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Abstract1

The global HIV-1 pandemic comprises many genetically divergent subtypes. Most of our un-2

derstanding of drug resistance in HIV-1 derives from subtype B, which predominates in North3

America and western Europe. However, about 90% of the pandemic represents non-subtype B4

infections. Here, we use deep sequencing to analyze HIV-1 from infected individuals in Uganda5

who were either treatment-naı̈ve or who experienced virologic failure on ART without the expected6

patterns of drug resistance. Our objective was to detect potentially novel associations between mu-7

tations in HIV-1 integrase and treatment outcomes in Uganda, where most infections are subtypes8

A or D. We retrieved a total of 380 archived plasma samples from patients at the Joint Clinical9

Research Centre (Kampala), of which 328 were integrase inhibitor-naı̈ve and 52 were raltegravir10
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(RAL)-based treatment failures. Next, we developed a bioinformatic pipeline for alignment and1

variant calling of the deep sequence data obtained from these samples from a MiSeq platform (Il-2

lumina). To detect associations between within-patient polymorphisms and treatment outcomes,3

we used a support vector machine (SVM) for feature selection with multiple imputation to account4

for partial reads and low quality base calls. Candidate point mutations of interest were experimen-5

tally introduced into the HIV-1 subtype B NL4-3 backbone to determine susceptibility to RAL in6

U87.CD4.CXCR4 cells. Finally, we carried out replication capacity experiments with wild-type7

and mutant viruses in TZM-bl cells in the presence and absence of RAL. Our analyses not only8

identified the known major mutation N155H and accessory mutations G163R and V151I, but also9

novel mutations I203M and I208L as most highly associated with RAL failure. The I203M and10

I208L mutations resulted in significantly decreased susceptibility to RAL (44.0-fold and 54.9-fold,11

respectively) compared to wild-type virus (EC50=0.32 nM), and may represent novel pathways of12

HIV-1 resistance to modern treatments.13

Author summary14

There are many different types of HIV-1 around the world. Most of the research on how HIV-115

can become resistant to drug treatment has focused on the type (B) that is the most common in16

high-income countries. However, about 90% of infections around the world are caused by a type17

other than B. We used next-generation sequencing to analyze samples of HIV-1 from patients in18

Uganda (mostly infected by types A and D) for whom drug treatment failed to work, and whose19

infections did not fit the classic pattern of adaptation based on B. Next, we used machine learning20

to detect mutations in these virus populations that could explain the treatment outcomes. Finally,21

we experimentally added two candidate mutations identified by our analysis to a laboratory strain22

of HIV-1 and confirmed that they conferred drug resistance to the virus. Our study reveals new23

pathways that other types of HIV-1 may use to evolve resistance to drugs that make up the current24

recommended treatment for newly diagnosed individuals.25
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Introduction1

There are currently six classes of antiretroviral drugs approved for treatment of HIV-1 infection,2

with protease inhibitors (PIs) and nucleoside and non-nucleoside reverse transcriptase inhibitors3

(NRTIs and NNRTIs) in most widespread use [1]. Integrase strand transfer inhibitors (INSTIs)4

are a more recent class of antiretroviral drugs targeting the virus-encoded integrase (IN) protein,5

which is responsible for inserting complementary DNA derived from the viral RNA genome into6

the genome of the host cell [2]. INSTIs are increasingly being used for individuals in low and7

middle-income countries (LMICs) for whom first- and second-line antiretroviral treatment (ART)8

regimens have failed, due to the emergence of drug resistance mutations (DRMs) to the PIs, NRTIs9

and/or NNRTIs that comprise these regimens [3]. With the exception of boosted PIs, there is10

typically a greater genetic barrier for HIV-1 to develop resistance to second-generation INSTIs,11

such as dolutegravir (DTG) and bictegravir (BIC), relative to other drugs [4, 5]. Even so, there are12

multiple well-characterized mutations conferring major and accessory resistance to INSTIs [6],13

where we employ the Stanford HIV Drug Resistance (HIVdb) guidelines for categorizing DRMs14

[7]. Most DRMs with major effects cause some level of cross-resistance to all drugs in this class15

— DTG, BIC, raltegravir (RAL) and elvitegravir (EVG) — with higher-level resistance to RAL16

and EVG compared to DTG and BIC.17

Until recently, HIV-1 drug resistance studies have generally focused on individuals receiving18

ART in high income countries. The expansion of ART to over 18 million worldwide has turned19

attention to finding affordable methods for scaling up treatment monitoring and drug resistance20

testing. With the high volume of tests, some LMICs have adopted drug resistance genotyping21

by next generation sequencing (NGS) technologies [8, 9], in place of the more common but less22

scaleable Sanger sequencing approaches [10]. In addition to the ability to multiplex large numbers23

of patient samples into a single run [11], NGS has an added advantage of deep sequencing —24

where the same region of the virus genome is covered by sequences from hundreds or thousands of25

individual viruses in the sample — making it possible to reproducibly identify minority HIV-1 vari-26

ants below the detection threshold of Sanger sequencing [12]. Despite their low frequencies within27

patients, these minority variants have clinical significance as they can anticipate the emergence of28

drug resistance and treatment failure [13]. Deep sequencing analysis of clinical HIV-1 samples29
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in LMICs also provides a unique opportunity to identify potentially new HIV-1 polymorphisms1

associated with drug resistance in diverse HIV strains [14–16]. These opportunities also present2

significant bioinformatic challenges. Enormous amounts of sequence data must be processed ac-3

curately and efficiently, where sequencing error rates still exceed conventional Sanger methods4

[17]. The task of identifying novel associations between treatment outcomes and minority variants5

in diverse HIV-1 populations remains an open problem, and research has focused largely on HIV6

coreceptor tropism [18, 19] in populations predominantly affected by subtype B (but see [20]).7

The global diversity of HIV-1 is structured into four phylogenetic groups, denoted by letters8

M-P [21]. The vast majority of infections worldwide are caused by group M viruses, which are9

further separated into subtypes that have distinct geographic distributions, possibly owing to early10

‘founder effects’ in sub-Saharan Africa [22]. The majority of research on DRMs has historically11

been carried out on HIV-1 subtype B, owing in part to the predominance of this subtype in North12

America and western Europe — this subtype represents only about 10% of the global HIV-1 pan-13

demic [23, 24]. Fortuitously, clinical outcomes on first- and second-line ART appear to be largely14

independent of HIV-1 subtype [25–27]. However, several studies (reviewed in [28]) have shown15

that non-subtype B infections can accumulate DRMs in response to treatment along mutational16

pathways that are distinct from subtype B. For example, a novel DRM in HIV-1 RT (V106M) has17

been reported to confer resistance to the NNRTI efavirenz (EFV) that is characteristic of HIV-118

subtype C [29]. More recently, investigators determined that the HIV-1 integrase mutation G118R19

confers a high level of resistance to RAL in the circulating recombinant form CRF02 AG, where20

the glycine is highly conserved across subtypes [30]. According to that study, G118R had only21

been previously observed in cell culture on exposure to another second-generation INSTI (MK-22

2048).23

Historically, Uganda has had one of the highest burdens of HIV/AIDS in the world, with an24

estimated 1.3 million people living with HIV-1. The majority of infections in Uganda are caused25

by HIV-1 subtypes A and D, followed by A/D inter-subtype recombinants and subtype C [31].26

With increasing access to ART, the transmission of DRMs is becoming increasingly common with27

an estimated 5% to 9% of treatment-naı̈ve individuals carrying at least one primary DRM [32].28

The majority of individuals starting ART in Uganda are prescribed a first-line regimen based on29

EFV, tenofovir (TDF) and a second NRTI, whereas almost no one had received the World Health30
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Organization-recommended [33] INSTI + 2 NRTIs initial regimen that is more common for first-1

line therapy in higher income settings [34, 35]. DTG was recently introduced into new first line2

treatment regimens across sub-Saharan Africa, but treatment with any INSTI still represents less3

than 1% of active first line treatments in LMICs [36]. In most LMICs, INSTIs have generally been4

reserved for those requiring a third-line treatment regimen, with RAL-based regimens being quite5

successful in treatment-experienced individuals with multidrug-resistant HIV [37–39]. Several6

mutational pathways reducing susceptibility to RAL have been described, including the major7

DRMs T66K, Y143R, Q148H/K/R, and N155H in HIV-1 integrase [4, 40–42]. Notably, all of8

these studies were carried out in predominantly (≥ 90%) HIV-1 subtype B cohorts or in vitro with9

a subtype B laboratory clone.10

Here, we describe a bioinformatic approach to detect potential novel DRMs from NGS data sets11

that include all within-host polymorphisms above a frequency of 1%. We have applied this method12

to HIV NGS data from a cohort of individuals with HIV-1 non-subtype B infections in Uganda, of13

whom a subset had experienced treatment failure on RAL-containing salvage regimens. Addition-14

ally, we have experimentally verified the resistance effects of the novel DRMs predicted by our15

bioinformatic analysis by drug susceptibility assays in vitro, and characterized these mutations in16

structural models of HIV-1 integrase.17

Methods18

Data collection19

The study samples were collected from the Center for AIDS Research Laboratory at the Joint20

Clinical Research Centre (JCRC) in Kampala, Uganda [34]. Written informed consent was pro-21

vided by all study participants. Ethical approval was obtained from JCRC and University Hospitals22

Cleveland Medical Center/Case Western Reserve University Institutional Review Boards (EM-10-23

07 and 10-05-35). All investigations have been conducted according to the principles expressed24

in the Declaration of Helsinki. Patient samples were assigned to one of four categories based on25

treatment history and clinical outcome records in the JCRC database: treatment-naı̈ve, first-line26

treatment failures, second-line treatment failures, and treatment failures on RAL-based salvage27

regimens (RAL failure). Treatment failure was defined by the presence of either a viral load above28
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1,000 copies/mL and/or a CD4 cell count below 250 cells/mm3 in the period following treatment1

initiation. Although current definitions of treatment failure tend to focus on viral load measure-2

ments, we retained the criterion based on CD4 cell counts for consistency with historical practice3

in this treatment population.4

RNA extraction and PCR amplification5

For each sample, viral RNA was extracted from 200µL of plasma using a QIAamp viral RNA Mini6

Kit (Qiagen) according to the manufacturers instructions. Reverse transcription of the full-length7

HIV-1 integrase (IN)-coding region from extracted viral RNA and amplification was performed8

with the sense primer RTA9F (5-TATGGGGAAAGACTCCTAAATTTA-3) and antisense primer9

3Vif (5-AGCTAGTGTCCATTCATTG-3) using a Superscript III single RT-PCR system with Plat-10

inum Taq DNA polymerase kit (Thermo Fisher Scientific) as per the manufacturers instructions.11

The complementary DNA product was purified using a Quant-iT Picogreen dsDNA assay kit12

(Thermo Fisher Scientific) and quantified using a Qubit fluorometer (Thermo Fisher Scientific).13

The region encoding integrase was amplified in two parts by nested PCR using the following sets14

of primers: (1) sense primer INTF1B (5’-AGGTCTATCTGGCATGGGTACC -3’) and antisense15

primer INTR1B (5’-GATTGTAGGGAATTCCAAATTCCTGCT-3’); (2) sense primer INTF2B216

(5’-CAGGAATTTGGAATTCCCTACAATCCCC-3’) and antisense primer INFR2B4 (5’-TGTC17

TATAAAACCATCCCCTAGCTTTCCC-3’).18

Library preparation and deep sequencing19

Two overlapping IN-PCR regions corresponding to the 288 amino acids of HIV-1 IN were se-20

quenced with the MiSeq NGS platform (Illumina). The amplicons were purified with Agencourt21

AMPure XP (Beckman Coulter) and quantified using the Quant-iT Picogreen dsDNA assay kit22

(Thermo Fisher Scientific), prior to adding adapters using the Nextera XT sample prep kit (Illu-23

mina) with dual indexing for a maximum of 384 unique tags. The resulting libraries were quanti-24

fied, normalized and pooled for paired-end sequencing (2×300 nt) on the Illumina MiSeq platform.25

Signal processing, base calling and structural variant analysis were performed with the MiSeq Re-26

porter Software (version 2.6, Illumina). We deposited the unprocessed FASTQ data in the National27

Center for Biotechnology Information (NCBI) Short Read Archive (BioProject accession number28
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PRJNA554675).1

Site directed mutagenesis of I203M and I208L2

The I203M and I208L mutations were created in HIV INT gene from pREC-NFL (NL4-3) back-3

bone using in-house site directed mutagenesis protocol. Briefly, the HIV-1 IN coding regions were4

amplified with the following primers: Vif 3 reverse 1 (5’-GTCCTGCTTGATATTCACACC-3’);5

INTREXT (5’-AATCCTCATCCTGTCTAC-3’); and INTFEXT1 (5’-AGAAGTAAACATAGT6

AACAGACTCACA-3’). The I203M mutation was created using sense primer 5’-gcaggggaaaga7

atagtagacATGatagcaacagacatacaaac-3’ and the antisense primer 5’-gtttgtatgtctgttgctatCATgtctac8

tattctttcccctgc-3’); I208L was created using the sense primer 5’-gaatagtagacataatagcaacagacTTG9

caaactaaagaattacaaaaa-3’ and antisense primer 5’-tttttgtaattctttagtttgCAAgtctgttgctattatgtctactatt10

c-3’. The presence of the mutation in the plasmid and the propagated virus was confirmed by PCR11

followed by Sanger sequencing.12

Cells and antiviral compounds13

TZM-bl, U87.CD4.CXR4 and HEQ293T cell lines were obtained through the AIDS Research and14

Reference Reagent Program (Division of AIDS, National Institute of Allergy and Infectious Dis-15

eases, U.S.) [43]. All cell lines were maintained in Dulbecco modified Eagle medium (DMEM)16

supplemented with 10% fetal bovine serum (FBS) and 100 µg/ml penicillin-streptomycin. In17

addition, U87.CD4.CXR4 cells were maintained in the presence of 300 µg/ml G418 (an amino-18

glycoside antibiotic) and 1 µg/ml puromycin (Invitrogen, Carlsbad, CA). All cell lines were sub-19

cultured every 3-4 days at 37◦C under 5% CO2. The TZM-bl cells contained reporter luciferase20

and β -galactocidase reporter genes that were activated by expression of HIV tat. DTG and RAL21

were provided by Gilead Sciences (Foster City, CA, USA).22

Construction of HIV INT chimeric viruses23

HIV full length integrase PCR products were cloned into pREC NFL IN/URA3 vector and Sac-24

charomyces cerevisiae MYA-906 cells (ATCC) using the yeast homologous recombination-gap25

repair system [44]. Following homologous recombination, plasmids were extracted from the26

yeast cells and transformed into electrocompetent Escherichia coli Stbl4 cells (Invitrogen). Plas-27

mids were extracted using Qiagen miniprep kits and plasmid DNA was quantified using a Nan-28
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oDrop spectrophotometer (Thermo Scientific). The presence of the mutation in the generated plas-1

mid was confirmed by sequencing. Chimeric pREC NFL INT plasmids were co-transfected into2

HEK293T cells (3×104 cells/well) along with the complementing plasmid pCMV cplt using Fu-3

gene 6 reagent (Promega, Madison, WI) as described previously [44]. Virus was then propagated4

on U87.CD4.CXCR4 cells as described [44].5

Drug susceptibility assay in TZM-bl cells6

HIV susceptibility to DTG and RAL was determined using TZM-bl cells. Briefly, 20,000 cells per7

well were exposed to wildtype (WT), I203M or I208L HIV-1 in presence of 10-fold dilutions of8

DTG or RAL (100 µM to 10−7 µM) and DEAE-dextran (1mg/ml) in 96-well tissue culture plates9

(Corning). The amount of virus added to each well was normalised to a multiplicity of infection10

(MOI) of 0.01 based on the infectious titer. After 48 hr incubation at 37◦C and 5% CO2, the infec-11

tivity of viruses was quantified by staining the cells with X-gal as described previously [45] and12

then counting the cells using an ImmunoSpot reader. The fold changes in the effective concentra-13

tions for 50% inhibition (EC50) and standard errors of the mean (SEM) were calculated based on14

two sets of experiments, each performed in quadruplicate. Drug sensitivity curves were generated15

using nonlinear regression curve fitting features of GraphPad Prism 8.0 software (GraphPad Soft-16

ware, Inc., San Diego, CA). Drug resistance is presented as fold change in EC50 between WT and17

mutant viruses.18

Sequence analysis19

We processed the FASTQ files generated by the Illumina MiSeq platform using a customized20

version of the MiCall pipeline (https://github.com/PoonLab/MiCall-Lite) [17]. First, the pipeline21

extracts the empirical φX174 error rates from the ‘ErrorMetricsOut’ binary InterOp file associ-22

ated with the MiSeq run, and then censors bases in the FASTQ files associated with problematic23

cycle-tile combinations with error rates exceeding a cutoff of 7.5%. Next, the program cutadapt24

(version 1.11) [46] was used to filter the FASTQ read data for Illumina adapter sequences. The25

pipeline subsequently used the alignment program Bowtie2 (version 2.2.6) [47] to map the paired-26

end read data to the full-length sequence encoding HIV-1 integrase of the HXB2 reference genome27

(Genbank accession K03455). This preliminary mapping stage was followed by the iterative re-28
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mapping of reads from the original FASTQ files to new reference sequences, which were progres-1

sively updated with the plurality consensus of reads that were successfully mapped in the previous2

iteration [17]. A mapping quality score cutoff of Q = 20 was applied at this stage to filter ambigu-3

ously mapped reads. The primary outputs of the pipeline included the sample-specific nucleotide4

consensus sequence, coverage maps, and the matrix of amino acid frequencies in the coordinate5

system of the HXB2 reference; insertions relative to this reference coordinate system were written6

to a separate output file.7

We used a Python script to filter the amino acid frequency matrices generated by the pipeline8

described above, using a minimum coverage threshold of at least 1,000 mapped reads per amino9

acid. First, any matrix corresponding to a pair of FASTQ files was discarded if the overall number10

of reads mapped to the sample-specific consensus sequence was below this threshold. Next, any11

individual amino acid position below this coverage threshold was coded as missing data in the12

remaining frequency matrices. Additionally, any sites with discordant amino acid frequencies13

within the overlapping region of the two amplicons — i.e., where the frequency of an amino acid14

exceeded the threshold in one amplicon but not the other — was also coded as missing data. Next,15

the script converted the amino acid frequency data for each sample into a long binary vector that16

indicated whether each of the 20 amino acids was observed above a frequency threshold of 1%17

at every position in the integrase gene; these outputs are herein denoted the low-threshold (LT)18

data set. This dichotomization step was repeated at a frequency threshold at 20% to produce the19

high-threshold (HT) data set. Hence, the amino acid frequency data from the aligned short reads20

were encoded into two presence-absence matrices, each comprising 20× 288 = 5,760 variables21

(columns) and one row for every pair of FASTQ files. Similar dichotomization approaches (e.g.,22

sparse binary encoding [18]) have previously been used for feature selection analyses involving23

amino acid polymorphisms [18, 48]. All subsequent analyses were replicated across these two24

data sets.25

Data imputation26

A substantial number of patient samples (Supplementary Table S1) were sequenced more than27

once on the MiSeq platform to take advantage of the large number of index combinations and28

sequencing yield of this instrument. In other words, the number of rows in the presence-absence29

9
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matrix produced by the previous step was greater than the number of patient samples. To incorpo-1

rate the entire data collection without unnecessarily and arbitrarily discarding or pooling repeated2

measurements, we randomly down-sampled redundant rows to obtain a reduced presence-absence3

matrix with one row per sample, and repeated this procedure to yield 10 replicate matrices. All4

subsequent analyses were replicated across these matrices.5

The next stage of our analysis employed a support vector machine (SVM) classifier to identify6

putative associations between amino acid polymorphisms and RAL failure. Although extensions7

of SVMs have recently been developed to handle missing data [49], the prevailing approach is to8

use a generic method to impute missing values prior to the SVM analysis. We used multivariate9

imputation by chained equations as implemented in the R package mice [50]. Based on the overall10

proportion of missing observations in our data sets (3.2% for the LT data set and 2.9% for the HT11

data set), the recommended minimum number of imputations was 3 [51]. We decided to generate12

5 imputed data sets for each of the 10 normalized data sets from the previous section. Further, we13

duplicated this approach for the LT and HT data sets for a total of 5×10×2 = 100 imputed data14

sets. To speed up the multivariate imputation, we used the quickpred variable selection procedure15

implemented in the mice package to filter the data for potentially significant predictors based on a16

simple correlation statistic. We excluded sites with an absolute correlation with the group labels17

below 50% and output the remaining variables to a preliminary predictor matrix. Each imputation18

was run for 20 iterations instead of the default 5 iterations, and convergence was visually assessed19

using the trace line plots of estimates against iteration numbers. To increase the robustness of20

results from the SVM analysis, we filtered amino acid features with non-zero weights (based on21

their incorporation into support vectors) by a minimum frequency of 80% across imputations, i.e.,22

at least 40 out of 50.23

SVM analysis24

The preceding imputation step yielded 100 large presence-absence matrices encoding the observed25

HIV-1 integrase amino acid polymorphisms across baseline and treatment failure samples. We26

analyzed each imputed data matrix with a support vector machine (SVM) in which the samples27

were mapped to a high-dimensional feature space based on the presence or absence of amino acids,28

which was encoded by +1 and −1, respectively, as stipulated by the soft-margin linear SVM model29

10
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[52]. Our samples were recategorized into two groups of outcomes (labels): samples from patients1

who experienced treatment failure on a RAL-based regimen (abbreviated to ‘RAL failure’); and2

samples from treatment-naı̈ve patients and patients who experienced treatment failure on first- and3

second-line regimens without integrase inhibitors (‘RAL naı̈ve’). An SVM attempts to locate the4

hyperplane, defined by a subset of data points (the support vectors), that most effectively separates5

the training data into the two groups. We performed an SVM analysis with the svm.fs function from6

the R package penalizedSVM [53] using an L1-norm penalty. Compared to an unpenalized SVM,7

this penalty function aggressively zeroes-out the coefficients associated with features that are less8

informative for classifying the data, and thereby provides a framework for feature selection [54].9

To calibrate the λ tuning parameter of the SVM model, which controls the severity of penalizing10

data points that cross the margin of the hyperplane, we used a discrete grid search to determine the11

optimal λ with minimal misclassification error by 5-fold cross-validation [55]. After training and12

cross-validation, we generated the final SVM model for the entire data set using the optimized λ13

parameter. For each of the 100 data sets, we extracted the average feature weights and counts from14

the SVM results.15

To corroborate the assignments of the most positive or negative feature weights to specific16

amino acids per treatment group, we calculated the odds ratios to quantify the statistical associ-17

ations between the amino acid and outcomes (group labels). We calculated odds ratios and 95%18

confidence intervals by unconditional maximum likelihood estimation (Wald method) as imple-19

mented in the R package epitools, adding a fixed n = 0.5 value to every single cell of its contin-20

gency table to avoid a division by zero error (Haldane-Anscombe correction [56]). Subsequently,21

we averaged the results for each feature across all 100 data sets. Additional details on the sequence22

processing and SVM analysis are provided as Supplementary Text S1.23

Drug resistance prediction24

To obtain resistance predictions from the sequence data from the IN coding region, we generated25

a consensus sequence at a polymorphism threshold of 20%, such that any position with two or26

more nucleotide frequencies above this threshold was encoded as an ambiguous base using the27

corresponding IUPAC symbol. Further, we censored all positions with fewer than 50 mapped28

reads as missing data – this threshold was less stringent than the minimum number of mapped29

11
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reads (1000) required for positions to be carried over to the SVM analysis, because the objective of1

the latter was to detect associations with polymorphisms at a minimum frequency of 1%. Since a2

minimum of 10 mapped reads (1% × 1000) was required to be interpreted as a real polymorphism,3

the same number of mapped reads was required to influence the consensus sequence at a cutoff of4

20% (50 reads × 20% = 10 reads). Drug resistance prediction scores on the resulting consensus5

sequences were obtained for RAL using the Stanford HIVdb algorithm version 8.4 (updated 2017-6

06-16) [7].7

Subtype and phylogenetic analysis8

We used the same consensus sequences generated for drug resistance prediction to predict subtypes9

and reconstruct the phylogeny. We used the SCUEAL algorithm in HyPhy [57] to generate subtype10

classifications and detect inter- and intra-subtype recombination. Next, we excluded predicted re-11

combinant sequences and sequences that were classified as circulating recombinant forms (CRFs),12

and generated a multiple sequence alignment from the remaining sequences using MUSCLE (ver-13

sion 3.8.425) [58]. This alignment also incorporated the HIV-1 reference sequences curated by14

the Los Alamos National Laboratory (LANL) HIV Sequence Database (http://www.hiv.lanl.gov)15

for subtypes A1, C, D and G, where this selection of references was based on subtyping results16

from this study population. The alignment was manually inspected and refined in AliView (ver-17

sion 1.19-beta-3) [59]. We used jModelTest (version 2.1.10) [60] to select the most effective18

nucleotide substitution model based on the Akaike Information Criterion (AIC). Finally, we used19

PhyML (version 20160207) [61] to reconstruct a phylogenetic tree by maximum likelihood un-20

der the AIC-selected model with the default bootstrap support analysis (1,000 replicates). The21

tree was visualized and manually annotated for subtypes in FigTree (version 1.4.2, A. Rambaut,22

http://tree.bio.ed.ac.uk/software/figtree).23

Structural analysis24

The α-helix that connects the catalytic core domain (CCD) to the C-terminal domain (CTD) of25

the HIV-1 integrase protein is not resolved in the available DNA bound three-dimensional (3D)26

structure (PDB ID 5U1C). We therefore modelled the coordinates of the missing α-helix region27

(a total of 22 amino acids derived from PDB ID 1EX4) into one monomer (chain A) of the orig-28

12
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inal structure (PDB ID 5U1C) using the program MODELLER (version 9.21) [62] to create an1

extended structure (PDB ID 5U1C extended). Using the extended structure as template, we built2

structural models of the I203M, I208L and combined I203M and I208L mutations respectively.3

The protein refinement program 3Drefine was used for energy minimization and optimization of4

all models [63]. Furthermore, we used the molecular structure visualization program PyMOL5

(version 1.7.2.1, http://pymol.org; Schrödinger, LLC) to visualize the sites where the I203M and6

I208L mutations are located on the 3D structure (PDB IDs 5U1C, 5U1C extended and 2B4J) of7

the HIV-1 integrase protein [64].8

Results9

Data collection10

We obtained plasma samples for a total of 380 patients receiving treatment for HIV-1 infection11

at the Joint Clinical Research Center in Kampala, Uganda, for genotypic drug resistance testing12

by deep sequencing on the Illumina MiSeq platform. Of the 328 samples from INSTI-naı̈ve indi-13

viduals (RAL naı̈ve), 85 samples were categorized as treatment-naı̈ve, 127 as first-line treatment14

failures, and 116 as second-line treatment failures. The remaining 52 samples (14% of total) were15

obtained from individuals who had experienced treatment failures on raltegravir-based salvage reg-16

imens (RAL failure). From these samples, we generated a total of n= 524 paired FASTQ files with17

a mean of 83,185 reads per pair. Using the MiCall pipeline [17], which iteratively re-maps read18

data to update sample-specific reference sequences, we mapped an average of 81,189 reads (97.6%19

of the raw totals) to the HIV-1 IN coding region from each sample. This pipeline enforced a num-20

ber of coverage and quality filtering criteria (see Methods), including a minimum requirement of21

1,000 read coverage per amino acid position. Consequently, we discarded n = 7 FASTQ files due22

to insufficient numbers of reads that mapped to the HIV reference.23

The φX174 control error rates associated with the two MiSeq runs used for these sequencing24

experiments displayed the typical exponential decay with increasing cycle number, starting at a25

median of 0.44% (interquartile range, IQR: 0.32%, 0.96%) and ending at 9.2% (6.7%, 15.6%;26

Supplementary Figure S1). The overall median error rate was 1.5% (0.49%, 3.7%), which was27

consistent with previously reported error rates for this platform. Out of a total of 22,800 tile-cycle28

13
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combinations, 2,095 and 3,360 combinations with an error rate exceeding 7.5% from the respective1

runs were excluded from further analysis. These combinations were concentrated in the last 1002

cycles of the second reads (80.3% and 74.6%). The median sequence length after mapping with3

soft clips was 498 (IQR 325, 525) nt, indicating that the majority of the dropped base calls due to4

bad tile-cycles could be compensated by high quality base calls in the first reads at the paired-end5

read merger step of the pipeline.6

A key challenge in detecting genetic associations in deep sequencing data from rapidly-evolving7

pathogens like HIV-1 is that polymorphisms can be observed at many, if not most, sites. Hypo-8

thetically, there exists a frequency threshold that optimally separates polymorphisms caused by9

sequencing errors from actual variants with potential clinical significance. Because it was not fea-10

sible to replicate all downstream analyses for an exhaustive sample of frequency thresholds, we11

proceeded with 1% (low threshold, LT) and 20% (high threshold, HT) to dichotomize the amino12

acid frequency data into binary presence/absence values. These values were chosen on the basis13

of prior information on the expected error rate for this sequencing platform [17] and the detection14

limit of Sanger sequencing [10, 12], respectively.15

After excluding reads with low map quality scores and censoring low quality or discordant base16

calls, we obtained a mean coverage of 18,907 and 19,076 reads per amino acid site for LT and HT17

data sets, respectively (Supplementary Figure S2). We restricted our subsequent analyses to amino18

acid polymorphisms, excluding variation due to insertions, deletions and premature stop codons.19

On average, we observed 10−4 insertions and 8×10−5 deletions per nucleotide, which was within20

the expected range of indel error rates for this sequencing platform [65]. Ambiguous amino acid21

polymorphisms due to low base quality or incomplete coverage affected a small fraction of the22

data sets (3.2% and 2.9% for the LT and HT data, respectively). These ambiguities were encoded23

as missing data and handled through multiple imputation.24

Sequence subtyping25

Subtyping analysis of the majority consensus sequences derived from the NGS samples confirmed26

that the majority of samples were assigned to HIV-1 subtypes A (n = 159, 49.7%) and D (n = 70,27

21.3%) as expected for this study population in Uganda. An additional n = 28 (8.4%) samples28

were predicted to be A/D recombinants, and n = 16 (4.2%) samples were predicted to be sub-29

14
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type C. The remaining samples were assigned to other inter-subtype recombinants or could not1

be confidently assigned to a known subtype or circulating recombinant form. We found no sig-2

nificant association between predicted HIV-1 subtypes and RAL-based treatment failure (Fisher’s3

exact test, P = 0.5). Variation among sequences was best explained by the general time reversible4

model of nucleotide substitution with invariant sites and a gamma distribution to model rate varia-5

tion across sites (GTR+I+G). We reconstructed a maximum likelihood phylogeny under this model6

to verify the subtype predictions from SCUEAL relative to curated HIV-1 subtype reference se-7

quences (Supplementary Figure S3), where sequences assigned to subtypes A, C and D comprised8

monophyletic clades with high bootstrap support values (>85%).9

Drug susceptibility by genotyping10

Applying the Stanford HIVdb algorithm to the NGS consensus sequences to predict resistance to11

RAL, we confirmed that less than one-third of RAL-based treatment failures (shortened to ‘RAL12

failures’) manifested the classical RAL resistance pathways [34]. The complete breakdowns of13

resistance prediction scores by HIV-1 subtype in the RAL naı̈ve and RAL failure groups are sum-14

marized in Figure 1. Out of 52 consensus sequences from RAL failure samples, only 14 samples15

(26.9%) were predicted to have high-level resistance to RAL (score ≥ 60). One of these samples16

(score 120) harbored the major RAL resistance mutation G140A (in 99.12% of reads) in combi-17

nation with the accessory mutation E138K (99.1%). An additional 10 samples carried the major18

mutation N155H at frequencies between 94.2% and 99.7%, and two samples carried the major19

RAL resistance mutation T66K (at 93.8% and 62.7%, respectively). Finally, two samples with20

high RAL resistance scores in this group carried the major mutation Q148R in combination with21

accessory mutation G163R. This relative lack of expected mutational pathways in the RAL failure22

group, quantified by the low number of patient samples with resistance prediction scores in the23

susceptible to low-level resistance range (Figure 1), motivated a more comprehensive analysis of24

HIV-1 integrase polymorphisms in the deep sequencing data.25

Support vector machine analyses26

A key challenge in detecting genetic associations in deep sequence data from rapidly-evolving27

infections like HIV-1 is that potentially any amino acid may appear at any position. We followed28

15
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Figure 1: Distribution of RAL resistance predictions on sample consensus sequences by HIV sub-
type and treatment outcomes. Resistance prediction scores were obtained by the Stanford HIVdb
algorithm [7]. The study population was split into RAL naı̈ve (left, n= 328) and RAL failure (right,
n = 52) patients; accordingly, these plots are on different scales. Each stacked barplot stratifies pa-
tients by predicted HIV-1 subtype and categorizes the prediction scores into high-level (60+, red),
intermediate (30-59, orange), low-level (15-29, yellow) and potential low-level resistance (10-14,
light green), and RAL susceptible (below 10, dark green).

the sparse binary encoding approach in [18] so that every sample was represented by a total of 5,7601

binary variables for 20 amino acids at 288 positions in the HIV-1 integrase reference. This is an2

unwieldy number of predictor variables for conventional association tests like logistic regression.3

Support vector machines (SVMs [66]) were developed to handle this sort of scenario, where the4

number of observed cases is vastly exceeded by the number of predictor variables, and have been5

employed in a number of studies of HIV variation [67, 68].6

We used penalized SVMs to select features (polymorphisms) that most effectively separated7

patient samples into RAL naı̈ve and RAL failure categories (labels; see Supplementary Text S1).8

Our results are summarized by the mean feature weights (the relative contributions of different9

polymorphisms to the separation of labels) for the low (1%) and high (20%) amino acid frequency10

16
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threshold (LT and HT) data sets, respectively. Figures 2A (for LT) and 2B (for HT) display these1

results in comparison to the mean univariate odds ratios (ORs) for polymorphisms selected by the2

SVM analyses to provide more intuitive measures of association. To account for variation induced3

by missing data, we excluded features that were selected in fewer than 40 out of 50 imputed4

matrices for both LT and HT data sets, which disproportionately affected features with average5

weights close to zero. In general, we observed strong positive correlations between the SVM6

feature weights and mean ORs for the LT (Spearman’s ρ = 0.59, P < 2.2× 10−16) and HT (ρ =7

0.68, P < 2.2×10−16) data sets.8

The entire set of amino acid polymorphisms selected by support vectors for the LT data set9

are summarized in Supplementary Table S2. To identify the most promising features from these10

results, we filtered the features that were selected in at least 40 imputations and where the mean11

lower 95% confidence limit in odds ratios was greater than 1. In total, we recorded 663 features12

selected by support vectors, of which 83 (12.5%) were reproducibly selected in at least 40 imputed13

matrices. Although the known major RAL resistance mutations T66K [69] and Q148R [70] had14

positive mean feature weights, they appeared in only 13 out of 50 imputed data sets (Supplementary15

Table S2). Only the major mutation N155H [71] was selected in a majority of imputations (all 50)16

with the fourth highest mean weight. An additional 8 features were known accessory or minor RAL17

resistance mutations (T66A [72], L74M [73], T97A [4], V151I [74], N155D [75], E157Q [76],18

G163R [74]) and R263K [77]); with the exception of R263K, all were assigned positive weights19

(Supplementary Table S2). Only G163R, V151I and T97A were selected in a majority (>80%)20

of analyses, and in fact were selected for all 50 imputed matrices. Overall, our filtering criteria21

selected the following polymorphisms in descending order of weight: G163R, V165I, N155H,22

V151I, I203M, T97A, K211N, A129S, D288E, K240R, Q148K, I135F, C65R, I208L and T218S.23

The relative locations of these polymorphisms are summarized in Figure 2C. For instance, we24

observed a cluster of 6 selected polymorphisms within the interval IN 198 to 218, which is distal25

to both the integrase active site and RAL binding site.26

The higher frequency threshold (<20%) for the HT data set substantially reduced the effective27

number of amino acid polymorphisms; as a result, there were fewer features selected in the support28

vectors (n = 299; Supplementary Table S3). Applying the same criteria as above to identify the29

most significant features yielded the following six substitutions (in decreasing order of weight):30

17
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Figure 2: Summary of results from support vector machine analyses. (top) Feature weights and
odds ratios for selected polymorphisms in the LT (A) and HT (B) databases. Each point corre-
sponds to an amino acid polymorphism (feature) selected by support vectors. To reduce clutter
and identify features robust to missing data, we removed all features selected in fewer than 40
out of 50 imputations. The x-axis corresponds to feature weights, and the y-axis represents the
log-transformed mean odds ratio (OR) for each feature against the labels. Vertical lines indicate
the empirical 95% confidence interval in ORs. Points are coloured grey if this interval spans 1 (not
significant) and otherwise according to mutation categorization, if any, by the Stanford HIV Drug
Resistance Database (see inset legend). (bottom) Positive weight selected from the SVM analysis
and greater than one Odd ratio polymorphisms for the LT (C) and HT (D) data sets. The HIV-1
integrase reference coordinates are marked along the x-axis, and log-transformed OR mean and
C.I. along the y-axis.

N155H, G163R, T97A, I208L, I203M and G134N (Figure 2D). Of these features, only the primary1

mutation N155H and secondary mutations T97A and G163R have been previously described.2
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Figure 3: Summary of intra-host frequencies for known major RAL mutations and two candidate
mutations I203M and I208L. Samples from n = 30 RAL failures patients carrying at least one
of these mutations are each represented by a set of barplots representing mutation frequencies on
the right. The height of each bar is proportional to 1+ log10(p) for p ranging from 1% to 100%
(see legend in bottom-left). The vertical ordering of samples was determined by a hierarchical
clustering analysis, with the corresponding dendrogram displayed on the left. Vertical bars have
been added on the left to highlight the subsequent specific pathways.

I203M and I208L confer resistance to INSTIs in vitro1

Based on these SVM analyses, we selected the novel substitutions I203M and I208L for further2

investigation, as they appeared in both lists of the most significant features from the LT and HT3

data sets. Figure 3 contrasts the intra-host frequencies of I203M and I208L in the context of known4

major RAL mutations, as defined by the Stanford HIV Drug Resistance Database. These frequency5

distributions revealed four distinct clusters of mutations among n = 30 (58%) patients failing a6

RAL-based treatment regimen and carrying at least one of these polymorphisms. Two clusters7

of patients in this RAL failure group carried one of two known major RAL resistance mutations8

Q148K/R or N155H. There were no patient samples containing the polymorphism Q148H. A third9

cluster comprised samples carrying the mutation I208L, and a fourth carried I203M and/or I208L10
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Figure 4: Drug susceptibility assays confirm the effects of I203M and I208L on INSTI resistance.
The top row of plots correspond to raltegravir drug susceptibility curves for NL4-3 (wildtype, in
black) and I203M (red, A) and I208L (blue, B), respectively. Points represent the mean and the
error bars represent the standard error for a minimum of four replicates. Similarly, the middle row
of plots correspond to the dolutegravir drug susceptibility curves for NL4-3 and I203M (C) and
I208L (D). The barplot (E) summarizes EC50 fold change measurements for raltegravir (RAL) and
dolutegravir (DTG) stratified by NL4-3 (black), I203M (in red) and I208L (in blue). Each point
for curves in A-D corresponds to the mean and standard error of at least four replicate assays.
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to the exclusion of all known major RAL resistance mutations with the exception of Q148K/R.1

This pattern suggests that I203M and I208L may comprise novel mutational pathways for RAL2

resistance.3

To experimentally validate the predicted effects on resistance to RAL and other INSTIs, the4

I203M and I208L were first introduced into the IN coding-region of the NL4-3 HIV-1 proviral5

genome. The mutated proviral DNA was then transfected into 293T cells and the resulting virus6

was propagated on U87.CD4.CXCR4 cells in vitro. We then performed drug susceptibility assays7

on TZMbl cells exposed to the wild type and mutated HIV-1 and treated with varying concentra-8

tions of RAL and DTG. These experimental results are summarized in Figure 4. We confirmed9

that the presence of either I203M or I208L significantly decreased susceptibility to RAL (44.0-10

fold and 54.9-fold, respectively) compared to wild-type virus (EC50 = 0.32 nM). Furthermore, we11

found that I203M significantly decreased susceptibility to DTG (111-fold) and that there was no12

significant effect of the I208L IN (3.6-fold).13

Low threshold High threshold
Mutations naı̈ve experienced naı̈ve experienced
Total 328 52 328 52

I203M 14 (4.3%) 8 (15.4%) ** 8 (2.4%) 6 (11.5%) **
I208L 39 (11.9%) 12 (23.1%) 28 (8.5%) 12 (23.1%) *

Table 1: Frequencies of I203M and I208L polymorphisms in HIV-1 IN stratified by treatment for
this study cohort and by minor allele frequency, i.e., low threshold = 1% (LT) and high threshold
= 20% (HT). Fisher’s exact tests (experienced vs. naı̈ve): * = P < 0.05; ** = P < 0.01; *** =
P < 0.001.

I203M and I208L are natural polymorphisms14

To assess whether I203M and I208L mutations are present as natural polymorphisms in the gen-15

eral population, we queried the Stanford HIV Drug Resistance Database (HIVdb; last accessed16

February 21, 2019) for all available HIV-1 IN sequences (n = 17,605) from INSTI naı̈ve and ex-17

perienced patients and evaluated the frequencies of these variants in subtypes A, B and D (Table18

2). This database comprised n = 1,248 records from RAL-experienced individuals, of which only19

n = 129 were infected with a non-B subtype — in comparison, our study would contribute an ad-20

ditional n = 52 sequences, about 40% of the current number. The frequencies of I203M and I208L21

21
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Treatment
Mutations naı̈ve experienced RAL-experienced
Total 16029 1575 1248

I203M 958 (5.9%) 121 (7.7%) * 96 (6.1%) *
I208L 779 (5.0%) 128 (8.1%) *** 100 (6.4%) ***

T66K 0 (0%) 4 (0.25%) *** 2 (0.13%) *
G140A/C/S 3 (0.019%) 350 (22.2%) *** 328 (20.8%) ***
Y143C/H/R 6 (0.037%) 177 (11.2%) *** 170 (10.8%) ***
Q148H/K/R 11 (0.069%) 405 (25.7%) ** 365 (23.2%) ***
N155H 3 (0.019%) 394 (25.0%) *** 359 (22.8%) ***
G140A/C/S + Q148H/K/R 1 (0.006%) 349 (22.2%) *** 325 (20.6%) ***

Table 2: Frequencies of I203M, I208L and RAL INSTI major mutations in HIV-1 IN stratified
by treatment according to Stanford HIV Drug Resistance Database (as of February 21, 2019),
whereas reported RAL-experienced individuals breakdown is reported. T66K coverage was 16,027
for naı̈ve, I203M and I208L coverage was 15,997 for naı̈ve and 1573 for experienced patients.
Other major combinations include: G140A/C/S + Y143C/H/R (9 INI), G140A/C/S + N155H (19
INI), G140A/C/S + Y143C/H/R + Q148H/K/R (9 INI), G140A/C/S + Q148H/K/R + N155H (21
INI), G140A/C/S + Y143C/H/R + Q148H/K/R + N155H (2 INI), Y143C/H/R + Q148H/K/R (10
INI), Y143C/H/R + N155H (26 INI), Y143C/H/R + Q148H/K/R + N155H (2 INI), Q148H/K/R
+ N155H (27 INI), T66K + G140A/C/S + Q148H/K/R (1 INI), INI = INSTI-experienced, RAL
= Raltegravir. Fisher’s exact tests (experienced vs. naı̈ve, RAL- vs. non-RAL-experienced): * =
P < 0.05; ** = P < 0.01; *** = P < 0.001.

in the RAL-naı̈ve category in the HIVdb database were 5.9% and 5.0%, respectively, suggesting1

these two mutations are natural polymorphisms that circulate at low frequencies (> 0.5%). We2

noticed only slight but statistically significant increases in these frequencies in association with3

the RAL-experienced category in HIVdb (Table 2). Although we observed more substantial in-4

creases in association with the RAL failure category in our study population (Table 1), this is not5

directly comparable to the RAL experienced category in the HIVdb database that comprises an6

unknown proportion of treatment failures. In addition, we also collected the frequencies of the7

known major RAL resistance mutations in HIVdb. These mutations were almost always observed8

with INSTI-experienced patients, being almost absent in INSTI naı̈ve patients (Table 2).9

Structural analysis10

Based on their location in the primary sequence, I203M and I208L maps near the C-terminal base11

of the α-helix connecting the C-terminal domain (CTD) to the catalytic core domain (CCD) of12

HIV-1 integrase in the unliganded structure [64]. Figure 5A displays the structure of HIV-1 inte-13

22
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grase complexed with viral and host DNA (PDB ID 5U1C) and in which only the I203M position1

could be mapped. However, as discussed in the methods section, a model of HIV-1 integrase was2

constructed to create an extension of this structure (5U1C extended), such that when superimposed3

on the original structure (PDB ID 5U1C), the I208L position was roughly mapped.4

From both structures, the I203M and I208L residues are distally located from the catalytic5

active site of HIV DNA processing, the binding site for most INSTI, as well as the location of most6

drug resistance mutations (all the known major RAL mutations are also shown in the structure in7

Figure 5A). These residues are closer to the C-terminal domain of HIV-1 integrase that is also8

responsible for binding to the HIV-1 integration cofactor LEDGF (lens epithelium derived growth9

factor) and to both host and viral DNA [78–80]. However, structural mapping shows that the10

I203M and I208L mutations were opposite side of the C-terminal domain engaged in LEDGEF11

binding (Figure 5B).12

Structural modeling of the I203M mutation in HIV-1 integrase shows a conformational change13

in the α-helix connecting the CCD to the CTD (Figure 5C). Similarly the structural model having14

both the I203M and I208L mutations also show a conformational change the α-helix connecting15

the CCD to the CTD (Figure 5E). The model suggests that these mutations may be conferring IN-16

STI resistance by stabilizing the IN/DNA complex and possibly outlasting the binding of RAL to17

IN, dependent of the RAL off rate. Based on other drug resistance mechanisms involving differen-18

tial drug and substrate binding sites, an increase in substrate Km/Koff (ratio of Michaelis constant19

to dissociation rate) over inhibitor Km/Koff can result in resistance. On the other hand, structural20

modeling of the I208L mutation in HIV-1 integrase shows very little to no conformational changes21

(Figure 5D). It is however important to stress that these mutations were modeled into a subtype B22

integrase structure, as structures for other subtypes are not yet available.23

Discussion24

The majority of our knowledge on drug resistance mutations (DRMs) in HIV-1 comes from studies25

of subtype B, even though this subtype represents only a small proportion of infections worldwide.26

In a previous study [34], we observed an absence of known DRMs associated with RAL resistance27

in half of the HIV-infected Ugandans failing a third line RAL-based treatment. This absence28

could be attributed to either complete non-adherence, or a failure to detect resistance-associated29

23
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Figure 5: Structural mapping of the novel amino acid replacements. (A) a cryo-electron micro-
scope structure (PDB ID 5U1C) of integrase protein (lightteal) in complex with host and viral
DNA. The modelled extended structure (palecyan) is superimposed on chain A to show the miss-
ing α-helix where the I208L mutation is located (B) a crystal structure of integrase protein CCD
(shown as a green cartoon) bound to the human LEDGEF protein (shown as sticks) (C) the mod-
elled I203M mutant structure (limegreen) of HIV-1 integrase superimposed on the modelled ex-
tended wild type structure (greencyan) (D) the modelled I208L mutant structure (aquamarine) of
HIV-1 integrase superimposed on the modelled extended wild type structure (greencyan) (E) the
modelled I203M and I208M mutant structure (lime) of HIV-1 integrase superimposed on the mod-
elled extended wild type structure (greencyan). All catalytic active site residues are colored purple
while the novel mutation sites are colored blue (I203M) and red (I208L) respectively. The know
major RAL major resistance mutation sites were colored as follows: T66 (cyan), Y143 (lightgreen),
Q148 (green), 155 (orange). These images were generated with PyMOL [81].

polymorphisms below the threshold of detection of Sanger sequencing (about 20% [12]). Based1

on an initial viral load decrease and adherence tracking during this third line regimen, complete2

non-adherence resulting in a return of wild type HIV was unlikely for all n = 51 patients [34].3

Though we cannot retrospectively quantify the extent and impact of drug non-adherence, we can4

24
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explore the possibility of unique, uncharacterized mutations associated with INSTI resistance with1

NGS-based genotyping.2

Based on previous assay cutoff analyses, the Illumina MiSeq platform is capable of repro-3

ducibly detecting mutations at a lower frequency threshold of about 1% [14–16], which confers4

a substantially improved sensitivity over conventional Sanger sequencing. Setting a frequency5

threshold of 1% is only meaningful if a sufficient number of virus genomes from the plasma sam-6

ple are represented in the sequencing library. For instance, if the input number of templates is7

fewer than 100, then any variant detected at a frequency of 1% or less is likely the result of se-8

quencing error. Our study population comprised patients either sampled prior to initiating ART or9

following treatment failure. In previous work, we have reported that plasma viral loads averaged10

about 5.4 log10 copies/mL at baseline [8]. Although drug resistance testing in Uganda is requested11

for patients failing treatment above 1,000 copies/mL, the majority of requests were obtained when12

viral loads exceed 10,000 copies/mL (averaging 4.8 log10 copies/mL for first-line treatment failure,13

and >5.0 log10 copies/mL for RAL-based/third-line treatment failure) [31, 34].14

Our most conservative estimates are that about one-sixth of the viral RNA from 200µL of15

plasma was transferred from the sample extraction to the RT-PCR reaction mixture, and that about16

one-half was converted to cDNA. Given that half of the reaction mixture was used for PCR amplifi-17

cation and sequencing, we would expect at least 850 templates on average to be available for NGS.18

To evaluate the effect of template resampling on our ability to measure variant frequencies, we19

can simulate the sampling process assuming that extraction and aliquoting is sampling uniformly20

at random without replacement, and that sequencing post-amplification is sampling uniformly at21

random with replacement. For instance, we predict that a variant found in 500 copies/mL (0.5% of22

the plasma sample) has a 0.03% probability of being sampled to a frequency of 1% or greater un-23

der our experimental conditions (2.5% and 97.5% quantiles = 0.26%, 0.77%; N = 106 replicates).24

Conversely, a variant in 1500 copies/mL (1.5%) would be sampled at 1% or less with probability25

0.93%. We further note that our multiple imputation across repeated NGS of the same samples26

would have averaged out some sampling variation.27

Our NGS analysis of RAL naı̈ve and treatment failure samples confirms results from our previ-28

ous study [34], including the absence of previously identified DRMs in about half of RAL failure29

cases. The SVM analysis of these data also identified a number of potentially novel mutations30

25
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associated with reduced sensitivity to RAL. Because this classifier evaluates features by selecting1

data points (the support vectors) to anchor the hyperplane separating labels, some of these fea-2

tures may be associated by chance with RAL failures due to their linkage to features with direct3

effects. Consequently, we carried out a post hoc odds ratio analysis to evaluate the significance of4

univariate associations between each feature selected by the SVM and the labels (virologic con-5

trol versus RAL failure). The combined analyses recovered several known major and accessory6

mutations conferring resistance to RAL. For instance, we found a highly significant association7

between the major mutation N155H and patients failing RAL treatment [71], and this mutation8

was significantly linked with accessory mutations such as V151I [74]. A limitation of our SVM9

analysis was that we selected two frequency thresholds to dichotomize amino acid polymorphisms10

into binary variables. Although it is possible to directly apply the SVM classifier to continuous11

variables, dichotomizing the observed frequencies into presence/absence states was necessary to12

make the analysis computationally feasible. We selected the two frequency thresholds (1% and13

20%) to span the range bounded by the lower limits of detection for the Illumina MiSeq [17] and14

Sanger sequencing [12], respectively. Additionally, the selection of 1% for dichotomizing HIV-115

deep sequence data has also been empirically validated in a recent whole-genome deep sequencing16

study of HIV-1 [82] and employed in a genome-wide association study of HIV drug resistance17

[83].18

Our SVM analyses identified a cluster of amino acid polymorphisms associated with RAL19

failure in the α helix domain, including the mutations I203M and I208L. With this new informa-20

tion, we could map the majority of RAL failure samples to four largely independent mutational21

pathways characterized respectively by I203M, I208L, Q148/R, and N155H (Figure 3). We sub-22

sequently confirmed these candidate DRMs by introducing the I203M and I208L mutations into a23

wildtype background through site-directed mutagenesis, and then evaluated those mutants in IN-24

STI susceptibility assays in vitro. Our results indicate that both mutations confer a substantial25

decrease in susceptibility to RAL (Figure 4). A conspicuous limitation of these experiments was26

the use of the NL4-3 background, a standard laboratory clone in widespread use that was origi-27

nally derived from an HIV-1 subtype B isolate. Given the high estimates of EC50 from our in vitro28

assays, it seems implausible that previous studies of INSTI resistance in HIV-1 subtype B have29

not observed these mutations. Hence, it is likely that I203M and I208L induce substantial costs to30
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the replicative fitness of the subtype B virus in vivo. Further experimental work in our lab will be1

directed on evaluating drug susceptibilities and fitness costs of these mutations in non-B subtype2

backgrounds.3

Structural analysis shows that the I203M and I208L mutations are located in the CCD, but in4

sites closer to the CTD rather than the catalytic active sites where DNA is processed and where5

the integrase inhibitors bind. A previous study suggested that the integrase CTD is also involved6

in 3’ DNA processing as well as strand transfer to the target DNA [84]. We speculate that these7

mutations may have resulted in slight conformational changes in the CTD that facilitates increased8

DNA binding and improved DNA processing, while hindering the actions of RAL. A less likely9

but alternative speculation was that these mutations may lead to interactions or conformational10

changes in the CCD of integrase that increases the affinity for DNA while reducing the ability of11

RAL to bind.12

I203M has previously appeared on lists of INSTI resistance mutations in the earlier literature13

[85–87]. However, it is not currently recognized in actively-maintained clinical guidelines and14

algorithms, such as the International Antiviral Society-USA Drug Resistance Mutations list [6] or15

the Stanford HIV Drug Resistance database [23]. Furthermore, I203M was previously character-16

ized as a minor or accessory mutation with no evidence of directly reducing susceptibility, and has17

also been characterized as a natural polymorphism that is observed a substantial frequencies in un-18

treated individuals [77]. We surmise that the over-representation of subtype B in earlier studies of19

HIV-1 integrase variation may have obscured the major effect of this mutation on INSTI resistance20

that we have observed in both machine learning and in vitro analyses. In contrast, we have found21

almost no previous mention of I208L in the HIV-1 drug resistance literature.22

Another limitation of our study is that our NGS experiments focused specifically on the region23

of the HIV-1 genome encoding integrase. For example, recent work has identified mutations out-24

side of this region that can confer resistance to INSTIs, such as a cluster of mutations in the HIV-125

3’ polypurine tract [88], a conserved motif that primes the sythesis of plus-strand HIV-1 DNA26

during reverse transcription. Newer whole-genome deep sequencing protocols make it possible to27

apply a similar analytical approach on a global scale, although this will also present both technical28

and bioinformatic challenges [89]. In particular, expanding coverage will exacerbate the ‘large p29

small n’ problem [90] of finding associations for thousands of potential sites with limited sample30
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sizes; i.e., much larger numbers of RAL failures will be needed to support increasing the number1

of variables by an order of magnitude.2

In addition to I203M and I208L, our analysis has identified several other potentially novel RAL3

resistance mutations in HIV-1 integrase that represent further targets for experimental characteri-4

zation. Moreover, the cluster of potential mutations spanning IN reference positions 198 to 218,5

including the mutations I203M and I208L with resistance effects that are independent of the known6

mutations (Figure 3), implies the existence of a novel and possibly subtype-dependent mechanism7

of drug resistance that requires further bioinformatic and experimental investigation.8
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