in-vitro recordings on the contrary, neurons show
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Fig. 7. Network activity in a ‘type 1 & type 2’ network (see section and figure 3). A) Average activity of the whole network (black), ‘type 1 on cells’ (blue line) and ‘type 2 on
cells’ (red line). B) Spike response of the network. C) Average cross-correllogram between the network activity and ‘type 1, on’ cells (blue line) or ‘type 2, on’ cells (red line).
D) Spike-triggered network activity for ‘type 1, on’ cells (blue line) or ‘type 2, on’ cells (red line). Next to the stimulus, each neuron in the network was presented with a noise
input (of which half the power was independent, and half was shared with a subset of other neurons). Network: ∆ = 7,5 ms, ν = µ= 1,5,N = 100. Stimulus: τ = 15 ms,
amplitude = 2.7. Noise: τ = 15 ms, amplitude independent noise = 0.5, amplitude shared noise = 0.5. For the network activity, each spike was convolved with a Gaussian
kernel (σ = 6 ms)

very regular responses to injected input current, especially
if this current is fluctuating ((75, 76). It is often argued
that this is due to noise in the system and therefore that the
relevant decoding parameter should be the firing rate over
a certain time window (as opposed the timing of individual
spikes, (77), but see also (78)). Here, we show in noiseless
in-vivo-like simulations that the generated spike trains are
irregular and show large trial-to-trial variability, even though
the precise timing of each spike matters: shifting spike times
decreases the performance of the network. Therefore, this
model shows how the intuitively contradictory properties of
trial-to-trial variability and coding with precise spike times
can be combined in a single framework. Trial-t- trial vari-
ability is here a sign of degeneracy in the code: the relation
between the network size, filter size and homogeneity of
the network versus the amplitude determines whether there
is strong or almost no trial-to-trial variability. Moreover,
we show that the trial-to-trial variability and the coding
efficiency depend on the frequency content of the input, as

has been shown in several systems (39, 42, 44, 75).

Heterogeneous networks are more efficient than homo-
geneous networks, especially in representing fast-fluctuating
stimuli: heterogeneous networks represent the input with
a smaller error and using fewer spikes, in line with earlier
research that found that heterogeneity increases the com-
putational power of a network (23, 24) especially if they
match the stimulus statistics (79). Heterogeneous networks
are not only more efficient, they are also more robust against
correlated noise (noise that is shared between neurons)
than homogeneous networks, in line with previous results
(25, 80, 81). This might be the result of heterogeneous net-
works using a less degenerate code: these networks are better
at whitening the noise signal, because each neuron projects
the noise onto a different filter, thereby effectively decorre-
lating the noise. Put differently, the heterogeneous network
projects the signal and noise into a higher-dimensional space
(62), thereby more effectivily projecting noise and signal
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into different dimensions. Homogeneous networks are better
at compensating for independent noise. This is probably
due to a combination of two factors: 1) a homogeneous
network being better at compensating for erronous spikes (a
‘mistake’ in the estimate is easier to compensate if the same
but negative filter exist than if this doesn’t exist) and 2) a ho-
mogeneous network is better at representing high-amplitude
signals. The optimal mix of neuron types probably depends
on the stimulus statistics and remains a topic for further study.

The predictive coding framework predicts a specific
correlation structure between neurons: negative noise
correlations between neurons with similar tuning, and
positive noise correlations between neurons with opposite
tuning. This may appear to be contradictory to earlier results
(82, 83). However, as neurons with similar tuning most
likely recieve inputs from common sources in previous
layers, these neurons will also share noise sources, resulting
in correlated noise between neurons. We showed that in this
situation, the negative noise correlations are only visible
as small deflections of effectively positive correlations.
It has been argued that in order to code efficiently and
effectively, recurrent connectivity should depend on the
statistical structure of the input to the network (84) and that
noise correlations should be approximately proportional
to the product of the derivatives of the tuning curves (85),
although these authors also concluded that these correlations
are difficult to measure experimentally. Others suggest that
neurons might be actively decorrelated to overcome shared
noise (86). We conclude that even though different (optimal)
coding frameworks make predictions about correlation
structures between neurons, the opposite is not true: a single
correlation structure can correspondd to different coding
frameworks. So measuring correlations is not sufficient
(although informative) to determine what coding framework
is used by a network (35, 87, 88).
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87. Gašper Tkačik, Jason S. Prentice, Vijay Balasubramanian, and Elad Schneidman. Optimal
population coding by noisy spiking neurons. Proceedings of the National Academy of Sci-
ences of the United States of America, 107(32):14419–14424, 2010. ISSN 00278424. doi:
10.1073/pnas.1004906107.

88. Elad Schneidman. Noise, Correlations, and Information in Neural Population Codes. In
Michael S. Gazzaniga and George R. Mangun, editors, The Cognitive Neurosciences, chap-
ter 29, pages 319–336. MIT PRess, 5 edition, 2014. ISBN 9783540773405.

89. Peter Dayan and L. F. Abbott. Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems. MIT Press, 2001. ISBN 0262041995.

90. Liam Paninski. Convergence properties of three spike-triggered analysis techniques. Net-
work: Computation in Neural Systems, 14(3):437–64, aug 2003. ISSN 0954-898X.

91. Jonathan W Pillow, Liam Paninski, Valerie J Uzzell, Eero P Simoncelli, and E. J. Chichilnisky.
Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model.
The Journal of Neuroscience, 25(47):11003–13, nov 2005. ISSN 1529-2401. doi: 10.1523/
JNEUROSCI.3305-05.2005.

92. Wilson Truccolo, Uri T Eden, Matthew R Fellows, John P Donoghue, and Emery N. Brown.

Zeldenrust et al. | Efficient coding in heterogeneous networks bioRχiv | 15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2019. ; https://doi.org/10.1101/804864doi: bioRxiv preprint 

https://doi.org/10.1101/804864
http://creativecommons.org/licenses/by-nc-nd/4.0/


A point process framework for relating neural spiking activity to spiking history, neural en-
semble, and extrinsic covariate effects. Journal of Neurophysiology, 93(2):1074–89, feb
2005. ISSN 0022-3077. doi: 10.1152/jn.00697.2004.

16 | bioRχiv Zeldenrust et al. | Efficient coding in heterogeneous networks

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2019. ; https://doi.org/10.1101/804864doi: bioRxiv preprint 

https://doi.org/10.1101/804864
http://creativecommons.org/licenses/by-nc-nd/4.0/

